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1. Intr’oduclion

The currently accepted theoty of concurrent computing is deeply rooted in the
concept of atomic registers. An atomic register is a data object that is read or
written by one or more processes according to the following assumption: If
several read or write operations of the register are enabled simultaneously in
different processes, then these operations are executed in some sequence, one
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after the other, and not concurrently. This assumption strongly suggests the

well-known interleaving semantics of concurrent computations. The validity of

this assumption is thus a cornerstone in justifying the present theory of

concurrent computing.

One way to check the validity of this assumption is to show that an atomic

register can be constructed using a set of more realistic registers that can be

read and written concurrently by different processes. In such a construction, a

process reads or writes the constructed atomic register by invoking a program;

within such a program, only registers of the more realistic kind are read or

written. Different programs can be invoked by different processes concurrently;

it is required, however, that the net effect resemble that of a serial invocation.
The programs are restricted to be wait-free, that is, synchronization primitives,
such as P, V, or await, and unbounded busy-wait loops are not allowed. This
restriction guarantees that a process reads or writes the constructed atomic
register in a finite amount of time, regardless of the activities of other
processes. (This also means that the read or write of a process is immune to the
failure of other processes that also access the register.) The wait-freedom
restriction distinguishes the problem of constructing an atomic register from
the classic readers-writers problem [Courtois et al., 1971].

Peterson [1983] was the first to suggest the problem of constructing atomic
registers from safe registers. A safe register is a data object that can be read or
written concurrently by different processes; if a read operation overlaps a write
operation, then it may return any value from the value domain of the register,
and if a read operation does not overlap any write operation, then it obtains
the most recently written value. The leap from safe registers to atomic registers
is quite large; fortunately, it can be divided into a number of smaller steps.
Figure 1 depicts two chains of register constructions that lead from single-writer,
single-reader, single-bit safe registers to K-writer, M-reader, N-bit atomic
registers. The notation K/M/N denotes a register that can be written by K
processes, can be read by M processes, and can store an N-bit value. Each step
in the figure is labeled by a reference to the papers in which the given
construction is presented.

Henceforth, we concern ourselves only with single-writer atomic registers.
The problem of constructing a multiple-reader atomic register from single-
reader atomic registers was mentioned as an open problem by Lamport [1986]
and by Vitanyi and Awerbuch [1986]. The first solution to the problem was
presented by us in [Anderson et al., 1986], where a two-reader construction is
given and then generalized to construct an M-reader register from (M – 1)-
reader registers. This solution, though easy to explain and understand, uses an
exponential number of single-reader atomic registers. Subsequently, several
solutions with polynomial complexity have been presented [Burns and
Peterson, 1987; Kirousis et al., 1987: Newman-Wolfe, 1987; Li et al., 1989],
including one given by us in [Singh et al., 1987].

In this paper, we present a construction of a multiple-reader atomic register
that is based upon the solution in [Singh et al., 1987]. The presentation of this
construction differs from the earlier construction in two respects. First, the
solution presented here is of optimal complexity, whereas the one given in
[Singh et al., 1987] is not. (Actually, an optimal solution can be attained by
combining the solution in [Singh et al., 1987] with constructions by Lamport
[1986] and Peterson [1983 ]—see Singh et al. [1987] for details.) Second, the
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(1) See Lamport [1986] and Tromp [1989].
(2) See Anderson et al. [1986], Burns and Peterson [1987], Haldar and Vidyasankar [1991],

Kirousis et al. [1987], Li et al. [1989], Newman-Wolfe [198’7], and Singh et al. [1987].

(3) See Bloom [1988], Li et al. [1989], Peterson and Burns [198’7], Schaffer [1988], and Vitanyi and
Awerbuch [1986].

(4) See Peterson [1983] and Vidyasankar [1988].

FIG. 1. Two Chains of Register Constructions.

correctness proof presented in this paper is more rigorous and formal (and, we
hope, easier to understand).

The rest of the paper is organized as follows. In Section 2, we formally define
the problem of constructing an M-reader atomic register from single-reader
atomic registers. In Section 3, we present our construction. An informal
description of this construction is presented in Section 4 and a formal correct-
ness proof is presented in Section 5; the proof makes use of several lemmas,
which are stated and proved in an appendix. Concluding remarks appear in
Section 6.

2. Register Construction

Register constructions can be defined in a number of different ways. Our
choice of definitions is based on simplicity and convenience.

Terminology. In order to avoid confusion, we henceforth capitalize terms
such as “Read” and “Write” when they apply to the constructed register, and
leave them uncapitalized when they apply to the variables used in a construc-
tion.

We view the Writer (and each Reader) of a construction as a program that is
invoked by a process in order to Write (Read) a value to (from) the register.
The program for the Writer has one input parameter indicating the value to be
Written; similarly, the program for each Reader has one output parameter
indicating the value Read. As an example, see the constructions depicted in
Figures 2 and 3.

Each variable of a construction is a single-reader, single-writer atomic
register—this restriction arises since our aim is to construct a multiple-reader
register from single-reader registers. We also require that all variables be
bounded in size. (There is a very simple solution if the variables are unbounded
[Vitanyi and Awerbuch, 1986].) As mentioned in the introduction, each pro-
gram of a construction is “wait-free,” that is, synchronization primitives and
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type W’RNpe= record old, }ww : /altype; .seq : array[l ..M ] of ()..2; ak. done : boolean end:
RR&pc = record fkzg boolean; .seq :0..2: alt : boolean end

var 14’R : array[ 1 .&f] of W‘RNpe:

RIJ”: array[l.. M] of ()..2;
RR[~ 1: array [~..M ] of RR&pe for each i in the range 1 s t s M

initialization (V1 1 < i < M : RW[t] = WR[~].\eq[i] A (’/j : i < I < M : 1 RR[i, ~]. f7~g))

program Jt>[ter(IW1: lal~pe )

own new ; Iwltype;
ult : boolean

var old : /alhpc:

q, ,seq : array[l.. M] of 0..2:
k:l.. jtf

initialization (V1 :1 < t s Jf : seq[t] = q[i] @ 1 = R~b’[z])

begin
(): old, lzclti, alt = nebt, [al, T alt:

1: for k = 1 to M do read q[,k] = RJV[k] od;
2. for k = 1 tu Al do ,scq[k] = q[k] @ 1od
3 for k = M to 1 do write JPR[k] = (old. new, seq[ 1.. M ], ah, fake) od:
4: for k = 1 toM do write lVR[k ] = ( old, ne}t, seq[ 1..fif ], alt, true) od

end

program Reader(i :1.. Al ) returns ralhpe

var .K,y : J; ’Rwpc;

t array[l .J ] of RRype;

flag : boolean:
k:(). N

define (p,, = y,done A x..wq[t] = y.seq[~]) A

(~k :(1 < k < i p~ z x seq[[] = y.sc!q[~] A I.seq[k] = y.seq[k] A x.a/f = y.alt A

~[k].j?ag A x.seq[k] = ~[k].seq A x.alt = ~[k].ah)

initialization x.seq[t] = W’R[l].seq[Z]
begin

O: read x = JL’R[[];
1: write R1l’[t] = .t.seq[t]:

2. for /i = 1 to I do read I[k] = R/?[k, t] od:
3. read y = J&’R[i].
4: J7ag =(3/c: o<ksl:pL):
5: for k = t to M do write RR[r, k] = ( t70g, y.sc’q[~], y alt) od:

6: if jk7K then return (y t~e)v)else return (y.okl) fi
end

FIG, 2, Nlultlplc-reiider ccmstructwn.

busy-wait loops are not allowed. (For a more formal definition of wait-freedom,

refer to Anderson and Gouda [1990 ].)

Next, we define several concepts that are needed to state the correctness
condition for a multiple-reader construction. These definitions apply to a given
construction.

Definition. A state is an assignment of values to the variables of the
construction. (Note that each program’s “program counter” is considered to be
a variable of the construction. ) One state is designated as the initial state.

Definition. An eLent is an execution of a statement of a program.

Defkitif~~z. Let t and u be any two states of a construction such that state u

is the result of executing some statement at state t. If e is the event
corresponding to this statement execution, then we say that e is enabled at
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type: WR@pe = record new: [wltype; seq : 0..2; all: booleanend;
WS@pe = record old, new: [alVpe; seq : 0..2; ult, done: boolean end;
RStype = record flag : boolean; seq : 0.2; alt : boolean end

var WR: WR~pe;

WS: WS@pe;

RW:O..2;

RS: RStype

initialization
~ RS.@ag

program W( [’al: l’altype)

own new : [’altype;

alt : boolean
var old: toltype;

q, seq: 0..2
begin

old, new, alt ~= new, [al, T alt;

read q := RW,

seq := q @ 1;
write WS Z= (old, new, seq. alt, fake);

write WR := (new, seq, alt );

write WS Z= (old, new, seq, ak, trae)

end

program R returns [altype program S returns [dype

var x, y: WRtype:

fZag : boolean

begin
read x := WR;

write RW:= x.seq;

read y := WR;
flag :=x =y;

write RS = (flag, x.seq, x.alt);

return(.x. new)
end

FIG. 3.

var x, y: WStype;
u : RStype;

begin
read x := WS;

read L>:= RS:
read y := WS;

if y.done v (x = y A [’.fiag A

x.seq = [1.seq A x.ah = ls.ak) then
return( y.new)

eke
return( y.old )

fi

end
Recursive construction.

state t and we write t: u. A histoq of a construction is a sequence

to:t l:..., where to is the initial state.

Definition. Event e precedes another event ~ in a history iff e occurs before
f in the history.

Definition. The set of events in a history corresponding to some complete

program execution is called an operation. An operation p precedes another

operation q in a history iff each event of p precedes all events of q.

Observe that the precedes relation is an irreflexive total order on events and
an irreflexive partial order on operations.

For the proof of correctness of a construction, it is sufficient to consider orLly
histories in which an initial Write operation precedes all other operations and
in which there are no incomplete program executions (that is, operations).
From now on, we deal only with such histories. Note that by assuming that
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there is an initial Write operation, the value Read by any Read operation can
be matched with that Written by some Write operation. This is equivalent to
defining the initial state to be equal to that which results after the initial Write
operation. Note also that a history with incomplete operations can be extended
to one with complete operations; this is possible since all programs are
required to be wait-free. By dealing only with complete operations, the value
“Read from” or “Written to-’ the constructed register by an operation is
well-defined.

Notation. We denote the ith operation of the Writer, where i >0, by W: i.

(Thus, W: 0 denotes the initial Write.)

Following Lamport [1986], we define the correctness condition for a con-
struction as follows:

Definition. Let II be any history of a construction. h is said to be atomic ift’
there exists a function ~ that maps every Read operation in h to some natural
number i, where JJz: i is a Write operation in iz, such that the following three
conditions hold.

—Integriv. For each Read operation r in h. the value Read by r is the same
as the value Written by W: ~(r).

—Pro.~imi~. For each Read operation r in h, r does not precede the Write
operation W: ~(r) and the Write operation W ~(r + 1) does not pre-
cede r.

—Precedence. For any two Read operations r and s in h, if r precedes s,
then +(r) s ~(s).

Definition. A register construction is correct iff all its histories are atomic.

3. Multi-Reader Construction

The proposed construction depicted in Figure 2 consists of a Writer program
and a program for each Reader i, where 1 s i s M. Each shared variable in
the construction is of the single-reader kind. The interface between the Writer
and Reader i consists of a variable WR[i] that is written by the Writer and read
by Reader i and a variable RW[i] that is written by Reader i and read by the
Writer. The interface across Readers consists of a set of variables RR[i, j],
where i < j. Variable RR[i, j] is written by Reader i and read by Reader j.l An
explanation of the field names appearing in the type definitions is as follows:

alt. A bit that alternates in value with each operation of the Writer.
done. A bit that distinguishes the two values written by a Write operation

to variables J477[i].
new. The “current” value of the constructed register. ( Laltype is the type of

the constructed register.)
old. The “previous value of the constructed register.
j7ag. A bit that indicates whether a Read operation returned the old or the

new value.
seq. A modulo-3 integer “sequence number. ” ( Q denotes modulo-3 addi-

tion.)

1It is poss]ble to eliminate variables RR[i, i] from the construction. However, including these
variables simplifies the proof of correctness.
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Variables that are local to a program are declared in either a var or an own
block. A variable declared in an own block is assumed to retain its value across
invocations of the corresponding program. A variable declared in a var block is
not assumed to retain its value across invocations. The initialization assertions
that follow the variable declarations serve to define appropriate initial values
for the variables of the construction; any state satisfying these assertions is a
suitable initial state. (However, recall that, by assumption, the initial Write
operation W: O precedes all Read operations.)

In the programs of the construction, we use a special syntax in order to
distinguish reads and writes of shared variables from reads and writes of local
variables. A program reads a given shared variable Z by executing a statement
of the form “read Lt := Z,” where u is a local variable of the same type as Z. A
program writes a shared variable Z by executing a statement of the form
“write Z ?= u.” If variable Z consists of m fields, then u is an m-tuple; the ith
component of u is a local variable whose value is to be stored in the ith field of
Z. We use similar names (sometimes identical) for the components of u and
the fields of Z, so the correspondence should be obvious.

The sequence numbers shared between the Writer and the Readers form the
basis of our construction. Included in every value written by the Writer is a set
of sequence numbers, one per Reader. During each Write operation, the
Writer reads variable R W[k], where 1 s k s M, to obtain the most recent
sequence number of Reader k. A new sequence number for Reader k is then
obtained by incrementing that read from R W[ k ] using modulo-3 addition. The
Writer then writes to the Readers in two passes; in the first pass the Writer
writes to the Readers in order from M to 1, and in the second pass this order
is reversed. The done bit distinguishes the two passes. The value that the
Writer writes to each Reader includes both the previous and current value of
the constructed register, the aforementioned set of sequence numbers, and the
alt and done bits.

Each Reader i reads two values from the Writer, x and y. Between these
reads, the sequence number obtained from the first read is written back to the
Writer and a value is read from each Reader k, where k < i. The values read
from the Writer and Readers are used to compute the flag bit, which indicates
whether the old or new value from Y is to be returned. Note that j7ag is
assigned a value based upon the expressions P(), ..., P,. These expressions have
been introduced as a shorthand, and are defined in the define section. Before
returning a value, Reader i writes a value to each Reader k, where k > i. This
value includes Reader i’s jl’ag bit and also the sequence number for Reader i
and ah bit of the Writer obtained during Reader i’s second read from WR[i ].

We now calculate the space complexity of our construction by determining

the number of shared single-writer, single-reader safe bits required. The size of

each shared variable in the construction is as follows:

—WR[i], 1 s i < M, consists of 2M + 2N + 2 bits.
—RW[i], 1 s i < M, consists of 2 bits.
—RR[i, j], 1 s i s j s M, consists of 4 bits.

Using the construction of Vidyasankar [1990], a single-writer, single-reader,
B-bit atomic register can be constructed using 3B + 7 shared single-writer,
single-reader safe bits. For our construction, this yields a space complexity of
6MZ + 6MN + 26M + 19M(M + 1)/2. It is well known that the lower bound
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on space for this problem is 0( M z + MN) bits [Israeli and Li, 1987]; thus, our
construction is asymptotically optimal.

Given the correctness proof in Section 5, our construction establishes the
following theorem.

THEOREM. It is possible to construct a single-writer, M-reader, N-bit atomic
register using 0( M 1 + MN) shared single-writer, single-reader safe bits.

4. Infomnal Explanatiorl

In this section, we explain the intuition behind the algorithm by discussing
some of the proof obligations that will be established in the next section and in
the appendix. Before doing so, however, we introduce some notation that will
be useful in the ensuing discussion.

De@itio~z. Let p be an operation of program P and i be a label of a
statement in P. If i is not a for loop, then p : i denotes the event correspond-
ing to the execution of statement i in operation p. Otherwise, if i is a for loop,
then p : i.j denotes the event corresponding to the execution of the loop body
when the loop counter equals j.

For example, for a Write operation ~v of the construction in Figure 2, w : 1.i
denotes the event in which w reads from RW[i] and w : 4.i denotes the event
in which IV writes to WR[ i] for the second time. Next, we define three types of

control predicates [Lamport, 1980].

Definition. Let p be an operation of program P in some history and let
p : i be an event of p. Then, p at i is true at a state of the histoty jff the event

p : i is enabled; p before i is true at a state iff the state occurs before the event
p : i: and p after i is true at a state iff the state occurs after the event p : i.

If n is the label of a for loop in program P, then we use p before n as a
shorthand for (Vi::p before n.i); we use p after n as a shorthand for (Vi::p
after 11.i): and we use p at n as a shorthand for (3i::p at n.i) V (qi, j::p after
n.i A p before n.j).

Observe that if i is not a for loop, then p at i implies p before i. In
particular, p at i strengthens p before i by also requiring that p:i be enabled.
On the other hand, if i is a for loop, then it is possible to have p at i A ~ (p

before i). This assertion holds when some event of the loop other than the first
is enabled. The following assertions are a consequence of the preceding
definition: let p and i be as given in the definition.

—p before i V p at i V p after i
—( T p after i) ‘p at i Vp before i

As examples of control prcdicatcs, observe that fur any Write operation w of

the construction in Figure 2:

—WI after 1.i denote that }V has read the sequence number from Reader i,
—w before 4 denotes that the w has not begun its second pass of writes,
—w after 4.i denotes that w has completed its write to Reader i in the second

pass, and
—W after 4 denotes that w has completed its second pass of writes.

Definition. Let A and B be two state assertions. The assertion A unless B
holds iff for every pair of consecutive states in any history, if A A 7 B holds in
the first state, then A V B holds in the second state.
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Our notion of unless has been borrowed from the UNITY logic of Chandy
and Misra [1988]. Informally, A unless B means that once A becomes true, it
remains true unless B becomes true. In particular, if A is falsified by some
event, then B either is true at the state prior to the occurrence of that event,
or is true at the state following the occurrence of that event. There is no
requirement that B eventually become true; however, in that case A remains
true forever.

Definition. Let p be an operation, and z be any local variable of p. Then,
p!z denotes the final value of variable z as assigned by operation p.

Now, we are ready to explain the intuitive idea of the algorithm. Let us
examine some Write operation w of the Writer. Assume that w changes the
value of the register from old to new. It is possible to identify two points a and
b within the execution of w such that no Reader returns new before a and no
Reader returns old after b. Let us call the interval between a and b the
uncertainly inten)al of w.

In establishing the correctness of the construction, the main difficulty is
ensuring that the precedence condition (in the definition of an “atomic
history” given in Section 2) is not violated during the uncertainty interval of a
Write operation such as w. This amounts to proving that new-then-old conflicts
do not arise in this interval. Avoiding new-then-old conflicts is difficult because
of the fact that only single-reader registers are used in the construction. As a
result of this limitation, w must inform the Readers of the new value being
Written one at a time. Thus, during the uncertainty interval of w, there exist
certain points at which some, but not all, of the Readers have been informed
by w that the value new is currently being Written. This difficulty will be
encountered in any construction of a multiple-reader atomic register from
single-reader ones.

In our solution, the uncertainty interval begins after the Writer writes to
WR[l] in the second pass and ends after the Writer writes to WR[M] in the
second pass. In other words, the uncertainty interval exists while the predicate
w at 4 A 1 w before 4 is true. Our solution should therefore guarantee the
following three properties:

(AO) Reads before the beginning of this interval do not return the new value.
(Al) Reads after the end of this interval do not return the old value.
(A2) Reads during this interval do not result in new-then-old conflicts.

To state these properties precisely, we define a predicate Cue that relates
the values written by a particular Write operation to the existing value of
variable RR[i, j], where i s j. Informally, predicate Cue( w, i, j) can be thought
of as a cue from Reader i to Reader j that Reader i has returned the new
value of w. This predicate is defined as follows:

Cue(w, i,j) = RR[i, j].flag A RR[i, j].seq = w!seq[i] A RR[i, j].ah = w!ah.

According to the Reader program, if both values read from ~[j] by Reader j
were written by Write operation w, and if the value read from RR[i, j] satisfies
the above predicate, then Reader j will find predicate p, to be true and
subsequently return the value new.
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Returning to the discussion of the uncertainty interval, byproperty(AO), we
should ensure that Cue( WI,i, j) is false before the beginning of the interval. In
other words,

w after l.i A w before4 + 1 Cuc(w, i,j).

Control predicate w after l.i is added as a conjunct to ensure that the value
~v!.seq[i], which is used in the definition of C’l{e(w, i, j), is available to Reader i.
We prove the above property as Lemma 4 in the appendix. Based on this
lemma, Readers do not return the new value before the beginning of the
uncertainty interval and property (AO) holds.

Now, consider an operation r of Reader i and assume that both values read
from WR[i] by r were written by w. If r begins after the uncertainty interval of
~~, then r will find p,] to be true; consequently, r will return the value HCW.

Thus, Readers do not return the old value after the end of this interval and
hence property (Al) holds.

Finally, we have to ensure that property (A2) holds, that is, that new-then-old
conflicts are avoided within the uncertainty interval. Consider successive Read
operations by Reader i and Reader j. There are two cases to consider: either
i < j or j < i. The former case is not too difficult. If an operation of Reader i

returns the value new during the uncertainty interval of w. then, upon
completing, it establishes Cle( w, i, j). If we can show that this predicate will
remain stable during the uncertainty interval, then Reader j will also return
the value ne}v and new-then-old conflicts will not arise. The stability of
Cue(w, i, j) is captured by the following property,

w at 4 ~ Cue(u), i, j) unless w after 4,

which is proved as Lemma 5 in the appendix.
The latter case is more interesting, as there is no direct communication from

Reader i to Reader j if j < i. In order to avoid new-then-old conflicts in this
case, we have to rely upon either the Writer completing its writes to Reader j
or some other Reader k < j setting Cue(w, k, j) to true. In other words. we
have to show that

wat4 A Cue(w’, l,i) + (Vj:j <i: wafter4. j V (=k: k <j: Cue(~v, k, j))).

Let us examine the above assertion in detail. It states that, during the
uncertainty interval of w, if Reader i is cued by some Reader 1 (and hence,
returns the new value), then for any smaller j (to which Reader i does not
write any values), either w has written its final values to Reader j (in which
case Reader j will return the new value) or Reader j in turn has been cued by
some Reader k (in which case. from the stability of CZM(W, k, j), Reader j will
again return the new value). This property is proved as Lemma 9 in the
appendix. This completes the last remaining obligation, (A2), of the proof that
new-then-old conflicts do not occur, Our formal proof in the next section
mirrors the intuitive explanation presented here.

5. Proof of Correctness

We prove that our construction is correct by defining a function ~ for a given
history, and by showing that the defined ~ meets the three conditions of
integrity, proximity, and precedence defined in Section 2. The following nota-
tional conventions and definitions are used in the proof.
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Notation. In order to avoid using too many parentheses, we define a
binding order for the symbols that we use. The following is a list of these
symbols, grouped by binding power; the groups are ordered from highest
binding power to lowest.

[1,()

!, :

+, –,@

=,+, <,>, <,>, <,4

1

A,V
*

Definition. Let e and f be two events in some history. Then, e + f = e
precedes f, and e < f - (e <f) V (e = f).

Definition. Let e be the event corresponding to the execution of the
statement read z := Y in an operation p, where z is a local variable and Y is a
shared variable. If the value that p reads from Y is written by operation q,
then we say that operation q determi?les p !z.

Obsen,wtion. Let r and s be any two operations of Reader i and Reader j,
respectively, such that r! y is determined by the Write operation W: m and s !y
is determined by Write operation W: n. If r precedes s and m > ~1, then
m=n+landi>j.

PROOF.

W: m determines r!y
* {definition of determines}

(W’: m):3.i+r:3
- {r precedes s}

(W:nz):3. i+r:3+s:3
* {W: n determines s!y and definition of determines}

(W:m):3.i~ r:3+s:3~( W:(n+l)):3.j
* {transitivity of +}

(W:m):3.i+(W:(n + 1)):3.j
* {Write operations occur sequentially in a history}

mSn+l A(W:m):3.i+(W:(n +1)) :3.j
* {m > n}

m=lt+l A(w’:m):3.i~ (W: (12+ 1)):3.j
3 {predicate calculus}

m=n+l A(w:m):3. i<(w’:m):3. j
=3 {program for Writer}

m=12+l Ai>j

Definition. Let r be any Read operation, and suppose
W: m determines r!y. Then, ~(r) is defined as follows:

that Write operation
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Observe that +(r) is nonnegative. To see this, recall that the initial Write
operation W’: 0, by assumption, precedes all Read operations. Thus, if r!~~ is
determined by W: O, then r!y.done A r!x = r!y holds. This implies that r!j?ag

holds; hence, O(r) = O.

PROOF OF INTEGRITY. Let r be any Read operation, and suppose that

Write operation W’: m determines r!y. lf @Xr) = m, then r!jl!ag is true

(definition of ~) and r returns the value r!y.new, that is. the value Written by

W: m. If +(r) = HZ – 1, then r!flag is false (definition of q5) and r returns the

value r!y. oki, that is, the value Written by W: ( nz – 1). ❑

PROOF OF PROXIMITY. Let r be an operation of Reader i, and suppose that
Write operation W: m determines r!y. Because W: m determines r!y, r does

not precede W: m and W: (m + 1) does not precede r. Thus, if ~(r) = tn,
then proximity is satisfied.

In the case ~(r) = m – 1, again since r does not precede W: m, clearly r

does not precede W: ( m – 1). We next show that W: m does not precede r.
From the definition of ~, @(r) = m – 1 implies that r!flag is false. Hence,
r!pf, is also false. By the definition of p,], this implies that r!y. done is false or
r!x. seq[i] # r!y. seq[i]. If r!y. done is false, then r :3 + (W: m) : 4.i. If r!x. seq[i]
# r!y. seq[i], then r :0 < (W: m) : 3.i. Thus, in either case W: nz does not

precede r. ❑

PROOF OF PRECEDENCE. The proof of precedence is quite complicated and
consists of a somewhat lengthy case analysis, most of which has been relegated
to the appendix. Here, we make use of Lemmas 6, 10. and 11, which are proved

there. These three lemmas are based on Lemma 4, 5, and 9 discussed in the

informal description in the previous section,

Let r be any operation of Reader i, and s be any operation of Reader j such

that r precedes s. Our proof obligation is to show that ~(r) < 4(s).

Assume that Write operations W: m and W: n determine r!y and s!y,

respectively. Observe the following:

o(r) < (b(s)
= {msll-lvm>n}

(m < n – 1 * @(r) < +(s)) A (m > n = +(r) < ~(s))
= {by definition of ~, ~(r) < m and n – 1< ~(s); thus,

m<n–l *~(r)<@(S)}

m > n - ~(r) < ~(~)

= {(m 2 n) = (m > n v 172= n)}
(m > F2 - +(r) S +(s)) A (m = tZ - +(r) < +(s))

= {from observation proved earlier,
r precedes s + ((m > n) = (m = n + 1 A i >~))}

((m = n + 1 A i >j) = ~(r) < ~(,s)) A (m = n = ~(i’) < 0(s))
= {by definition of ~, m = ~Z+ 1 = ((~ r!fl~lg A s! flag) = (d(r) < 0(s)))}

((m = n + 1 A i >j) = mr!flag A s! fiag) A (m = n ~ +(r) s 0(s))

= {Lemma 10 in the appendix}
m = n + ~(r) < ~(s)

= {by definition of +, +(r) = m – 1 V +(r) = m}
((o(r) ‘m – 1 Am =n) * ~(r) < @(,s)) A

((o(r) = m A r?z = n) = @(r) s ~(s))
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= {by definition of ~, n – 1 s +(s); thus, ~(r) = m – 1 A m = n +

@(l’) s 4(s)}

(4(V) = m A m = n) - +(r) S 4(s)
= {by definition of +, ~(s) s n}

(@(r) =mAm=n)=~(s)=n
= {by definition of @ and flag, (~(r) = m) = (~k: k < i: r!p~) and

(44s) = H) = (~k: k <j: s!Pk)

((3k:k< i:r!p,,) Am=n)+(3k: k<j:s!p~)
= {i SjVi>j}

((i<j A(2k:k< i:r!p~)Am=n)+(~k:k Sj:s!p~))A

((i>j A(3k:k< i:r!p,) Am=lz)-(3k:k Sj:s!pL))
= {Lemmas 6 and 11 in the appendix}

true ❑

6. Discussion

We have shown that a single-writer, M-reader, N-bit atomic register can be
constructed in a wait-free manner using single-writer, single-reader atomic
registers. Our construction requires 0(A42 + MN) shared single-writer,
single-reader safe bits, which is asymptotically optimal.

Our definition of atomicity is equivalent to that given by Misra [1986]. His
axioms for atomicity in essence require that all read and write operations be
shrunk to a point; such a shrinking of operations is possible iff a function @
that meets the three conditions of our definition exists. Recently, Herlihy and
Wing [1990] have extended the idea of atomicity to arbitrary abstract data types
by defining the concept of linearizability. Though akin to serializability, the
usual correctness criterion for concurrent execution of transactions, there are
some subtle differences between the two concepts. One important distinction is
that linearizability is a local correctness condition whereas serializability is not.
We refer the reader to Herlihy and Wing [1990] for further details.

In order to prove the correctness of a multiple-reader atomic register
construction, a function ~ that meets the three conditions of integrity, proxim-
ity, and precedence has to be defined for every possible history. This leads to
long, and somewhat tedious proofs, mainly because such a proof must take into
account all possible ways in which Reads and Writes can overlap. To keep the
resulting case analysis in our proof to a minimum, we chose the function ~ to
be very simple; it depends only on the boolean variable jkg. If our proof
appears formidable, in spite of this simplification, then it is because we have
been very formal in our reasoning, so as to leave no doubt about the validity of
the proof. However, given the length of our proof, it seems reasonable to
inquire whether there exist other approaches to constructing an M-reader
register that facilitate simpler correctness arguments. We briefly describe such
an approach next.

The main idea behind this approach is to develop a construction of an
A4-reader ( A4 > 2) register from a collection of (&l – I)-reader registers. An

iW-reader register can then be implemented from single-reader registers by

recursively applying the construction, first to replace all ( M – 1)-reader regis-
ters by (M – 2)-reader ones, then to replace all (M – 2)-reader registers by
(M – 3)-reader ones, and so on.
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A simple implementation of an M-reader register from (M – I)-reader
registers is depicted in Figure 3, In this construction, the Writer and Reader 1
are denoted as W and R, respectively. The remaining ( M – 1) Readers are
denoted S1 through SJf.,; these Readers execute the program called S. The
construction uses two single-reader shared variables, WR and RW, and two

(A4 – 1)-reader shared variables, WS and RS. Each variable’s name indicates
those programs that read and write it, respectively. For example, WS is written
by the Writer W’ and is read by Readers S, through S*f _ ~. Observe that each
of the Readers S1 through Sk~ ~ writes no shared variables. This fact is crucial
and is exploited in recursive applications of the construction. The local vari-
ables used in the construction are similar to those used in the construction in
Figure 2.

The primary advantage of the above recursive construction is that the proof
of correctness can be simplified by assuming that there are only two Readers,
namely R and S. Specifically we can ignore the possible interleaving that may
arise among Reaclcrs S1 through Sk~_, when considering the proofs of in-
tegrity, proximity, and precedence. This follows quite easily for the proofs of
integrity and proximity, as these conditions relate an individual Read operation
with operations of the Writer. As for the proof of precedence, note that the
precedence condition only restricts the values returned by Read operations
that are in a strict precedence relationship with one another. Because Readers
S1 through S,l, _, execute identical programs and write no shared variables, the
only precedence relationships that are of interest are the following: a Read
operation of R precedes a Read operation of some S,: a Read operation of R
precedes another Read operation of R; a Read operation of some S, precedes
a Read operation of R: and a Read operation of some S, precedes a Read
operation of some S,,. These cases are precisely those that arise in the special
case when M = 2. Thus, the proof of correctness for the fll-reader register
reduces to the much simpler task of proving the correctness of a two-reader
construction consisting of Readers R and S.

A formal proof of correctness for the construction of Figure 3 appears in
Anderson et al. [1986], where this construction was first presented. In the
remainder of this section, we informally describe how the construction works
for two Readers by comparing it to the general construction given earlier in
Figure 2. (In the general construction considered here, we assume that vari-
ables RR[i, i], where 1 s i < M, are removed; see the footnote at the begin-
ning of Section 3. Hence, in the Reader program, the loop index in statement 2
is from 1 to i – 1, and the loop index in statement 5 is from i + 1 to M.) We
begin our comparison by considering a variant of the two-reader version of the
general construction in Figure 2. This variant is shown in Figure 4(a). In this
variant, some statements have been combined into larger atomic statements,
which we denote by enclosing them within angle brackets “(’’and “). ” Note
also that we have renamed the programs and variables to coincide with the
names given in Figure 3. We have also moved the assignment to seq[l] so that
it occurs immediately after the read from R1l’. These changes to our original
construction clearly do not affect the construction’s correctness. Thus, because
our original construction is correct, the construction shown in Figure 4(a) is
also correct.

Now, consider the code for W in Figure 4(a). The fifth atomic statement of
W’ tilways assigns the value true to WR.do~le. Hence, the done field of WR can
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program W( [al: [al(vpe)

begin
016!,new, all := IZCW,l’al, T alt;

read q[l] .= RW,

Seq[l] ,= q[l] @ 1;

(read q[2] = SW:
seq[2] ,= 9[2] @ 1;
write WS := (oU, new, seq[l], seg[2], ak, fake));

(write WR = (old, new’, seq[l], seq[2], alt, false);

write LVR = (old, ne~v, seq[l], seq[2], alt, tnw));

write WS := (old, new, seq[l], seq[2]. alt, tree)

end

program R returns Lal&pe

begin
read x == WR;

write F! W.= x.seq[l];

read y = WR;

fklg = p,);

write RS = (flag, y.seq[l], y.a[t):
if fl?ag then return(v.new)

else return(v. old) fi
end

(a)

program S returns cal~pe

begin
(read x = WS:

write SW ,= x.seq[2]:

read [’ := RS;

read y := WS);

flag = p,] V pi;

if f?ag then return( y.new )

else return(y. okf) fi
end

program H‘( ~wl : ~whype) program S returns Lalhpe

begin begin
old, new. alt = new’, Cal, T alt; (read x = WS;

read g[ 1] = RW; read L’ := RS;

X?q[ll ‘= q[ll 8 1; read y ,= WS ):

write W’S.= (old, new, seq[ 1], alt, false); f~ag = y.done V (x = y A t[l].jlag A

write iVR = (old, new’. .seq[ 1], ak); .t. seq[l] = ~’[l]. scq A .x.cdf = ~’[l]. ak):

write W’S.= (oU, lzew,seq[ 1], ak, trae ) if flag then return( y.new)
end else return (y. okl) fi

end
(b)

FIG. 4. Two intermediate constructions.

be removed without affecting the construction’s correctness. With this change,
the W’s fifth atomic statement can be replaced by a single write to WR.

Next, consider Reader S. The first atomic statement of S assigns the same
values to local variables x and y. Thus, in Reader S‘s calculation of j7ag, which
depends on p(~ and p, as defined in Figure 2, x.seq[2] = y.seq[2] is a tautology
and can be removed. With this change, the seq[2] fields of the construction
serve no useful purpose and hence all can be removed. Finally, the condition
x.seq[ 1] = y.seq[ 1] A x.alt = y.alt in Reader S’s computation of j-?ag is also a
tautology. Instead of removing it, we choose to replace it by another tautology
x = y. These changes, which clearly do not affect the construction’s correct-
ness, yield the code given in Figure 4(b). In this figure, we have not shown
Reader R. as its code has not been changed.

Note that, in the construction of Figure 4(b), the only statement that reads
or writes multiple shared variables is the first statement of Reader S—all other
such statements have been eliminated. It turns out that with a few slight
changes to the code for Reader R, the first statement of Reader S can be
broken into three separate statements. The required changes to Reader R are
as follows: Reader R computes its flag by jZag := x = y instead of flag t=
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y.dorze // x.seq[l] = y.seq[l]; Reader R assigns (flag, x.seq[l], x.ah) to RS
rather that (flag, y.seq[l], yak); and Reader R always returns .x.new. With the
last change, it turns out that the Writer no longer needs to write the old value
to Reader R. The resulting construction is the same as that given in Figure 3.
This completes our comparison of the two constructions.

Although the construction of Figure 3 has a simpler correctness proof than
that of Figure 2, this simplicity comes at a price. In particular, as shown in
[Anderson et al., 1986], this construction of a multiple-reader register requires
a number of bits that is exponential in the number of Readers.

Appendix. Remainder of Con-ectness Proof

Here we prove the lemmas that were used in the proof given in Section 5. As
outlined in the informal discussion of the algorithm in Section 4, Lemmas 4, 5,
and 9 relate the wcertainy interzul of a Write operation to the values of
variables RR[i, j ], which are used for communication between Readers. Lem-
mas 1, 2, and 3 state some elementary results that are used in proving
subsequent lemmas. Lemmas 7 and 8 are used to prove some results that are
used in the proof of Lemma 9. Lemmas 6, 10, and 11 consider the values
returned by two successive Read operations and are used in the proof of
precedence presented in Section 5.

A few words concerning the structure of the proofs are in order at this
juncture. In most of our proofs, the reasoning is based upon sequences of
states or events. (In other words, we assume a total order on all reads and
writes of internal variables in the construction. ) Wherever possible, the proofs
have been simplified through the introduction of invariants. In establishing
these invariants, we usually proceed by a case analysis on the order of events
that may “affect” one another. For example, consider a Write operation w and
a Read operation r of Reader i. Operation w reads a sequence number from
Reader i and operation r writes a sequence number to the Writer. So, it is
possible to do a case analysis on whether W’S read of the sequence number
occurs before r’s write of the sequence number. On the whole, the proofs are
not difficult, but, clue to the numerous interleavings of events that may
potentially occur, they are rather lengthy. The following definitions will be used
in the proofs; the first is repeated from Section 4.

Defiizition. Let w be a Write operation, and let 1 s i < j s M. Then,

Cue(w, i,j) ~ RR[i, j].flag ~ RR[i, j]. seq = w!seq[i] ~ RR[i, j]. ult = w!alt.

~()
Dvfitlirlon. Consider the history to+ “~”t,L t,+,

[’,.,
— ““..We say that t,

is the state prior to the event C, and t,+, is the state following e,. Similarly, e, is
the event prior to the state t,+,and e,+, is the event foIlowing the state t,+,.

LEMMA 1. Let r be an operation of Reader i SLiCh that r!p~ holds for some
k < i. Let w be the Write operation that determines r! y. Then, w : 1.i < r :1.
Moreo[ter, (f k # O, then Cue( w, k, i) holds at the state prior to the elent r : 2.k.

PROOF. By the program for the Writer, w : l.i + w : 3.i. Because w deter-
mines r!y, u’ : 3.i < r :3. Therefore, by transitivity, W’: l.i < r :3. This implies
that w!q[i] is determined by either r or some predecessor of r.
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We now show that r does not determine w!q[i]. Because r!pk holds,

r!x. seq[i] = r!y. seq[i]. Because w determines r!y, r!y. seg[i] = w!seq[i]. There-
fore, by transitivity, we have

r!x.seq[i] = w!seq[i]. (1)

If r determines w!q[i], then w!q[i] = r!x.seq[i]. As w assigns seq[i] := q[i] CB1,
this implies that w!seq[i] = r!x.seq[i] @ 1, contrary to (l). Therefore, r does
not determine )v!q[i]. Thus, we conclude that w!q[i] is determined by a
predecessor of r, that is, w : l.i < r :1.

For the second part of the proof, assume that k + 0. Let t be the state prior
to the event r : 2.k. Because r!p~ is true and because k >0, the following
assertion holds at state t.

RR[k, i].flag A RR[k, i].seq z r!x.seq[k] A RR[k, i].alt = r!.x.alt.

Because k >0, we have, by the definition of p~, r!x.seq[k] = r!v.seq[kl and

r!x.alt = r!y.alt. Because w determines r!y, this implies that r!x. seq[k] =
w!seq[k] and r!x. ah = w!alt. Thus, by transitivity, the following assertion holds
at state t.

RR[k, i].jlag A RR[k, i].seq = w!seq[k] A RR[k, i].alt = w!alt

Therefore, from the definition of Cue, Cue( w, k, i) holds at state t. ❑

The following lemma relates the sequence numbers read by two consecutive
operations of the same Reader i. It states that these values do not differ by
more than one. The intuition is as follows: In order for Reader i’s sequence
number to be incremented by 1, it must first be written by Reader i to RPV[i],
then be read by the Writer, then be incremented by the Writer and written to
WR[i], and finally be read again by Reader i. Between two reads from WR[i] by
two consecutive Read operations, this complete sequence of events can happen
at most once.

LEMMA 2. Let r ands be consecutive operations by Reader i. Then,

s!x.seq[i] = r!x.seq[i] V s!x.seq[i] = r!x.seq[i] ~ 1.

PROOF. We prove the lemma by first showing that the following assertion is

an invariant.

B = WR[i].seq[i] = RW[i] V WR[i].seq[i] = RW[i] @ 1.

To prove that B is an invariant, we consider the assertions BO,..., B4 defined
below and show that BO V .”s V B4 is an invariant. In these assertions, we
refer to the local variables q[i ] and seq[i ] of the Writer and x.seq[ i] of Reader
i.

Bo = Rw[i] = q[i] @ 1 = sq[i] = WR[i].req[i] = X.seq[i]

B1 - RW[i] = q[i] = seq[i] = WR[i].seq[i] = x.seq[i]
B2 - RW[i] 01 = q[i] @ 1 = seq[i] = WR[i].seq[i] ~ 1 = x.seq[i] @ 1
B3 - RW[i] 01 = q[i] @ 1 = seq[i] = WR[i].seq[i] = x.seq[i] O 1
B4 - RW[i] Q 1 = q[i] @ 1 = seq[i] = WR[i].seq[i] = x.seq[i].
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To see that BO V .“ v B4 is an invariant, observe the following:

—BO is initially true, and the only statement that can possibly falsify it is the

read by the Writer from Rl+’[i]. But, executing this statement when BO is
true establishes B1.

—The only statement that can possibly falsify B 1 is the assignment to seq[i] by
the Writer. But, executing this statement when B 1 is true establishes B2.

—The only statement that can possibly falsify B2 is the first write by the
Writer to WR[i]. But, executing this statement when B? is true establishes
B3.

—The only statement that can possibly falsify B3 is the read by Reader i from
WX[i]. But, executing this statement when B3 is true establishes B4.

—The only statement that can possibly falsify B4 is the write by Reader i to
RW[i]. But, executing this statement when B4 is true establishes BO.

Thus, we conclude that BO V “”” v B4 is an invariant. This also implies that

B is an invariant since (BO V ““ V B4) = B.
We now use invariant B to show that the lemma holds. Our proof obligation

is as follows:

s!x. seq[i] = r!x. seq[i] V s!x. seq[i] = r!x. seq[i] @ 1.

Let t denote the state prior to the event s :0. Because r and s are consecutive,
the value of RW’[i] at state t equals r!x.seq[i], and the value of W7R[i].seq[i] at
state t equals s!x. seq[i]. Since B is an invariant, either

—W21[i].seq[i] = RW[i] at state t,in which case s!.x.,seq[i] = r!x.seq[i], or
—J4’2?[i].seq[i] = RW[i] @ 1 at state t, in which case s!.~.seq[i] =

r!x. seq[i] @ 1. •l

The following lemma relates the value written to RR[i, j] by an operation r

of Reader i to the values written by an “overlapping” or succeeding Write
operation w. The proof of this lemma makes use of Lemma 2.

LEMMA 3. Let r be an operation of Reader i. and let w be a Write operation
such that r :1 ~ w : l.i. Furthermore, let t be atzy state at )vhich (w after l.i)
holds. If the lwlue appearing in RR[i, j ], i <j, at state t is ~v-ittetz by r. then
Cue(w, i, j) is false at t.

PROOF. Let t be any state for which ~v after l.i holds and i and j be indices
such that i s j. Assume that r :1 + w : l.i and that the value appearing in
RR[i, j] at state t is written by r. Our proof obligation is to show that
Cue(w, i, j) is false at t.

We first show that r!.~. wq[i] # w!.wq[i]. Let c be the event prior to state t.

Because w after l.i holds at t, w :l.i s e. Since r: 1 < w : l.i, we have,
r : 1 < IV : l.i < e. Therefore. w!q[i] is determined by either r or some succes-
sor s of r. In the former case, w!q[i] = r!x.seq[i]. As w assigns seq[i] := q[i] @
1, this implies that w!seq[i] # r!.r.seq[i]. In the latter case, s :1 < w : 1.i, and
therefore, s: 1< w : l.i s e. Because r writes the value appearing in RR[i, j]
at state t and t is the state following event e, r and s are consecutive
operations of Reader i. Hence, by Lemma 2, w!q[i] equals r!x. seq[i] or
r!x. seq[i] @ 1. Therefore, w!seq[i] equals r!x. seq[i] @ 1 or r!x. seq[i] @ 2. As
@ is modulo-3 addition, this implies that w!seq[i] # r!x.seg[i]. Thus, in both

cases, ~v!seq[i] # r!x. seq[i].
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Because r writes the value appearing in RR[i, j] at state f,

RR[i, j].flag = r!flag ~ RR[i, j].seq = r!y.seq[i] (~)

holds at state t.Consider the two values r! y.seq[i] and w!seq[i]. If they are
equal then, because w!seg[i] # r!x.seq[i], we have r!x.seq[i] # r!y.seq[i] and
consequently, r!$lag is false. Therefore, by (2), RR[i, jl.jkzg is false at t and
hence, Cue(w, i, j) is false at t.If on the other hand, r!y.seq[i] + w!seq[i] then
by (2), RR[i, j].,seq # w!,seq[i] at t and therefore, Cue( w, i, j) is false at t. ❑

The following lemma ensures that the new value is not returned from a
Write operation before its uncertainty interval. It states that Reader i does not
cue Reader j to return the new value unless the Writer has begun the second
pass of writes to the Readers. The proof makes use of Lemmas 1 and 3.

LEMMA 4. Let w be any Write operation and i <j. Then,

w after l.i A w before4 * lCue(w, i, j).

PROOF. We prove the lemma by induction on i. We assume the result for
all indices less than i and prove it for i. Consider the state interval over which
w after l.i A w before 4 holds. We need to show that Cue(w, i, j) is false
during this interval for all j > i.

Consider a state t in the interval in question and assume that Cue( w, i, j) is
false for all j > i at all states in the interval that occur before t. (Note that t
could be the first state in the interval. ) We show that Cue( w, i, j) is also false at
t for j > i. If RR[i, j].flag is false at t,then Cue(w, i, j) is clearly false at t. So,
in the remainder of the proof, assume that RR[i, j ].fZag is true at t.

Since RR[i, j].f7ag is false initially, there exists an operation r (of Reader i)
that writes the value appearing in RR[i, j] at t.Consider the events w : l.i and
r:l. Either r:l+w:l.iorw :l.i<r: l. Ifr:l<w:l. ithen, by Lemma3,
Cue( w, i, j) is false at t,as required. So, in the remainder of the proof, assume
that w:l.i+r:l.

Let e be the event prior to state t.By the program for Reader i, r: 1 < r :3
+ r : 5.j. Because r writes the value appearing in RR[i, j] at state t, r : 5.j < e.

Because w before 4 holds at t, e + w :4.1. Thus,

w:l. i<r:l+r:3<r:5.j< e<w: 4.1. (3)

Therefore, r!y is determined by w or the Write operation immediately preced-
ing w. In the latter case, r!y.alt # w!ah, and therefore, Cue(w, i, j) is false at t.

In the remainder of the proof, we consider the case in which r!y is determined
by W.

By (3), r: 3< w: 4.i, and therefore, r!y.done is false. Hence, by the defini-

tion of P(l, r!pO is false. We now show that (31: O <1< i: r!pl) is false as well.
Because r writes the value appearing in RR[i, j] at t, this implies that
RR[i, j].ji?ag is false at t and hence Cue( w, i, j) is false at t.

Consider any 1 in the range O <1 s Z. From the program of the Writer.

w :1.1 s w : l.i. By assumption, w : l.i < r :1. From the program for Reader i,
r: 1 + r :2.1 + r :3. Thus, by (3),

w:l.l<w: l.i<r:l<r: 2.1 +r:3+r: 5.j<e<w:4.l. (4)
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Consider the state prior to the event r ._.“ ~ 1. From the above precedence
assertion, w after 1.1 A w before 4 holds at this state. If 1 = i, then C14e(WI,1, i)
is fialse at this state; this follows from our assumption that Cue( WI,i, j ) is false
for all j > i at all states that occur before t in the interval over which w after
l.i A ItI before 4 holds. If O <1< i, then Cue(w, 1, i) is false at this state by the
induction hypothesis. Thus, in either case, Cue(w’, 1, i) is false at this state.
Since WI determines r! y, by the contrapositive of Lemma 1, r!pl is false. This
establishes our remaining proof obligation. ❑

The following lemma asserts the stability of C’ue(w, i, j) during the uncer-
tainty interval. It states that once Cue( w, i, j) becomes true during this interval,
it remains true until the interval ends. The proof makes use of Lemma 3.

LEMMA 5. Let w be any Write operation and let i s j. Then,

w at 4 A (he( w, i, j) unless w after 4,

PROOF. The stated safety property is preserved trivially by each event of the
Writer and all Readers different from Reader i. We show that it is also
preserved by each event of Reader i. Let s be any operation of Reader i.
Consider the event s : 5.j. This is the only event of s that may falsify the
predicate Cue(w, i, j). Let t be the state prior to this event and let L4 be the
state following this event. Assume that w at 4 A Cue(w, i, j) holds at t.Then,
our proof obligation is to show that Cue(w, i, j) holds at 14 (w at 4 holds at u
trivially). By the program for Reader i, the following assertion holds at 14:

RR[i, j]. fag = s!fkg A RR[i, j].seq = s!y.seq[z] ~ RR[i, j].ah = s!y.a~f.

Thus, to prove that Cue(w, i, j) holds for u, it suffices to prove the following:

s!jkg A s!y. seq[i] = w!seq[i] A s!y. ah = w!cdt. (5)

Because Cue(w, i, j) is false initially ( RR[i, j].fiag is initially false), the value
appearing in Rl?[i, j] at state i is written by some operation r (of Reader i)
that immediately precedes s. Consider the events ~v: l.i and r :1. By the
contrapositive of Lemma 3, 1 (w after l.i) holds at t or }V : l.i < r : 1. But, by
assumption, w at 4 holds at t.Therefore, w : l.i + r : 1.

Now, we show that IV determines r!y. By the program for Reader i.
r :1 < r :3 < r : 5.j. Since r precedes s and }V at 4 holds at t (i.e., the state
prior to s : 5.j), we have r : 5.j + s : 5.j < w : 4.M. Thus,

w:l. i<r:l<r:3<r:5.j< s:5.j+w:4. M. (6)

Therefore, r!y is determined by either TV or the Write operation immediately

preceding w. In the latter case, r!y.ah + }v!ah,and therefore, RR[i, j].alt #
w!ah at t.Consequently, Cue(w, i, j) is false at t.This is contrary to our
assumption. Therefore, w determines r!y.

From the program for the Writer, w : 0< w : 3.i. Because w determines r!y,
WI: 3.i < r :3. Since r precedes s, r :3 < s :0 < s :3 < s : 5.j. Therefore, apply-
ing (6),

w: 0+w:3. i+r:3<s:O+ s:3<s:5.j<w:4. M. (7)

Therefore, w determines both S!.X and s!y. The latter implies that s!y.seq[i] =
w!seq[i] and s!y. alt = w!alt. This meets two out of our three proof obligations
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(eq. 5) and we are left with the proof obligation that s!flag holds. This is
proved next.

Because Cue( w, i, j) holds at t,and r writes the value appearing in RR[i, j]
at state t, r!fiag holds. Since w determines r!y, this implies that Cue(w, i, i)
holds at the state following the event r : 5.i. Consequently, since r and s are
consecutive operations of Reader i, Cue(w, i, i) also holds at the state prior to
the event s : 2.i. By definition of Cue, this implies that the following assertion
holds at that state:

RR[i, i].flag A RR[i, i].seq = w!seq[i] A RR[i, i].ah = w!alt.

By the program for Reader i, l?R[i, i ] = s! t)[ i] also holds at that state. There-
fore,

s! L’[i].flag A S!u[i].seq = w!seq[i] A s!~’[i].ah = w!ak. (8)

Because w determines both s!.x and s!y (shown earlier as a consequence of

(7)).

S!x.seq[i] = s!y.seq[i] A s!x.ah = s!y.ah A s!x.seq[i] = w!seq[i]

A~!~.alt = w!alt.

Therefore, using (8) and the definition of p,, s!p, is true. Consequently, s!flag
holds, which was our final proof obligation. ❑

The following lemma considers the case in which an operation of Reader i
precedes an operation of Reader j where i <j. This lemma formalizes the
following property: If the y variables of both Reads are determined by the
same Write operation—implying that each assigns its y variable during or
after the uncertainty interval of that Write operation—and if the first read
returns the new value, then the second Read also returns the new value. This
lemma is based on Lemmas 1, 4, and 5, and is in turn used in the proof of
precedence.

LEMMA 6. Let r be any operation of Reader i ands be any operation of Reader
j sLlch that i < j and r precedess. Assume that both r! y ands! y are determined by
the same Write operation. Then,

PROOF. Assume that Write operation w determines both r!y and s!y and
that r!p~ holds for some k s i. Our proof obligation is to show that S!pl holds
for some 1 s j.

We first establish that w determines both S!X and s!y. Because i <j, we
have w : 3.j < w : 3.i. Because w determines r!y, w : 3.i + r :3. Because r
precedes s, r :3< s :0. By the program for Reader j, s :0 + s :3. Therefore,

w:3.jsw:3. i<r:3+s: 0<s;3. (9)

Because w determines s!y, by (9), w determines both S!X and s!y.
Now, consider the events w : 4.j and s :3. Either w : 4.j < s :3 or s :3 +

w :4. j. We first dispose of the former case by showing that s !po is true.
Because w determines both S!X and s!y, we have s!x.seq[j] = s!y.seq[j].

Moreover, since w : 4.j + s :3, s!y.done is true. Therefore, by the definition of

PC), s!P(} is true. In the remainder of the proof, we assume that s: 3 ~ w: 4.~.
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By (9), we have,

(10)w:3. j<w:3. i~r:3+s: 0+s:3+w:4.j.

By assumption, r!p~ holds for some k s i. Thus, by Lemma 1, w : 1.i + r: 1.
From the program for Reader i, r: 1 ~ r: 3. Therefore, by (10),

w:l. i+r:l<r:3+s:O<s :3<w:4.j. (11)

Next, we show that Cue(w, i, j) is true at the state prior to the event s : 2.i.
Let t be the state following the event r : 5.j. Because r!p~ holds, r!~lag is true.
Therefore, the following assertion holds at state t:

RR[i, j].flug ~ JU?[i, j].seq = r!y.seq[i] ~ RR[i, j].ah = r!~’.nlt.

Because WI determines r!y, we have r!y. seq[i] = ~v!seq[i] and r!y.alt= w!ah.

Thus, the following assertion holds at state t:

lU?[i, j]. j?ag A JV?[i, j]. seq = w!seq[i] A N?[i, j]. ah = w!alt.

Hence, Czle(w, i, j ) is true at state t.Thus, by the contrapositive of Lemma 4,
7 ( w after l.i ) V I (w’ before 4) holds at state t.

By the program for Reader i, we have r :3< r : 5.j. Since r precedes s, we
have r : 5.j + s :0. Thus. by (11),

lt’:l. i<r:l<r:3+r:5.j+ s: O+s:3+kv:4.j.

Therefore, w after l.i holds at state t.Consequently, n (w before 4) holds at t,

that is. W’ at 4 or w after 4 holds at t.But, by the above precedence assertion w
after 4 dots not hold at t.Thus, w at .4 holds at t. that is, w :3.1 < r : 5.j.
Therefore,

u’:3.1< r:5.j<s:O<s:3< w:4.j.

Observe that w at 4 holds for all states between r: 5.} and s :3. Thus, by
Lemma 5, C’ue(~t, i, j) holds for all states in that interval. In particular. it holds
at the state prior to ,s: 2.i.

Now, by the program for Reader j. J/l/[i, j] = s!~[i] holds at the state prior
to the event s : 2.i. This implies that the following assertion holds:

s!~[i].~~ag ~ ,s!~,[i].s~~q = }~!~eq[i] ~ s!{[i].dt = W!a/t.

On account of ( 10) and the fact that S!X and s!y are both determined by WI,
,S!-Y= .$!y, s!,t. ye~f[i] = ~t,!,$eq[i], and s!x. aft = M’!alt. Therefore,

s!x. seq[jl = s!y. seq[j] A ,s!.~.seq[i] = s!l. seq[i] A s!x. alt = ,~!y. ah

As! f[i]. jltig A s!~[i]. seq=s!x. seq[il

~s!~[i] .alt=s!. ~.alt.

Hence. by the definition of p,, s!p, is true, which is our proof obligation. D

Because the Writer writes to higher numbered Readers first, a lemma is
needed that ensures that new-then-old conflicts do not arise in a history in

which an operation of a higher numbered Reader is followed by an operation

of a lower numbered one. The required property is given later in Lemma 9.

Lemmas 7 and 8, given next, take care of subcases arising in the proof of

Lemma 9. Lemma 7 states that if Reader i has cued Reader j of the new value
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during the uncertainty interval of Write operation w, then it did so either on
account of reading the final value from the Writer (i.e., w after 4.i holds) or on
account of being cued in turn by some other Reader (i.e., (3)c : k <
i : Cue(w, k, i)) holds.) The proof of this lemma makes use of Lemmas 1, 3, 4,
and 5.

LEMMA 7. Let w be any Write operation and i s j. Then,

w at4 A Czie(w, i,j) * w after4.i V (~k:k < i:cue(w, k, i)).

PROOF. Consider any Reader i and the state interval over which w at 4
holds. We need to show that the property

(Vj:j > i: Cue(w, i,j) + w after4.i V (=k:k < i: Cue(w, k,i))) (12)

holds at all states during this interval. Consider a state t in the interval in
question and assume that property (12) holds at all states in the interval that
occur before t.(Note that t could be the first state in the interval.) We show
that the property also holds at state t.

Assume that Cue(w, i, j) A ~ (w after 4.i) holds at state t for some j > i.
Our proof obligation is to show that Cue(w, k, i) holds at state t for some
k<i.

Since RR[i, j].fkzg is false in the initial state, Cue(w, i, j) is initially false.
Therefore, assume that the value appearing in RR[i, j] at state t is written by
operation r (of Reader i). Consider the events w : l.i and r : 1. By the
contrapositive of Lemma 3, T (w after l.i ) holds at t or w : 1.i < r :1. But, by
assumption, w at 4 holds at t.Therefore, w : 1.i < r: 1.

By the program for Reader i, r: 1 < r : 5.j. Because r writes the value
appearing in RR[i, j] at state t, r : 5.j s e, where e is the event prior to state t.

Because m (w after 4.i) holds at t, e < w : 4.i. Therefore,

w:l.i<r:l<r:5.j <e< w:4.i. (13)

Therefore, r!y is determined by either w or the immediate precedessor of w
—but, the immediate predecessor of w does not determine r!y, as r!y.alt =
w!ah on account of Cue(w, i, j) being true at state t. So, w determines r!y.

Because Cue(w, i, j) holds at state t,RR[ i, j].ji?a.g also holds at t.Hence,
because r writes the value appearing in RR[i, j] at t, r!ji?ag holds. By the
program for Reader i, this implies that r!p~ is true for some k where k s i.
We now show that k >0. Observe that assertion (13) implies that r :3< e <
w : 4.i. Thus, because w determines r!y, r!y.done is false, which implies that
r!pO is false. Thus, k > 0.

Because k < i, we have w : 1.k < w : l.i. By the program for Reader i,
r :1 + r : 2.k < r : 5.j. Thus, by (13), we have

w:l. k<w:l.i+r:l+r;2.k +r:5.j<e+w:4.i. (14)

Let u denote the state prior to the event r : 2,k. Because r!p~ holds and
because k >0, by Lemma 1, Cue(w, k, i) holds at state u. Thus, by the
contrapositive of Lemma 4, 7 (w after l.k) V 1 (w before 4) holds at u. But,
by assertion (14), w after l.k holds at u. Consequently, -(w before 4) holds at
u, that is, w at 4 or w after 4 holds at u. But, by (14), w after 4 does not hold at
u. Thus, w at 4 holds at u, which implies that w :3.1 < Y : 2.k. Thus, by
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assertion (14), we have,

(15)w:3.1<r: 2.k<r:5.jse <w:4. i.

Observe that w at 4 holds for all states between r : 2.k and w : 4.i. Since
Cue(w, k, i) holds at state LL, by Lemma 5, Cue(w), k, i) holds for all states in
this interval. In particular. it holds, at state t (thestate following event e). This
establishes our proof obligation if k < i.

In the case that k = i, Cue( w, i, i) holds at state u. From ( 15), u lies within
the interval over which w at 4 holds and Z~occurs before t.Consequently, from
our assumption that property (12) holds at all states prior to t in this interval,
w after 4.i holds at state u or Cue(w, k, i) holds at state 24, for some k < i.
However, by (15), w after 4.i does not hold at state LL. Therefore, Cue(w, k, i)
holds at state Lf, for some k < i. Consequently, by applying Lemma 5 as in the
previous paragraph, Cue(w, k, i) also holds at state t,as desired. ❑

According to the next lemma, if Reader i has cued Reader j during the
uncertainty interval of Write operation w, then it has also cued other Readers
with indices between i and j. The proof follows essentially from the fact that
Reader i writes to other Readers in the order of increasing indices. This
lemma makes use of Lemmas 3, 4, and 5 and is in turn used in the proof of
Lemma 9.

LEMMA 8. Let w be any Write operation and i <j. Then,

w at4 A Cue(w, i,j) = (Vk:i <k <j: Cue(w, i, k)).

PROOF. Assume that w at 4 A Cue(w, i, j) holds at some state t. Let
i < k < j. We show that Cue(w, i, k) holds at state t.

Because RR[i, j].fiag is false in the initial state, C’ue(w, i, j) is initially false.
Therefore, assume that the value appearing in RR[i, j] at state t is written by

operation r (of Reader i).
Let u be the state following the event r : 5./c. Since C’ue(w, i, j) holds at t

and since r writes identical values to RR[i, j] and RR[i, k], Cue(w, i, k) holds
at u.

Now, consider the events w : 1.i and r :1. By contrapositive of Lemma 3,
1 (w after l.i)holds at t or w : l.i < r : 1. But, by assumption, w at 4 holds at t.

Therefore, w : l.i ~ r :1. By the program for Reader i, r :1 ~ r : 5.k < r : 5.j.
Because r writes the value appearing in RR[i, j ] at state t, r :5. j < e, where e
denotes the event prior to state t.Since w at 4 holds at t, e < w : 4.&f.
Therefore,

w:l. i<r:5. k~e~w:4. M. (16)

Since w after l.i A Cue(w, i, k) holds at state u, by Lemma 4, ~ w before 4
holds at u. In other words, w at 4 or w after 4 holds at u. But, by (16), w after
4 does not hold at state u. Thus, w at 4 holds at u. Consequently, by Lemma 5,
Cue(w, i, k) holds at all states in the interval between r : 5.k and w : 4.A4 and in
particular at state t.This establishes our proof obligation. ❑

Lemma 9 relates the value of RR[l, i] to that of RR[k, j] where j < i. It
states that if Reader 1 has cued Reader i during the uncertainty interval of
Write operation w, then all Readers with indices lower than i either have been
informed of the new value by the Writer (i.e., w after 4.j holds) or they in turn
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have been cued by some other Reader (i.e., (Elk: k s j: Cue(w, k, j)) holds).
The proof of this lemma makes use of Lemmas 7 and 8.

LEMMA 9. Let w be any Write operation and 1< i. Then,

w at4 A Cue(w,l, i) = (Vj:j <i:wafter4.j V (3k:k<j: Cue(w, k,j))).

PROOF. Assume that w at 4 A Cue(w, 1, i) holds at some state t. For
brevity, let P(j) be shorthand for (~k : k < j : Cue(w, k, j)). Then, we have to
show that (Vj: j < i : w after 4.j V P(j)) holds at state t.The proof is by
induction. The inductive step is given by the following assertion, which, as
shown later, holds at state t.

w at 4 A Czie(w, l,i) * (W) after 4.1 A (h’j: 1 S j < i: ~(j))) V

Given our assumption that w at 4 A Cud w, 1, i) holds at t, this inductive
step implies that one of the disjuncts of the consequent holds at t. If the
second disjunct holds, then the inductive step can be applied again, this time
using w at 4 A Cl/e(w, 11, il) as the antecedent. Because the number of

Readers is finite and because the Reader indices (11, il ) appearing in the
second disjunct of the consequent are smaller than the indices (1, i), this
inductive step can be applied in this way only a finite number of times. Thus,
after some finite number of applications, we eventually obtain a consequent in
which the first disjunct holds. Since the assertions P(j) are being accumulated
for il < j < i in the second disjunct of each application of the inductive step,
this implies that following assertion holds when the induction terminates.

(3rn:m Si:w’after 4.m A(vj:rn SjSi: P(j))).

Because j < m A w after 4.m = w after 4.j, we can assert the following at
state t:

(~m:nz5~: ('dj:j S4n:wafter4 .j)A('v'j: nzSj<i: ~(j))).

Combining the ranges of the two universal quantifications, we get

at state t.This implies that

(Vj: j s i:w after4.j V l’(j))

holds at state t,which is the required proof obligation. The proof of the
inductive step is as follows (All state predicates refer to state t.):

w at4 A Cue(w, l,i)
= {Lemma 7}

w after 4.1 V (~il : i, < f : C14e(w, i,, 1))
* {by assumption, w at 4}

w after 4.1 V (~il : il <1: w at 4 A C44e(w, i1,1))
~ {Lemma 8}

w after 4.1 V (=il : i, < l:(Vj: i, <j <1: C~4e(w, i1, j)))
- {definition of P(j)}

w after 4.1 V (=il :il < l:(Vj:il <j < /: P(j)))
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{by assumption, w at 4 A Czle(w, 1, i)}

(w after 4.1 V (=zl :il < /:( Vj:il <j s 1: P(j)))) A w at 4 A Cue(w,l, i)
{Lemma 8}

(}v after4.~ V (~il:il < ~:(~j:il <j </: f’(j)))) A

(Yj:l <j < i: C@w,/,j))
{definition of P(j)}

(w after 4.1 V (~i, :i, <l:(Vj:i, <j S l: P(j)))) A (Vj:l <j S i: f’(j))
{predicate calculus}
(ivafter ~./ A(Vj:l< j<i:~(j))) V(qil:il< 1:( Vj:il<j<i: ~(j)))
{predicate calculus and 1 s i}

(w after 4.1 A (Vj:l <j s i: P(j))) v
(=i, :i, <l<i:P(i, )A(Vj:i, Sj<i: ~(j)))

{definition of P(iJ ))
(w after~.1 A (Vj:l <j s i:~(j))) V

(~1,, i, :/, <i, <1 Si:C’ue(w,l,, i,) A (Vj:i, <j <i:l’(j)))
{by assumption, w at 4}
(w’ after 4.1 A (Vj:l <j s i: F’(j))) V

(~il,i,:~, <i, <1 s i:u’ at 4 A Ctle(lv, /,, i,) A (Vj:i, <j <i:~(j)))
❑

The following lemma considers two successive Read operations r and s such
that r, though it precedes s, reads from a more recent Write operation than s.
Because of the order in which the Writer writes to the Readers, this situation
can arise only if the index of r is greater than that of s. The lemma ensures
that r computes its jlag to be false and that s computes its flag to be true.
This lemma is based on Lemmas 1 and 4, and is in turn used in the proof of
precedence.

LEMMA 10. Let r be o~zy operation of Reader i and s be any operation of
Readerj such that i > j and rprecedes s. Assume that r!y and s!y are detemnined
by Write operatiotu JV: m and W: (m – 1), respectively. Tilen. r!jlag is false and
s!j7ag is tree.

PROOF. Let w denote W: ( m – 1) and w‘ denote W: m. Because WI’
determines r!y, w’ : 3.i < r :3. Because r precedes s, r :3 < s :0. By the pro-
gram for Reader j, s :0 < s :3. Because W’determines s!y and ~v precedes }\I’,
,s:3 < VV’: 3.j. Therefore,

h“:3. i<r:3<s:O<s:3+ fi’’:3.j. (17)

Hence, r!y.cfo~ze is false, s!y.done is true, and s!x.seq[j] = s!~j.seq[j]. Thus, by
the definition of ptl, r!pfl is false and S!p(l is true. Because S!ptl is true, from
the program of Reader j, s!j7ag is true. This meets a half of our proof
obligation. In the remainder of the proof, we show that r!pk is false for each k
in the range O < k s i. This implies our remaining proof obligation, namely
that r!j-i’ag is false.

Consider the two events r :1 and W“ : l.i. Either r :1 < w’ :l.i or w’ : l.i +
r : 1. In the former case, by the contrapositive of Lemma 1, r!pk is false for
each k as desired. So, assume that w‘ : l.i < r :1 in the remainder of the proof.

Because k < i, we have w‘ : l.k s w’ : l.i. By the program for Reader i,
r : 1 < r : 2.k < r :3. Thus, using (17), we have

w’:l.k< w’:1.i<r:l<r:2.k~r :3<s:O<s:3<w’:3.j.
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Note that w‘ after 1.k A w‘ before 4 holds at the state prior to r : 2.k. Hence,
from Lemma 4, ~ Cue(w’, k, i.) holds at that state. Therefore, by the contrapos-
itive of Lemma 1, r!p~ is false, which is the required proof obligation. ❑

The final lemma in the proof of the construction considers the case in which
an operation of Reader i precedes an operation of Reader j where i > j. This
lemma is the counterpart of Lemma 6, which considers the case i s j. This
lemma is based on Lemmas 1, 4, 5, and 9, and is in turn used in the proof of
precedence.

LEMMA 11. Let r be any operation of Reader i and s be any operation of
Reader j such that i > j and r precedes s. Assume that both r!y and s!y are
determined by the same Write operation. Then,

PROOF. Assume that Write operation w determines both r! y and s! y and
that r!p~ holds for some k s i. Our proof obligation is to show that S!pl holds
for some 1 S j.

Consider the two events w : 4.i and r :3. Either w : 4.i < r :3 or r :3< w : 4.i.
We first dispose of the former case. Because j < i, we have w : 4.j < w : 4.i.
Because r precedes s, r :3< s :0. By the program for Reader ~s :0< s :3.
Therefore,

w:4.j+w: 4.i+r:3<s:0 <s:3. (18)

Thus, since w determines s!y, s!y.done is true and s!x.seq[j] = s!y.seq[j].
Therefore, by the definition of pO, S!po is true, which establishes our proof
obligation.

In the remainder of the proof, assume that r :3< w : 4.i. Because r!y is
determined by w, this implies that r! y.done is false. By the definition of PO,
this implies that r!p(l is false; therefore, k >0. Because r!pL holds, by Lemma
1, w : l.i ~ r :1. By the program for Reader i, r :1 < r : 2.k < r :3. Therefore,

w:l. i+r:l<r:2. k+r: 3+w:4.i.

Let t denote the state prior to the event r : 2.k. We now show that w at 4
holds at t.Because r!p~ is true and because k >0, by Lemma 1, Cue(w, k, i)
holds at state t.Hence, by the contrapositive of Lemma 4, m ( w after l.k) V

1 (w before 4) holds at t.Because k s i, we have w : l.k < w : Ii. Thus, by the
previous precedence assertion, we have the following.

w:l. k<w:l.i<r:l <r: 2.k<r:3<w:4.i.

Therefore, w after l.lc holds at state t.Consequently, -(w before 4) holds at t,

that is, w at 4 or w after 4 holds at t.But, by the above precedence assertion, w
after 4 does not hold at t.Thus, w at 4 holds at t.

Since w at 4 A Cue(w, k, i) holds at state t and j < i, by Lemma 9, w after
4.j holds at t or Cue(w, m, j) holds at t for some m s j. In the former case, we
have w : 4.j ~ r : 2.k. Because r precedes S, this implies that w : 4.j < s :0 ~
s :3. By repeating the reasoning following (18), this implies that s !p(l holds, as
required. In the remainder of the proof, assume that Cue( w, m, j) holds at t.

Because i > j > 1, we have w : 3.i < w : 3.j < w :3.1. Since w at 4 holds at
state t, we have w :3.1 < r : 2.k. By the program for Reader i, r : 2.k < r :3.
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Therefore,

w:3. i<w:3.j<w: 3.1< r:2. k<r:3. (19)

Consider the two events w : 4.j and s :3. Either w : 4.j < s :3 ors :3 ~ w : 4.j.
We first dispose of the former case. Because r precedes s, r :3 < s :0. Hence,
by ( 19), we have w : 3.j < s :0. Since w determines s!y and w : 4.j < s :3,
s!y. done is true. Moreover, since w : 3.j < s :0, s!x. seq[j] = s!y. seq[j]. There-
fore, by the definition of p., S!po is true, which establishes our proof obliga-
tion.

In the remainder of the proof, assume that s :3 < w : 4.j. Because r pre-
cedes s, r :3 ~ s :0 ~ s :3. Thus, by (19), the following assertion holds.

w:3. i<}v:3.j<w:3.l<r :2.k<r:3<s:O<s:3<w :4.j. (~o)

Therefore, S!X = s!y.
By assertion (20), ~v at 4 holds for all states in the interval between r : 2.k

and s :3. Recall that Cue(iv, m, j) holds at state t,that is, the state prior to the
event r : 2.k. Therefore, by Lemma 5, Cue(w, nz, j) holds for all states in this
interval. In particular, it holds at the state following the event s : 2.nz. By the
program for Reader j, RR[m, j] = s!~[nz] also holds at that state. Therefore,

s![’[m]. fkg A s!~[m]. seq = w!seq[m] A s!~’[m]. alt = w!fflt.

Because w determines s!y, s!y.seq[nl] = w!seq[m] and s!y.ah = WI!alt. Since
S!X = s!y, we have s!x. seq[j] = s!y. seq[j], s!.x.seq[rn] = s!~~.seq[m], and s!x. ah
= s!y. alt. Therefore,

S! X. Se~[j] = s!y. seq[j] A S!x.seq[m] = s!v. seq[m] A s!x. d = s!y. dt

As!~)[m].flag A s!x.seq[ m]=s!~[m]. seq

A~!~.a/t=s!~[~n].~/t

Consequently, by the definition of p,,,, S!p,,l is true, which is our proof

obligation. ❑
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