
Chapter 3

Local Features: Detection and
Description

In the previous chapter, we have seen recognition approaches based on comparisons
of entire images or entire image windows. Such approaches are well-suited for learn-
ing global object structure, but they cannot cope well with partial occlusion, strong
viewpoint changes, or with deformable objects.

Significant progress on those problems has been made in the past decade
through the development of local invariant features. Those features allow an ap-
plication to find local image structures in a repeatable fashion and to encode them
in a representation that is invariant to a range of image transformations, such as
translation, rotation, scaling, and affine deformation. The resulting features then
form the basis of approaches for recognizing specific objects, which we discuss in
Chapter 4, and for recognizing object categories, as we describe in Chapter 7.

In this chapter, we will explain the basic ideas and implementation steps behind
state-of-the-art local feature detectors and descriptors. A more extensive treatment
of local features, including detailed comparisons and usage guidelines, can be found
in [TM07]. Systematic experimental comparisons are reported in [MTS+05, MS05].

3.1 Introduction

The purpose of local invariant features is to provide a representation that allows
to efficiently match local structures between images. That is, we want to obtain a
sparse set of local measurements that capture the essence of the underlying input
images and that encode their interesting structure. To meet this goal, the feature
extractors must fulfill two important criteria:
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Figure 3.1: An illustration of the recognition procedure with local features. We first
find distinctive keypoints in both images. For each such keypoint, we then define a
surrounding region in a scale-invariant manner. We extract and normalize the region
content and compute a local descriptor for each region. Feature matching is them
performed by comparing the local descriptors using a suitable similarity measure.

• The feature extraction process should be repeatable and precise, so that the
same features are extracted on two images showing the same object.

• At the same time, the features should be distinctive, so that different image
structures can be told apart from each other.

In addition, we typically require a sufficient number of feature regions to cover the
target object, so that it can still be recognized under partial occlusion. This is
achieved by the following feature extraction pipeline, illustrated in Figure 3.1:

1. Find a set of distinctive keypoints.

2. Define a region around each keypoint in a scale- or affine-invariant manner.

3. Extract and normalize the region content.

4. Compute a descriptor from the normalized region.

5. Match the local descriptors.
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In the following, we will discuss each of those steps in detail.

3.2 Keypoint Localization

The first step of the local feature extraction pipeline is to find a set of distinctive
keypoints that can be reliably localized under varying imaging conditions, viewpoint
changes, and in the presence of noise. In particular, the extraction procedure should
yield the same feature locations if the input image is translated or rotated. It is
obvious that those criteria cannot be met for all image points. For instance, if we
consider a point lying in a uniform region, we cannot determine its exact motion,
since we cannot distinguish the point from its neighbors. Similarly, if we consider a
point on a straight line, we can only measure its motion perpendicular to the line.
This motivates us to focus on a particular subset of points, namely those exhibiting
signal changes in two directions. In the following, we will present two keypoint
detectors that employ different criteria for finding such regions: the Hessian detector
and the Harris detector.

3.2.1 The Hessian Detector

The Hessian detector [Bea78] searches for image locations that exhibit strong deriva-
tives in two orthogonal directions. It is based on the matrix of second derivatives,
the so-called Hessian:

H(x, σ) =

[
Ixx(x, σ) Ixy(x, σ)
Ixy(x, σ) Iyy(x, σ)

]

.(3.1)

The detector computes the second derivatives Ixx, Ixy, and Iyy for each image point
and then searches for points where the determinant of the Hessian becomes maximal:

det(H) = IxxIyy − I2
xy.(3.2)

This search is usually performed by computing a result image containing the Hessian
determinant values and then applying non-maximum suppression using a 3 × 3
window. In this procedure, the search window is swept over the entire image, keeping
only pixels whose value is larger than the values of all 8 immediate neighbors inside
the window. The detector then returns all remaining locations whose value is above
a pre-defined threshold θ. As shown in Figure 3.7(top left), the resulting detector
responses are mainly located on corners and in strongly textured image areas.
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Figure 3.2: The Harris detector searches for image neighborhoods where the second-
moment matrix C has two large eigenvalues, corresponding to two dominant orien-
tations. The resulting points often correspond to corner-like structures.

3.2.2 The Harris Detector

The popular Harris/Förstner detector [FG87, HS88] was explicitly designed for ge-
ometric stability. It defines keypoints to be “points that have locally maximal self-
matching precision under translational least-squares template matching” [Tri04]. In
practice, these keypoints often correspond to corner-like structures. The detection
procedure is visualized in Figure 3.2. The Harris detector proceeds by searching for
points x where the second-moment matrix C around x has two large eigenvalues.
The matrix C can be computed from the first derivatives in a window around x,
weighted by a Gaussian G(x, σ̃):

C(x, σ, σ̃) = G(x, σ̃) ⋆

[
I2
x(x, σ) IxIy(x, σ)

IxIy(x, σ) I2
y (x, σ)

]

.(3.3)

In this formulation, the Gaussian G(x, σ̃) takes the role of summing over all pixels
in a circular local neighborhood, where each pixel’s contribution is additionally
weighted by its proximity to the center point. Instead of explicitly computing the
eigenvalues of C, the following equivalences are used

det(C) = λ1λ2(3.4)

trace(C) = λ1 + λ2(3.5)

to check if their ratio r = λ1

λ2

is below a certain threshold. With

trace2(C)

det(C)
=

(λ1 + λ2)
2

λ1λ2
=

(rλ2 + λ2)
2

rλ2
2

=
(r + 1)2

r
(3.6)
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this can be expressed by the following condition

det(C)− αtrace2(C) > t,(3.7)

which avoids the need to compute the exact eigenvalues. Typical values for α are in
the range of 0.04−0.06. The parameter σ̃ is usually set to 2σ, so that the considered
image neighborhood is slightly larger than the support of the derivative operator
used.

Figure 3.7(top right) shows the results of the Harris detector and compares
them to those of the Hessian. As can be seen, the returned locations are slightly
different as a result of the changed selection criterion. In general, it can be stated
that Harris locations are more specific to corners, while the Hessian detector also
returns many responses on regions with strong texture variation. In addition, Harris
points are typically more precisely located as a result of using first derivatives rather
than second derivatives and of taking into account a larger image neighborhood.
Thus, Harris points are preferable when looking for exact corners or when precise
localization is required, whereas Hessian points can provide additional locations of
interest that result in a denser cover of the object.

3.3 Scale Invariant Region Detection

While shown to be remarkably robust to image plane rotations, illumination changes,
and noise [SMB00], the locations returned by the Harris and Hessian detectors are
only repeatable up to relatively small scale changes. The reason for this is that
both detectors rely on Gaussian derivatives computed at a certain fixed base scale
σ. If the image scale differs too much between the test images, then the extracted
structures will also be different. For scale invariant feature extraction, it is thus
necessary to detect structures that can be reliably extracted under scale changes.

3.3.1 Automatic Scale Selection

The basic idea behind automatic scale selection is visualized in Figure 3.3. Given
a keypoint in each image of an image pair, we want to determine whether the
surrounding image neighborhoods contain the same structure up to an unknown
scale factor. In principle, we could achieve this by sampling each image neighborhood
at a range of scales and performing N × N pairwise comparisons to find the best
match. This is however too expensive to be of practical use. Instead, we evaluate
a signature function on each sampled image neighborhood and plot the result value
as a function of the neighborhood scale. Since the signature function measures
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Figure 3.3: The principle behind automatic scale selection. Given a keypoint lo-
cation, we evaluate a scale-dependent signature function on the keypoint neighbor-
hood and plot the resulting value as a function of the scale. If the two keypoints
correspond to the same structure, then their signature functions will take similar
shapes and corresponding neighborhood sizes can be determined by searching for
scale-space extrema of the signature function.

properties of the local image neighborhood at a certain radius, it should take a
similar qualitative shape if the two keypoints are centered on corresponding image
structures. The only difference will be that one function shape will be squashed or
expanded compared to the other as a result of the scaling factor between the two
images. Thus, corresponding neighborhood sizes can be detected by searching for
extrema of the signature function. If corresponding extrema σ and σ′ are found in
both cases, then the scaling factor between the two images can be obtained as σ′

σ
.

Effectively, this procedure builds up a scale space [Wit83] of the responses
produced by the application of a local kernel with varying scale parameter σ. In
order for this idea to work, the signature function or kernel needs to have certain
specific properties. It can be shown that the only operator that fulfills all necessary
conditions for this purpose is the scale-normalized Gaussian kernel G(x, σ) and its
derivatives [Lin94, Lin98].
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Figure 3.4: The (scale-normalized) Laplacian-of-Gaussian (LoG) is a popular choice
for a scale selection filter. Its 2D filter mask takes the shape of a circular center
region with positive weights, surrounded by another circular region with negative
weights. The filter response is therefore strongest for circular image structures whose
radius corresponds to the filter scale.

3.3.2 The Laplacian-of-Gaussian (LoG) Detector

Based on the above idea, Lindeberg proposed a detector for blob-like features
that searches for scale space extrema of a scale-normalized Laplacian-of-Gaussian
(LoG) [Lin98]:

L(x, σ) = σ2 (Ixx(x, σ) + Iyy(x, σ)) .(3.8)

As shown in Figure 3.4, the LoG filter mask corresponds to a circular center-surround
structure, with positive weights in the center region and negative weights in the
surrounding ring structure. Thus, it will yield maximal responses if applied to an
image neighborhood that contains a similar (roughly circular) blob structure at
a corresponding scale. By searching for scale-space extrema of the LoG, we can
therefore detect circular blob structures.

Note that for such blobs, a repeatable keypoint location can also be defined
as the blob center. The LoG can thus both be applied for finding the characteristic
scale for a given image location and for directly detecting scale-invariant regions
by searching for 3D (location + scale) extrema of the LoG. This latter procedure is
visualized in Figure 3.5 and resulting interest regions are shown in Figure 3.7(bottom
left).
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Figure 3.5: The Laplacian-of-Gaussian (LoG) detector searches for 3D scale space
extrema of the LoG function.
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Figure 3.6: The Difference-of-Gaussian (DoG) provides a good approximation for
the Laplacian-of-Gaussian. It can be efficiently computed by subtracting adjacent
scale levels of a Gaussian pyramid. The DoG region detector then searches for 3D
scale space extrema of the DoG function. BL: Figure courtesy of [TM07]
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3.3.3 The Difference-of-Gaussian (DoG) Detector

As shown by Lowe [Low04b], the scale-space Laplacian can be approximated by a
difference-of-Gaussian (DoG) D(x, σ), which can be more efficiently obtained from
the difference of two adjacent scales that are separated by a factor of k:

D(x, σ) = (G(x, kσ)−G(x, σ)) ⋆ I(x)(3.9)

Lowe [Low04b] shows that when this factor is constant, the computation already
includes the required scale normalization. One can therefore divide each scale octave
into an equal number K of intervals, such that k = 21/K and σn = knσ0. For more
efficient computation, the resulting scale space can be implemented with a Gaussian
pyramid, which resamples the image by a factor of 2 after each scale octave.

As in the case of the LoG detector, DoG interest regions are defined as locations
that are simultaneously extrema in the image plane and along the scale coordinate
of the D(x, σ) function. Such points are found by comparing the D(x, σ) value of
each point with its 8-neighborhood on the same scale level, and with the 9 closest
neighbors on each of the two adjacent levels.

Since the scale coordinate is only sampled on discrete levels, it is important
in both the LoG and the DoG detector to interpolate the responses at neighbor-
ing scales in order to increase the accuracy of detected keypoint locations. In the
simplest version, this could be done by fitting a second-order polynomial to each
candidate point and its two closest neighbors. A more exact approach was intro-
duced by Brown & Lowe in [BL02]. This approach simultaneously interpolates both
the location and scale coordinates of detected peaks by fitting a 3D quadric function.

Finally, those regions are kept that pass a threshold t and whose estimated
scale falls into a certain scale range [smin, smax]. The resulting interest point op-
erator reacts to blob-like structures that have their maximal extent in a radius of
approximately 1.6σ of the detected points (as can be derived from the zero crossings
of the modelled Laplacian). In order to also capture some of the surrounding struc-
ture, the extracted region is typically larger (most current interest region detectors
choose a radius of r = 3σ around the detected points). Figure 3.7(bottom right)
shows the result regions returned by the DoG detector on an example image.

3.3.4 The Harris-Laplacian Detector

The Harris-Laplacian operator [MS01, MS04a] was proposed for increased discrim-
inative power compared to the Laplacian or DoG operators described so far. It
combines the Harris operator’s specificity for corner-like structures with the scale
selection mechanism by [Lin98]. The method first builds up two separate scale
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Figure 3.7: Example results of the (top left) Hessian detector; (top right) Harris
detector; (bottom left) Laplacian-of-Gaussian detector; (bottom right) Difference-
of-Gaussian detector (BL: I will create new result images here).

spaces for the Harris function and the Laplacian. It then uses the Harris function to
localize candidate points on each scale level and selects those points for which the
Laplacian simultaneously attains an extremum over scales.

The resulting points are robust to changes in scale, image rotation, illumi-
nation, and camera noise. In addition, they are highly discriminative, as several
comparative studies show [MS01, MS03]. As a drawback, however, the original
Harris-Laplacian detector typically returns a much smaller number of points than
the Laplacian or DoG detectors. This is not a result of changed threshold settings,
but of the additional constraint that each point has to fulfill two different maxima
conditions simultaneously. For many practical object recognition applications, the
lower number of interest regions may be a disadvantage, as it reduces robustness
to partial occlusion. This is especially the case for object categorization, where
the potential number of corresponding features is further reduced by intra-category
variability.

For this reason, an updated version of the Harris-Laplacian detector has been
proposed based on a less strict criterion [MS04a]. Instead of searching for simulta-
neous maxima, it selects scale maxima of the Laplacian at locations for which the
Harris function also attains a maximum at any scale. As a result, this modified
detector yields more interest points at a slightly lower precision, which results in
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improved performance for applications where a larger absolute number of interest
regions is required [MTS+05].

3.3.5 The Hessian-Laplace Detector

As in the case of the Harris-Laplace, the same idea can also be applied to the
Hessian, leading to the Hessian-Laplace detector. As with the single-scale versions,
the Hessian-Laplace detector typically returns more interest regions than Harris-
Laplace at a slightly lower repeatability [MTS+05].

3.4 Affine Covariant Region Detection

The approaches discussed so far yield local features that can be extracted in a man-
ner that is invariant to translation and scale changes. For many practical problems,
it however also becomes important to find features that can be reliably extracted
under large viewpoint changes. If we assume that the scene structure we are inter-
ested in is locally planar, then this would boil down to estimating and correcting for
the perspective distortion a local image patch undergoes when seen from a different
viewpoint. Unfortunately, such a perspective correction is both computationally
expensive and error-prone, since the local feature patches typically contain only
a small number of pixels. It has however been shown by a variety of researchers
[MCMP02, MS04a, SZ02, TV00b, TV04] that a local affine approximation is suffi-
cient in such cases.

We therefore aim to extend the region extraction procedure to affine covariant
regions 1. While a scale- and rotation-invariant region can be described by a circle,
an affine deformation transforms this circle to an ellipse. We thus aim to find local
regions for which such an ellipse can be reliably and repeatedly extracted purely
from local image properties.

3.4.1 Harris and Hessian Affine Detectors

Both the Harris-Laplace and Hessian-Laplace detectors can be extended to yield
affine covariant regions. This is done by the following iterative estimation scheme.
The procedure is initialized with a circular region returned by the original scale-
invariant detector. In each iteration, we build up the region’s second-moment matrix

1The literature speaks of affine covariant extraction here in order to emphasize the property
that extracted region shapes vary according to the underlying affine deformation. This is required
so that the region content will be invariant.
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and compute the eigenvalues of this matrix. This yields an elliptical shape (as shown
in Figure 3.2), corresponding to a local affine deformation. We then transform the
image neighborhood such that this ellipse is transformed to a circle and update the
location and scale estimate in the transformed image. This procedure is repeated
until the eigenvalues of the second-moment matrix are equal.

As a result of this iterative estimation scheme, we obtain a set of elliptical
regions which are adapted to the local intensity patterns, so that the same object
structures are covered despite the deformations caused by viewpoint changes.

3.4.2 Maximally Stable Extremal Regions (MSER)

A different approach for finding affine covariant regions has been proposed by Matas
et al . [MCMP02]. In contrast to the above methods, which start from keypoints and
progressively add invariance levels, this approach starts from a segmentation per-
spective. It applies a watershed segmentation algorithm to the image and extracts
homogeneous intensity regions which are stable over a large range of thresholds,
thus ending up with Maximally Stable Extremal Regions (MSER). By construction,
those regions are stable over a range of imaging conditions and can still be reliably
extracted under viewpoint changes. Since they are generated by a segmentation
process, they are not restricted to elliptical shapes, but can have complicated con-
tours. In fact, the contour shape itself is a often good feature, which has led to the
construction of specialized feature descriptors [MCMP02]. For consistency with the
other feature extraction steps discussed here, an elliptical region can however easily
be fitted to the Maximally Stable regions by computing the eigenvectors of their
second-moment matrices.

3.4.3 Other Interest Region Detectors

Several other interest region detectors have been proposed that are not discussed
here. Tuytelaars & Van Gool introduced detectors for affine covariant Intensity
Based Regions (IBR) and Edge Based Regions (EBR) [TV04]. Kadir & Brady
proposed a Salient regions detector that was later on also extended to affine covariant
extraction [KB01, KZB04]. An overview over those detectors and a discussion of
their merits can be found in [TM07].

3.4.4 Summary

Summarizing the above, we have seen the following local feature detectors so far. If
precisely localized points are of interest, we can use the Harris and Hessian detec-
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tors. When looking for scale-invariant regions, we can choose between the LoG or
DoG detectors, both of which react to blob-shaped structures. In addition, we can
combine the Harris and Hessian point detectors with the Laplacian scale selection
idea to obtain the Harris-Laplacian and Hessian-Laplacian detectors. Finally, we
can further generalize those detectors to affine covariant region extraction, result-
ing in the Harris-Affine and Hessian-Affine detectors. The affine covariant region
detectors are complemented by the MSER detector, which is based on maximally
stable segmentation regions. All of those detectors have been used in practical
applications. Detailed experimental comparisons can be found in [MS04a, TM07].

3.5 Orientation Normalization

After a scale-invariant region has been detected, its content needs to be normalized
for rotation invariance. This is typically done by finding the region’s dominant
orientation and then rotating the region content according to this angle in order to
bring the region into a canonical orientation.

Lowe [Low04b] suggests the following procedure for the orientation normal-
ization step. For each detected interest region, the region’s scale is used to select
the closest level of the Gaussian pyramid, so that all following computations are
performed in a scale invariant manner. We then build up a gradient orientation
histogram with 36 bins covering the 360◦ range of orientations. For each pixel in
the region, the corresponding gradient orientation is entered into the histogram,
weighted by the pixel’s gradient magnitude and by a Gaussian window centered on
the keypoint with a scale of 1.5σ. The highest peak in the orientation histogram
is taken as the dominant orientation, and a parabola is fitted to the 3 adjacent
histogram values to interpolate the peak position for better accuracy.

In practice, it may happen that multiple equally strong orientations are found
for a single interest region. In such cases, selecting only one of them would endanger
the recognition procedure, since small changes in the image signal could cause one of
the other orientations to be chosen instead, which could lead to failed matches. For
this reason, Lowe suggests to create a separate interest region for each orientation
peak that reaches at least 80% of the dominant peak’s value [Low04b]. This strat-
egy significantly improves the region detector’s repeatability at a relatively small
additional cost (according to [Low04b], only about 15% of the points are assigned
multiple orientations).
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Image gradients Keypoint descriptor

Figure 3.8: Visualization of the SIFT descriptor computation. For each (orientation-
normalized) scale invariant region, image gradients are sampled in a regular grid and
are then entered into a larger 4×4 grid of local gradient orientation histograms (for
visibility reasons, only a 2× 2 grid is shown here).

3.6 Local Descriptors

Once a set of interest regions has been extracted from an image, their content
needs to be encoded in a descriptor that is suitable for discriminative matching.
The most popular choice for this step is the SIFT descriptor [Low04b], which was
already briefly mentioned in Chapter 2. This descriptor is presented in detail in the
following.

3.6.1 The SIFT Descriptor

The Scale Invariant Feature Transform (SIFT) was originally introduced by Lowe as
combination of a DoG interest region detector and a corresponding feature descriptor
[Low99, Low04b]. However, both components have since then also been used in
isolation. In particular, a series of studies has confirmed that the SIFT descriptor is
suitable for combination with all of the above-mentioned region detectors and that
it achieves generally good performance [MS05].

In the following, we focus on the SIFT descriptor. This descriptor aims to
achieve robustness to lighting variations and small positional shifts by encoding
the image information in a localized set of gradient orientation histograms. The
descriptor computation starts from a scale and rotation normalized region extracted
with one of the above-mentioned detectors. As a first step, the image gradient
magnitude and orientation is sampled around the keypoint location using the region
scale to select the level of Gaussian blur (i.e. the level of the Gaussian pyramid at



3.6. LOCAL DESCRIPTORS 37

which this computation is performed). Sampling is performed in a regular grid of
16×16 locations covering the interest region. For each sampled location, the gradient
orientation is entered into a coarser 4×4 grid of gradient orientation histograms with
8 orientation bins each, weighted by the corresponding pixel’s gradient magnitude
and by a circular Gaussian weighting function with a σ of half the region size. The
purpose of this Gaussian window is to give higher weights to pixels closer to the
middle of the region, which are less affected by positional shifts.

This procedure is visualized for a smaller 2× 2 grid in Figure 3.8. The moti-
vation for this choice of representation is that the coarse spatial binning allows for
small shifts due to registration errors without overly affecting the descriptor. At
the same time, the high-dimensional representation provides enough discriminative
power to reliably distinguish a large number of keypoints.

When computing the descriptor, it is important to avoid all boundary ef-
fects, both with respect to spatial shifts and to small orientation changes. Thus,
when entering a sampled pixel’s gradient information into the 3-dimensional spa-
tial/orientation histogram, its contribution should be smoothly distributed among
the adjoining histogram bins using trilinear interpolation.

Once all orientation histogram entries have been completed, those entries are
concatenated to form a single 4 × 4 × 8 = 128 dimensional feature vector. A final
illumination normalization completes the extraction procedure. For this, the vec-
tor is first normalized to unit length, thus adjusting for changing image contrast.
Then all feature dimensions are thresholded to a maximum value of 0.2 and the
vector is again normalized to unit length. This last step compensates for non-linear
illumination changes due to camera saturation or similar effects.

3.6.2 The SURF Detector/Descriptor

As local feature detectors and descriptors have become more widespread, efficient
implementations are becoming more and more important. Several approaches have
consequently been proposed in order to speed up the interest region extraction
and/or description stages [NC08, BTV06, BETV08, RD08]. Among those, we want
to pick out the SURF (“Speeded-Up Robust Features”) approach, which has been
designed as an efficient alternative to SIFT [BTV06, BETV08].

SURF combines a Hessian-Laplace region detector with an own gradient orien-
tation based feature descriptor. Instead of relying on Gaussian derivatives for its in-
ternal computations, it is however based on simple 2D box filters (“Haar wavelets”),
as shown in Figure 3.9. Those box filters approximate the effects of the deriva-
tive filter kernels, but can be efficiently evaluated using integral images [VJ04]. In
particular, this evaluation requires the same constant number of lookups regardless
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Figure 3.9: The SURF detector and descriptor were designed as an efficient alter-
native to SIFT. Instead of relying on ideal Gaussian derivatives, their computation
is based on simple 2D box filters, which can be efficiently evaluated using integral
images.

of the image scale, thus removing the need for a Gaussian pyramid. Despite this
simplification, SURF has been shown to achieve comparable repeatability as detec-
tors based on standard Gaussian derivatives, while yielding speedups of more than
a factor of five compared to standard DoG.

The SURF descriptor is also motivated by SIFT and pursues a similar spatial
binning strategy, dividing the feature region into a 4 × 4 grid. However, instead
of building up a gradient orientation histogram for each bin, SURF only computes
a set of summary statistics

∑
dx,

∑
|dx|,

∑
dy, and

∑
|dy|, resulting in a 64-

dimensional descriptor, or a slightly extended set resulting in a 128-dimensional
descriptor version.

Motivated by the success of SURF, a further optimized version has been pro-
posed in [NC08] that takes advantage of the computational power available in current
CUDA enabled graphics cards. This GPUSURF implementation has been reported
to perform feature extraction for a 640 × 480 image at frame rates up to 200 Hz
(i.e. taking only 5ms per frame), thus making feature extraction a truly affordable
processing step.
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3.7 Concluding Remarks

The development of local invariant features has had an enormous impact in many
areas of computer vision, including wide-baseline stereo matching, image retrieval,
object recognition, and categorization. They have provided the basis for many state-
of-the-art algorithms and have led to a number of new developments. Moreover,
efficient implementations for all detectors discussed in this chapter are freely avail-
able [Oxf, SUR, GPU], making them truly building blocks that other researchers
can build on.

In the following chapters, we use local feature detectors as such building blocks
in order to develop methods for specific object recognition (Chapter 4) and object
categorization (Chapters 5, 6, and 7).




