

Last time

- Texture is a useful property that is often indicative of materials, appearance cues
- Texture representations attempt to summarize repeating patterns of local structure
- Filter banks useful to measure redundant variety of structures in local neighborhood
 - Feature spaces can be multi-dimensional
 - Distance in feature space to compare descriptors

Review questions

- When describing texture, why do we collect filter response statistics within a window?
- · What is the Markov assumption?
 - And why is it relevant for the texture synthesis technique of Efros & Leung?

Outline

- · What are grouping problems in vision?
- Inspiration from human perception
 - Gestalt properties
- · Bottom-up segmentation via clustering
 - Algorithms: k-means, graph-based
 - · Quantization for texture summaries
 - Features: color, texture, ...

Grouping in vision

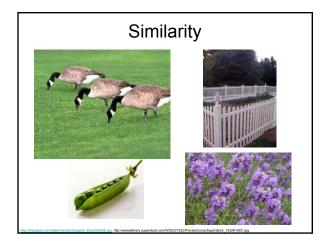
- · Goals:
 - Gather features that belong together
 - Obtain an intermediate representation that compactly describes key image or video parts

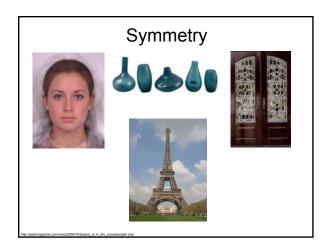
Examples of grouping in vision Figure by J. Del Group video frames into shots Determine image regions Figure by Group video frames into shots Object-level grouping

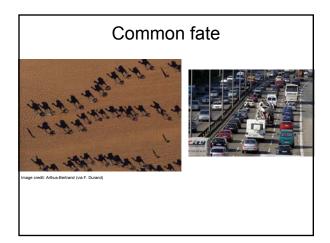
Grouping in vision

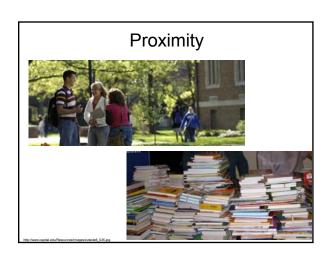
- · Goals:
 - Gather features that belong together
 - Obtain an intermediate representation that compactly describes key image (video) parts
- Top down vs. bottom up segmentation
 - Top down: pixels belong together because they are from the same object
 - Bottom up: pixels belong together because they look similar
- · Hard to measure success
 - What is interesting depends on the app.

What things should be grouped? What cues indicate groups?



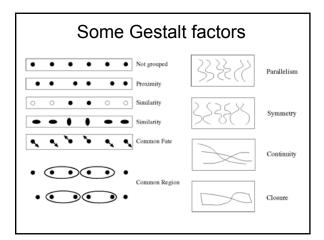




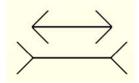


Gestalt

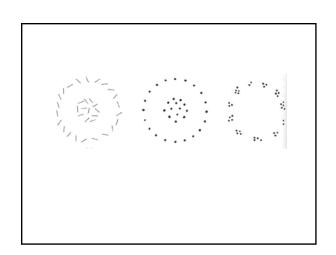
- · Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)



Muller-Lyer illusion



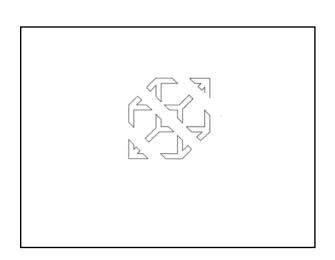
Gestalt principle: grouping key to visual perception.

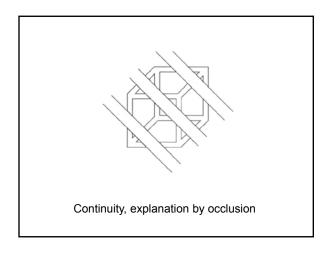


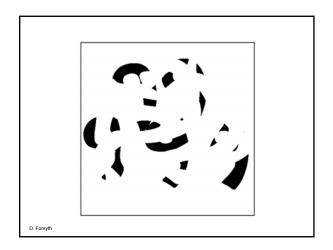
Illusory/subjective contours

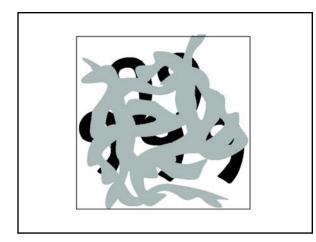
Interesting tendency to explain by occlusion

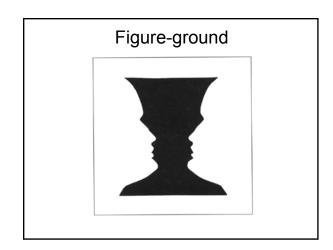
Vision, D. Marr, 198

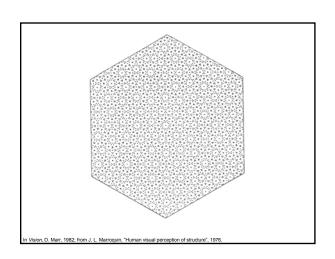












Gestalt

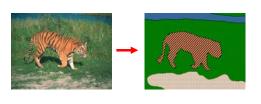
- · Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- · Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)
- · Inspiring observations/explanations, but not necessarily directly useful for algorithms.

Outline

- · What are grouping problems in vision?
- · Inspiration from human perception
 - Gestalt properties
- Bottom-up segmentation via clustering
 - Algorithms: k-means, graph-based
 - · Quantization for texture summaries
 - Features: color, texture, ...

Image segmentation

· Goal: identify groups of pixels that go together.



The goals of segmentation Separate image into coherent "objects" human segmentation

The goals of segmentation

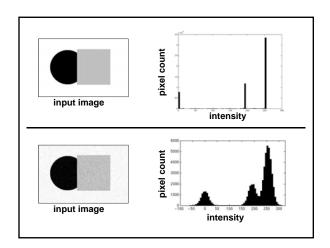
Separate image into coherent "objects"

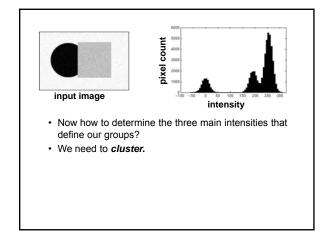
Group together similar-looking pixels for efficiency of further processing

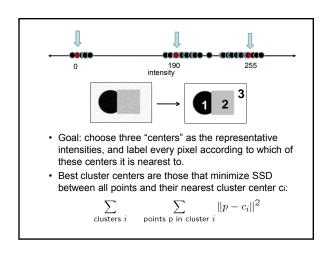
"superpixels"

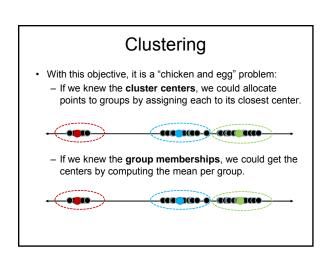
Image segmentation: toy example

- · These intensities define the three groups.
- · We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- · What if the image isn't quite so simple?









K-means clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, $c_1,\,...,\,c_K$
 - 2. Given cluster centers, determine points in each cluster <
 - For each point p, find the closest c_i . Put p into cluster i
 - Given points in each cluster, solve for c_i
 Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, repeat Step 2

Properties

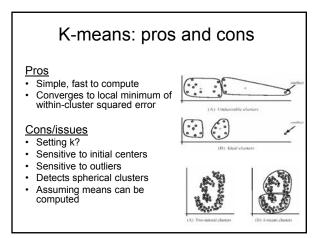
- Will always converge to some solution
- Can be a "local minimum"

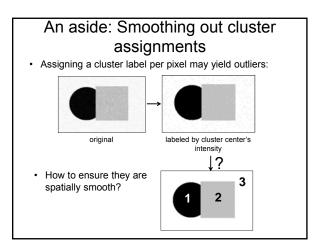
- does not always find the global minimum of objective function:
$$\sum_{\text{clusters }i}\sum_{\text{points p in cluster }i}||p-c_i||^2$$

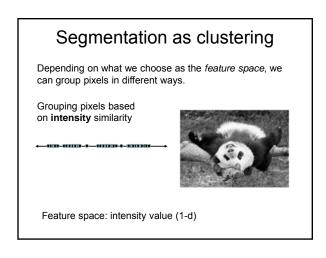
K-means clustering

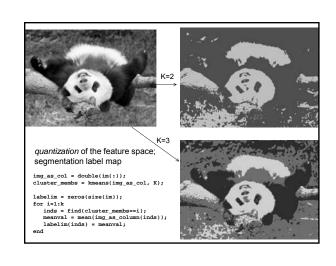
· Java demo:

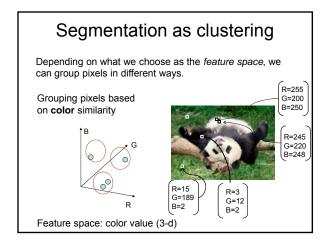
http://home.dei.polimi.it/matteucc/Clustering/tuto rial html/AppletKM.html

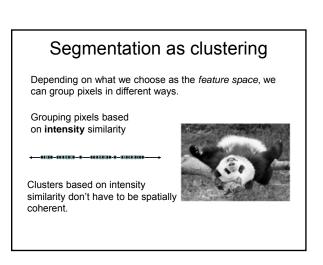


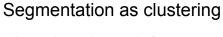












Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity+position** similarity

Both regions are black, but if we also include **position** (x,y), then we could group the two into distinct segments; way to encode both similarity & proximity.

Segmentation as clustering

• Color, brightness, position alone are not enough to distinguish all regions...

Segmentation as clustering

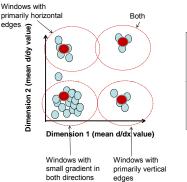
Depending on what we choose as the *feature space*, we can group pixels in different ways.

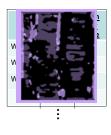
Grouping pixels based on **texture** similarity

Filter bank of 24 filters

Feature space: filter bank responses (e.g., 24-d)

Recall: texture representation example

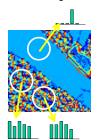




statistics to summarize patterns in small windows

Segmentation with texture features

- Find "textons" by clustering vectors of filter bank outputs
- · Describe texture in a window based on texton histogram



Malik, Belongie, Leung and Shi. IJCV 2001.

Adapted from Lana Lazebnik

Material classification example

For an image of a single texture, we can classify it according to its global (image-wide) texton histogram.

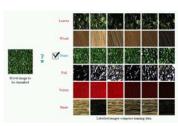
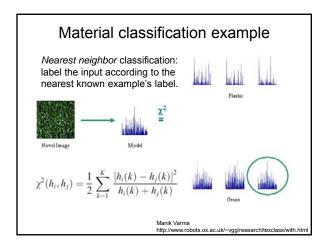
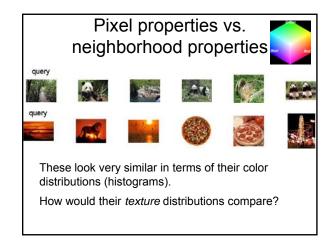


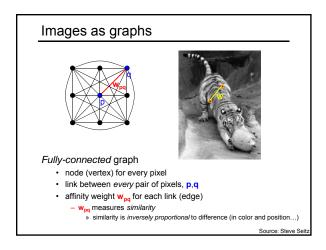
Figure from Varma & Zisserman, IJCV 2005



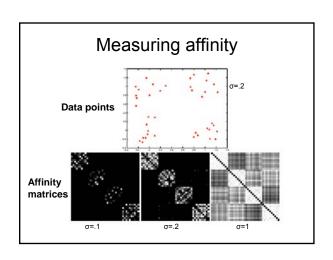


Outline

- · What are grouping problems in vision?
- Inspiration from human perception
 - Gestalt properties
- · Bottom-up segmentation via clustering
 - Algorithms: k-means, graph-based
 - Features: color, texture, ...



• One possibility: $aff(x,y) = \exp\left\{-\left(\frac{1}{2}\sigma_d^2\right)\left(\left\|x-y\right\|^2\right)\right\}$ Small sigma: group only nearby points $\frac{1}{2} \left(\left\|x-y\right\|^2\right) + \frac{1}{2} \left(\left\|x-y\right\|$



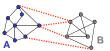
Segmentation by Graph Cuts

Break Graph into Segments

- Want to delete links that cross **between** segments
- · Easiest to break links that have low similarity (low weight)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Source: Steve Seitz

Cuts in a graph: Min cut



Link Cut

- · set of links whose removal makes a graph disconnected
- cost of a cut: $cut(A, B) = \sum_{p,q} w_{p,q}$

Find minimum cut

- · gives you a segmentation
- fast algorithms exist for doing this

Source: Steve Seitz

Minimum cut

· Problem with minimum cut: Weight of cut proportional to number of edges in the cut; tends to produce small, isolated components.

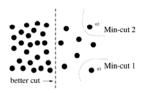


Fig. 1. A case where minimum cut gives a bad partition.

[Shi & Malik, 2000 PAMI]

Cuts in a graph: Normalized cut

Normalized Cut

• fix bias of Min Cut by **normalizing** for size of segments:

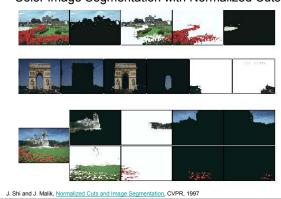
$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$$

assoc(A,V) = sum of weights of all edges that touch A

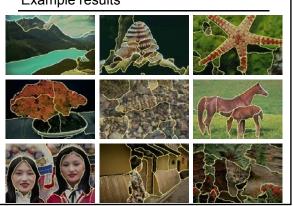
Approximate solution for minimizing the Ncut value : generalized eigenvalue problem.

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997

Color Image Segmentation with Normalized Cuts



Example results



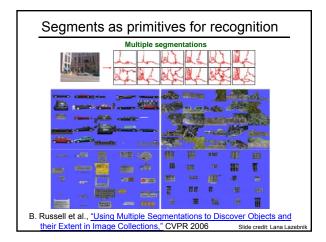
Normalized cuts: pros and cons

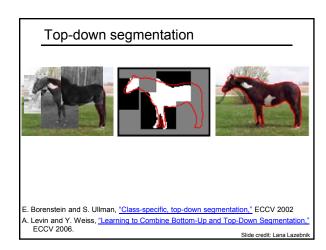
Pros:

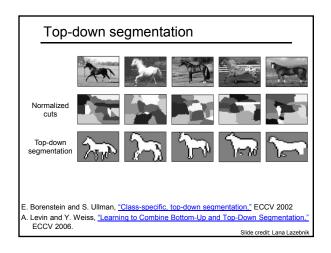
- Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- · Does not require model of the data distribution

Cons

- Time complexity can be high
 - Dense, highly connected graphs → many affinity computations
 - Solving eigenvalue problem
- · Preference for balanced partitions







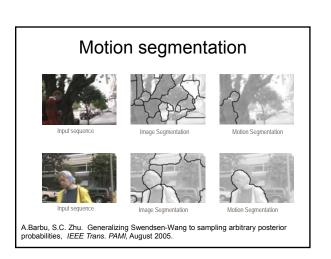
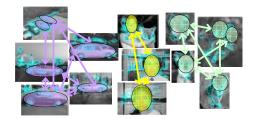


Image grouping



Build a graph of images, with edges weighted by some feature matching score. Partition the graph to "discover" categories of objects.

K. Grauman & T. Darrell, Unsupervised Learning of Categories from Sets of Partially Matching Image Features, CVPR 2006.

Summary

- Segmentation to find object boundaries or midlevel regions, tokens.
- · Bottom-up segmentation via clustering
 - General choices -- features, affinity functions, and clustering algorithms
- Grouping also useful for quantization, can create new feature summaries
 - Texton histograms for texture within local region
- Example clustering methods
 - K-means
 - Graph cuts, normalized cuts
 - Tradeoffs

Next

- Pset 1 due Mon 11:59 PM
- Fitting
 - Read F&P Chapter15.1: Hough Transform

