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Abstract

We propose a dense local region detector to extract fea-
tures suitable for image matching and object recognition
tasks. Whereas traditional local interest operators rely
on repeatable structures that often cross object boundaries
(e.g., corners, scale-space blobs), our sampling strategy is
driven by segmentation, and thus preserves object bound-
aries and shape. At the same time, whereas existing region-
based representations are sensitive to segmentation param-
eters and object deformations, our novel approach to ro-
bustly sample dense sites and determine their connectiv-
ity offers better repeatability. In extensive experiments,
we find that the proposed region detector provides signifi-
cantly better repeatability and localization accuracy for ob-
ject matching compared to an array of existing detectors.
In addition, we show our regions lead to excellent results
on two benchmark tasks that require good feature match-
ing: weakly supervised foreground discovery, and nearest
neighbor-based object recognition.

1. Introduction

Local features are a basic building block for image re-
trieval and recognition tasks. Their locality offers robust-
ness to occlusions and deformation, and when extracted
densely and/or at multiple scales they capture rich statistics
for recognition algorithms (e.g., for a bag of words repre-
sentation). The general local feature pipeline consists of (a)
a detection stage, which selects the image sites (positions,
scales, shapes) where features will be extracted, and (b) a
description stage, which uses the image content at each such
site to form a local descriptor. This work is concerned with
the detection stage.

Researchers have developed a variety of techniques to
perform detection, ranging from sophisticated interest point
operators [19, 20, 21, 12, 31] to dense sampling strate-
gies [23]. While by design such methods provide highly
repeatable detections across images, their low-level local
sampling criteria generate many descriptors that straddle
object boundaries, and—if they are too local—may also
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Figure 1. Boundary-preserving local regions (BPLRs) capture local object
shape with dense spatial coverage. (We densely extract BPLRs across the
image, but for visualization purposes this figure displays only a few.)

lack distinctiveness (i.e., patches of texture vs. actual object
parts). On the other hand, while segmentation algorithms
can produce boundary-preserving base features and reveal
object shape [26, 11, 30, 18], they tend to be sensitive to
global image variations and so lack repeatability.

Our goal is to address this current tradeoff, and create
a detector for features that are both distinctive within the
image as well as repeatable across images. To this end,
we propose a novel dense local region extraction algorithm
driven by segmentation.

Briefly, it works as follows: given multiple overlapping
segmentations of the input image, we first compute their
corresponding distance transform maps. We then divide
each segment into regular grid cells, and sample an “ele-
ment” feature in each cell, whose position and associated
scale are determined by the maximal distance transform
value in the cell. This step yields elements that avoid over-
lapping object boundaries, and tend to be closest to other
elements within the same segment. Next we link all ele-
ments with a minimum spanning tree, which extends con-
nections beyond the original segment boundaries and aptly
integrates the multiple segmentations. Finally, we extract a
dense set of overlapping regions, each of which consists of a
group of linked (neighboring) elements within the tree. We
call the resulting regions boundary-preserving local regions
(BPLRs). See Figure 1.

Because our extracted regions tend to preserve object
boundaries, they are informative for object shape. At the
same time, because they link sampled elements across mul-
tiple segmentations, they are robust to unstable segmenta-
tions and thus repeatable across images. Finally, their dense
coverage of the image ensures we retain reliable feature
statistics that are critical for recognition and matching.
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Figure 2. Illustration of BPLR’s key contrasts with representative existing detectors. (a) The proposed BPLR features are reliably repeated across different
object instances in spite of large intra-class variation in pose and appearance. They respect object boundaries while maintaining good spatial coverage
per region. (Note, we display only a sample for different fg object parts; our complete extraction is dense and covers entire image.) (b) Regions from a
segmentation algorithm (here, obtained with [2], and pruned to only foreground-overlapping regions) typically produce some high quality segments, but the
shape and localization often lacks repeatability across instances. Further, if a good segment encompasses the entire object, it won’t match other instances
with deformation. (c¢) Superpixels (obtained here with Normalized Cuts) are also local and dense, but typically lose informative shape cues and lack
repeatability (compare shapes of superpixels on the two giraffe instances). (d) Local interest regions (obtained with MSER [19]) are highly repeatable for
multiple views of the same instance, but do not respect object boundaries and fire very differently across different instances of the same object class. (e)
Dense patches offer good coverage and “brute force” repeatability, but many features straddle object boundaries, and shape is mostly not preserved.

We evaluate our BPLR detector’s repeatability (how well
foreground features on an object match others in the same
class) and localization accuracy (how accurately feature
matches can predict objects’ positions and scales) with ex-
tensive experiments on benchmark datasets. Direct com-
parisons to several existing extractors—interest regions,
dense local patches, semi-local feature configurations, and
segments—show its clear advantages, particularly for de-
formable objects and those with characteristic shape. Fi-
nally, having examined its quality as a raw detector, we em-
ploy the BPLR within two higher-level applications that re-
quire good feature matching: foreground segmentation and
nearest-neighbor object classification. Our detector offers
significant gains relative to alternative extraction methods
and improves upon the state-of-the-art.

2. Background and Related Work

We now review related work on feature detection; Fig-
ure 2 depicts the key contrasts to our approach.

Local interest region detection is a long-standing re-
search topic in computer vision, and scale or affine-invariant
local regions [19, 20, 21, 12] are critically valuable for
multi-view matching problems like wide-baseline stereo or
instance recognition. For generic object categories, on the
other hand, they tend to be too sparse; densely sampled lo-
cal patches offer better coverage and are regularly found
to outperform interest points (e.g., see [23]), at the cost
of much greater storage and computation. Recent work
on dense interest points [31] shows how to merge advan-
tages of either sampling strategy, balancing coverage with
repeatability. Due to their inherent locality, however, indi-
vidual features from any such detector can lack distinctive-
ness, and will rarely fire on a true “part” of an object (e.g.,
a giraffe’s neck).
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One way to enhance distinctiveness is to group nearby
local features into neighborhoods or “semi-local” configu-
rations, exploiting geometric consistency observed across
training instances [25, 8, 15]. Strong inter-feature geo-
metric constraints can be too restrictive (non-repeatable)
for generic objects, whereas grouping methods that require
class-specific supervision are not applicable to bottom-up
processing of arbitrary images. Instead, we propose a
grouping stage that links element features according to re-
gion and contour structures throughout the image, and as-
sume neither rigid layouts nor class-specific supervision.

Due to steady advances in bottom-up segmentation al-
gorithms [2], increasingly researchers are considering how
to employ segments as base features, in place of local
patches [11, 30, 24, 26]. Segments are appealing since
they capture object shape and have broader spatial coverage.
However, the instability of segmentation algorithms with
respect to image variations can make the features’ shapes
unreliable or sensitive to parameter settings. Thus, existing
work often focuses on how to select reliable segment-parts
using labeled data [11, 30]. Multiple segmentations (gen-
erated by varying the segmentation parameters) are often
used to expand the pool of candidates for a single image
(e.g., [18, 10]). Whereas existing methods typically try to
find “good” full-object segments among this pool, we show
how to incorporate all segmentation hypotheses when both
sampling and linking the element features.

Much less attention has been given to the interplay
between low-level local features and segmentation. The
segmentation-based interest points proposed in [14] consist
of ellipses fit to segment areas and corners computed on
segment boundaries. In contrast to our approach, however,
corners may often miss shape cues of the regions, and fit-
ting ellipses directly to segments can be susceptible to seg-
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Figure 3. Main components of the approach. Best viewed in color. (a) For each initial segment, we sample local elements densely in a grid according to its
distance transform (left: segment; lower right: grid; upper right: zoom-in to show sampled elements and their scales). (b) Elements are linked across the
image, using the overlapping multiple segmentations to create a single structure that reflects the main shapes and segment layout. (¢) Using that structure,
we extract one BPLR per element. Each BPLR is a group of neighboring elements. Finally, the BPLR is mapped to some descriptor (we use PHOG+gPb).

mentation errors. An interesting approach proposed in [16]
groups superpixels into objects’ skeletal parts. Their use of
medial axis points is related to our use of the distance trans-
form; however, we seek dense and generic local features
rather than only symmetric parts.

Please note that our work and those cited above all tackle
region detection; we use existing descriptors to capture our
detected regions’ shape, and standard matching techniques
to demonstrate their applicability. Thus, work on shape de-
scriptors and contour matching (e.g., [3, 9]) is complemen-
tary but separate from our focus.

3. Approach

We first describe how we sample initial elements using
the input segmentations (Sec. 3.1). Then we explain how
to link these elements across the image (Sec. 3.2). Finally,
we show how to use the computed structure to extract dense
groups of elements, each of which is a shape-preserving re-
gion (Sec. 3.3).

3.1. Sampling Initial Elements

Given an image, we first obtain multiple overlapping
segmentations. (We use the state-of-the-art algorithm devel-
oped in [2] to produce a high quality hierarchy of segments,
though other methods are possible.) These segmentation
hypotheses do not serve as detected regions; rather, we use
them to guide the extraction of initial component features
that we call “elements”. Each element is a circle with a
position (its center) and associated scale (its radius).

The goal of our novel sampling strategy is to balance
both density and object boundary preservation. To that end,
we compute a distance transform (DT) from the boundary
edges of each segment, and then subdivide the segment into
a dense grid of cells (e.g., 4 x 4 pixels per cell). For each
cell, we sample an element at the location with the maximal
distance transform value within the cell, and set the radius
of the element by that maximal distance value. Figure 3(a)
shows sampled elements from one segment.
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Selecting elements’ scale by the DT prevents them from
overlapping the originating segment’s boundary. At the
same time, refining the dense sampling positions by the
maximal DT values pushes sampled locations to the inner
part of each segment, keeping elements originating from the
same segment closer to one another than those from differ-
ent segments. Due to this geometric property, when we link
elements across all segments in the next stage (Sec. 3.2), we
have a soft preference to join elements originating from the
same segment. In addition, the local nature of our sampling
approach limits the influence of segment “errors”; that is,
holes or leaks (relative to the true object boundaries) do not
destroy the sampling and scale selection. Thus, we retain a
large number of good elements that respect object bound-
aries even with partially flawed segments.

3.2. Linking Elements Throughout the Image

Next we want to take these elements and define the
neighborhood structure across the entire image, which in
turn will determine how we extract groups of neighboring
elements to form BPLRs. A naive linking of the elements
based on their spatial (image) distance would fail to capture
the image-wide contours and shape revealed by the mul-
tiple segmentation hypotheses. Instead, we define a two-
step linking procedure that accounts for this structure and
reduces cross-object connections.

The first step computes a global linkage graph connect-
ing all element locations via a minimum spanning tree,
where each edge weight is given by the Euclidean distance
between the two points it connects. By minimizing the sum
of total edge weights, the resulting spanning tree removes
the longer edges from the graph—most of which cross ob-
ject boundaries due to the geometric property of the DT-
based sampling. As a result, we have a global link structure
respecting object boundaries, in which every element has at
least one direct neighbor (see Figure 3(b), left image).

Whereas the above step reduces connectivity for more
distant elements, we also want to reduce connectivity for
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Figure 4. Grouping neighboring elements relative to a reference element.
Topology neighbors: up to N(= 3) hops for the reference; Euclidean
neighbors: within F' times the scale of the reference; BPLR elements:
intersection of topology and Euclidean neighbors.

elements divided by any apparent object contours. Thus,
in the second linkage step, we compute a simple post-
processing of the spanning tree that removes noisy tree
edges that cross strong intervening contours. We compute
the contour strength at each pixel using the “globalized
probability of boundary” (gPb) detector [17], and remove
links crossing contours exceeding the average non-zero gPb
value in the image. Figure 3(b) (right image) shows the
types of links removed by this stage; we see that most do
indeed cross object boundaries. Nonetheless, even an er-
roneous pruning at this stage has limited impact, given the
density of the elements and the manner in which we ulti-
mately group them into regions, as we explain in the next
section.

3.3. Grouping Neighboring Elements into Regions

Finally, we use the elements and the computed graph
to extract a dense set of boundary-preserving local regions
(BPLRs). For every element (i.e., every node in the graph),
we create one BPLR. Each BPLR consists of that “refer-
ence” element, plus a group of its neighbors in the graph
(see Figure 3(c)).

We define the neighborhood based on two measures:
topological distance in the graph (how many link hops sepa-
rate the elements), and Euclidean distance in the image (Lo
distance between the elements’ centers). The neighbors for
a reference element are those within the intersection of re-
gions spanned by either distance. Specifically, the topolog-
ical neighborhood consists of any elements within N hops
along the graph relative to the reference element, while the
Euclidean neighborhood consists of any elements within a
radius equal to F' times the reference element’s scale 7 (see
Figure 4). Note that the topological radius is fixed over all
elements in the graph (and all images), while the Euclidean
radius is proportional to each element’s scale.

Why the two distances? Using the Euclidean distance
alone would maintain scale invariance, but is blind to the
graph connectivity, which intentionally accounts for esti-
mated image boundaries. On the other hand, topological
distance accounts for this connectivity, and in the face of
unstable segmentations, it tends to select neighbors better
than the elements’ noisy scale estimates; but, if used alone,
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it would not be robust to significant scale changes. Thus,
our design is intended to balance the good parts of both.

The neighbors of each reference element within this in-
tersected area form a BPLR. Since we extract the BPLRs
for every densely sampled element, the resulting detections
are also dense. The exact number per image depends on
the initial segmentation and sampling grid; to give a con-
crete sense, using the Berkeley segmentation code we ob-
tain about 150-250 segments, and then our method gener-
ates ~7,000 features per image. To extract multi-scale fea-
tures, we run BPLR detection on an image pyramid.!

While earlier uses of the distance transform for shape-
based representations require fairly clean segmentation
(e.g., a pure silhouette for medial axis or shock graph ex-
traction [29]), our scheme remains quite robust with chal-
lenging natural images due to its linking procedure and
dense sampling. By definition our approach has some de-
pendence on the original set of multiple segmentations;
however, because our linking scheme connects elements be-
yond their originating segment, it is fairly robust to segmen-
tation variations, recovering larger descriptive regions that
partially overlap different segments. In general, we’d prefer
the input err towards finer segments, since we will produce
candidate regions that join them.

Our approach performs region detection. To use these
regions for matching, we need to further extract a descrip-
tor for every region. One could employ any descriptor with
our detector. In our experiments, we use Pyramids of His-
tograms of Oriented Gradients (PHOG) [6] computed over
the gPb-edge map (see right image in Fig. 3(c)), which
is similar to the descriptor used in [11]. It represents the
outline of the shape as well as (coarsely) its inner texture,
and thus is a good match for BPLR’s strengths. To extract
the PHOG+gPb feature, we put a bounding box around the
BPLR, and nullify gPb values outside of the BPLR bound-
aries, excluding external edges from the histogram counts.

4. Results

The main goals of the experiments are 1) to demonstrate
the raw quality of our region detector, and 2) to show its
effectiveness when used for tasks that require reliable fea-
ture matching. For the first aspect, we analyze repeatability
and localization accuracy across object categories (Sec. 4.1
and 4.2). For the second, we apply BPLR to foreground
discovery and object classification (Sec. 4.3 and 4.4).

Datasets: We use four public datasets: the ETHZ Shape
Classes [9], the ETH-TUD set collated by [25], the Caltech-
28 set collated by [7], and the Caltech-101.

Implementation details: We generate multiple over-
lapping segmentations for each image using the algorithm

!One could alternatively take neighborhoods of multiple topological N
hops and Euclidean F scales, although we did not observe any advantage
over the image pyramid approach in practice.



Applelogo Bottle

Giraffe

Mug Swan

=Dense
<BPLR

=Dense
<BPLR

cc 0.7] cc 0.7]
206 +MSER 206 +MSER
c 0.5 c 0.5
304 S04
=03 =03

0.10.20.30.40.50.60.70.80.9 1 0.10.20.30.40.50.60.70.80.9 1
BBHR BBHR

=Dense
<BPLR

=Dense
<BPLR

=Dense
<BPLR

c 0.7] cc 0.7]
206 +MSER 206 +MSER
c 0.5 c 0.5
304 S04
=03 =03

0.10.20.30.40.50.60.70.80.9 1 '0.10.20.30.40.50.60.70.80.9 1
BBHR BBHR

Figure 5. Repeatability on ETHZ objects. Plots compare our approach (BPLR) to three alternative region detectors: MSER, dense sampling, and segments.
Quality is measured by the bounding box hit rate-false positive rate tradeoff (BBHR-FPR). Curves that are lower on the y-axis (fewer false positives) and

longer along the x-axis (higher hit rate) are better.

of [2], with the authors’ publicly available code. We vary
parameters so as to provide 20-200 segments per segmenta-
tion, pool all the segments, and use them as input to our al-
gorithm throughout. We extract BPLRs from elements sam-
pled in grid cells of 4 x 4 pixels with F' = 2.5, N = 25.
To link elements in the minimum spanning tree, we use
code by [28]. This setting generates on average 6,000-8,000
BPLRs in a 400 x 300 image, and takes about 70-90 sec-
onds on a machine with a 3.4GHz CPU. Most of the time is
spent computing topological distances and intervening con-
tour strength among pairs of graph nodes; run-time drops
quickly for sparser samplings (e.g., 2-5 seconds for 1,000-
1,500 BPLRs). For each BPLR we create a PHOG+gPb
descriptor using 3 pyramid levels (i.e., up to 4 x 4 subwin-
dows) and 8 orientation bins, for a 168-dimensional descrip-
tor. To “match” features, we simply use nearest neighbor
(NN) search with Euclidean distance on the descriptors; for
efficiency, we use [22].

Baselines: We compare to several state-of-the-art re-
sults in the literature ([25, 15, 1, 7] and many Caltech-
101 numbers), plus three alternative extraction methods: 1)
MSER+SIFT: MSER is the best local interest region in
the evaluation by [21]; we use the Oxford code to generate
1000-1500 MSERs per image, 2) Dense+SIFT: sampled at
a regular grid every 4 pixels in the image, over 5 scales of
an image pyramid, and 3) Segment+PHOG: the same over-
lapping segments that serve as input to our algorithm, cou-
pled with the same PHOG+gPb descriptor. Note, the former
two baselines are widely used in the recognition literature,
while the last is used in the state-of-the-art region-based ap-
proach of [11], making these strong and very informative
baselines.

4.1. Repeatability for Object Categories

When matching images of the same scene or object,
one can test repeatability by synthetically warping the im-
ages with parametric transformations (e.g., see [21]). How-
ever, such measures are not applicable to images of generic
objects, where the goal is to ensure similar object parts
are detected across instances. Thus, we quantify repeata-
bility using the Bounding Box Hit Rate - False Positive
Rate (BBHR-FPR) metric defined in [25]. To compute
the BBHR-FPR, one selects features in the cluttered test
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Figure 6. Repeatability on ETH+TUD objects. Plots compare our approach
(BPLR) to two state-of-the-art semi-local feature methods [25, 15]. ([15]
does not report results on the Giraffe class.)

image that have a match distance below a threshold with
foreground features in the training images,” and declare a
“hit” if at least five such features are inside the test im-
age’s bounding box. FPR counts those selected test features
outside its bounding box. Sweeping through all distance
thresholds, one records this average hit rate and correspond-
ing FPR for all test images to form a BBHR-FPR curve. In
short, the metric captures to what extent the selected fea-
tures are repeatedly detected on the object foregrounds.

Figure 5 shows the results for the ETHZ Shape Classes
dataset, using a 50-50 train-test split. Our BPLR outper-
forms all the baselines. The BBHR is boosted by the den-
sity of our features, yet still maintains a low false posi-
tive rate. This indicates that BPLRs are highly repeatable
across these shape-based categories, reliably discerning ob-
ject foreground from background. In particular, we see that
BPLR has the greatest advantage on the Giraffe class (cen-
ter plot); this supports our claim that our shape-preserving
dense local regions are better for handling deformable ob-
jects, given the giraffes’ variable articulated poses.

Figure 6 compares to two state-of-the-art semi-local fea-
ture extraction methods [25, 15], using the ETH+TUD data
and setup defined in [25].> Both previous methods build
configurations of neighboring visual words, making them
relevant to our approach to group element features. Our
BPLR outperforms both. Again, gains on the non-rigid ob-
jects emphasize BPLR’s strength for shape-based objects.

2Features in the training images are labeled as foreground when they
are inside the bounding box and their best match is inside another training
bounding box. The second condition reduces the ambiguity of bounding
box annotation, e.g., background grass in a giraffe’s bounding box.

3We exclude the Bike class, since it contains duplicated images in the
test and training set, which inflates our results significantly.
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Training image

Test image

Figure 8. Given two matched regions and their relative scales, we project
the training exemplar’s bounding box into the test image (dotted rectangle).
That match’s BBOS is the overlap ratio between the projected box and the
object’s true bounding box.

4.2. Localization Accuracy

The BBHR-FPR reveals repeatability, but not layout.
Ideally, the detected regions would also match with spatial
consistency; i.e., if a region is detected on the fender of the
car in one image, we want the fender on a different car in
another image to also be detected, with a similar shape.

To quantify this, we introduce the Bounding Box Over-
lapping Score - Recall (BBOS-Recall) metric. For each fea-
ture in a test image, we match it to the training features, and
use each match’s position and scale to project the training
example’s bbox into the test image. The BBOS is the ra-
tio between the intersection and union of this projected box
and the test image’s ground truth (see Figure 8). The recall
is the portion of foreground test features that match a train-
ing foreground feature; false matches (to background) affect
recall but not BBOS. A BBOS-Recall curve sweeps through
all distance thresholds, and records the average BBOS and
recall over all test images. In short, the metric captures the
features’ distinctiveness and localization accuracy.

Figure 7 shows the result for the ETHZ Shape data.
In four of the five classes, our approach outperforms all
the baselines, showing that its boundary-preserving quality
helps localization. It is particularly strong for the shape-
varying classes, Giraffe and Swan. In contrast, sparse
MSERs—while highly repeatable for matching the same
object—are poorly repeatable under intra-class variations,
showing the lowest recall among the baselines. In addition,
uniformly-shaped dense patches are less distinctive, and fail
to localize matches reliably (e.g., a patch covering small
textured area on one giraffe’s body may match anywhere
in another giraffe). However, the Dense+SIFT baseline ob-
tains better BBOS for the Applelogo class, likely because its
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Figure 9. Example matches showing BPLR’s localization accuracy. Colors
in the same row indicate matched regions. Best viewed in color.

regular shape fits well on a regular patch for some scales.
Surprisingly, the shape-based Segment+PHOG baseline
does not provide a clear advantage over Dense+SIFT for
localization. We suspect this is due to two factors: first,
the instability of segmentations across instances, and sec-
ond, the segments that cover entire objects are not easily
matched if there is a viewpoint change or deformation.
Figure 9 illustrates BPLR localization power. For each
test image on the left, we select the top five non-overlapping
regions based on the foreground matching distance, and
display them on the training images to the right. We see
matches are consistently localized in spite of scale changes,
illumination, and background clutter. Overall, the results in
this section indicate that our features’ distinctiveness per-
mits reliable localization, a strength for object detection.

4.3. Foreground Discovery with BPLR

Now we examine BPLR’s effectiveness for higher-level
applications. Our goal in the next experiment is to test
whether our approach can improve foreground discovery,
by replacing the frequently used “superpixels” with BPLRs
as base features. In the weakly-supervised foreground (fg)
discovery problem [7, 1], the system is given a set of clut-
tered images that all contain the same object class, and must
estimate which pixels are foreground.



Figure 10. Example foreground discovery results using BPLRs. Two examples per class. Ground truth is marked in red. BPLR matching cleanly separates
objects from the background in most cases. In some cases, however, we see small leaks near object boundaries (e.g., see the ferry and butterfly), likely due
to background regions abutting object boundaries that are confused by strong shape contours.

Approach Accuracy(%)
BPLR GrabCut (Ours) 85.6
Superpixel GrabCut [27] 81.5
Superpixel ClassCut [1] 83.6
Superpixel Spatial Topic Model [7] 67.0

Table 1. Foreground discovery results, compared to several state-of-the-art
methods. Using BPLR regions with a GrabCut-based solution, we obtain
the best accuracy to date on the Caltech-28 dataset. (See text for details.)

Figure 11. Impact of BPLR matching on fg likelihood. Red areas indicate
where fg likelihood exceeds that of bg. The initial fg color model is incor-
rect (2nd img), but BPLR matches to other bonsai images correctly pre-
dict the object location (3rd img). Combining the color model and BPLR
matches (4th img), we obtain an accurate fg estimate (last image).

We design a simple model for this task using BPLRs. It
is much like the GrabCut [27] baseline defined in [1], in
that we initialize a fg color model from the central 25% of
the images and a bg color model from the rest, and then
solve a standard graph-cut binary labeling problem. How-
ever, we replace the superpixel nodes used in [1] with our
BPLRs, and add an additional term to the node potential
based on the BPLR matches. The new term reflects that
we prefer to label BPLR regions as fg if they match well
to other BPLRs in images of the same class (the assump-
tion being that same-class backgrounds are uncorrelated).
Specifically, let m; denote the distance from a BPLR’s de-
scriptor to its nearest neighbor among the same-class im-
ages, and let m;, denote the distance to its nearest neighbor
in the images from other classes; if m;, — m  is positive, we
use it to adjust the color-based fg likelihood (see Figure 11).
We average likelihoods wherever BPLRs overlap to obtain
a single value per pixel. We test with the setup prescribed
in previous work [1, 7], which uses 28 Caltech classes, 30
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images each, and measures accuracy by the percentage of
correctly classified pixels.

Table 1 shows the results. BPLR yields the best accu-
racy, showing its strength at capturing class-specific shapes
in a highly repeatable manner. Our improvement over the
GrabCut baseline directly isolates the contribution of BPLR
matching (5% gain). Our improvements over the more elab-
orate models of [7, 1] suggest that even with a simpler label-
ing objective, BPLRs are preferable to the less-repeatable
superpixel base features. Figure 10 shows some example
segmentations computed with our method.

4.4. Object Classification with BPLR

Finally, we apply our features to object recognition on
the Caltech-101. We again employ a relatively simple clas-
sification model on top of the BPLRs, to help isolate their
impact. Specifically, we use the Naive Bayes Nearest-
Neighbor (NBNN) classifier [5], which sums the NN fea-
ture match distances from a test image to those pooled
among the training images of each class, and picks the class
that produces the lowest matching distance. We follow stan-
dard procedures, using 15 random images per class to train
and test respectively.

Table 2 compares our results to those using NBNN with
alternative feature extractors. With the same PHOG de-
scriptor, our method outperforms the baselines by a large
margin. Furthermore, we make a 10% improvement over
Dense+SIFT, the strongest baseline; while both extract a
similar number of features, our shape-preserving features
have a clear advantage over the uniform patch sampling.

Table 3 compares our results to existing single-feature
NN-based results reported in the literature. BPLR offers
noticeable gains over almost all such methods, even some
that use learned metrics [11]. Overall, these results show
that our shape-preserving dense features lead to more reli-
able matches than alternative extraction methods, and cou-
pled with a very simple model are quite effective for object
classification.



Feature Accuracy(%)
BPLR+PHOG (Ours) 61.1
Dense+SIFT 55.2
Segment+PHOG 37.6
Dense+PHOG 27.9

Table 2. Direct comparison of BPLR to other feature detectors on the
Caltech-101. The only thing varying per method is the feature extractor,
and our method provides the most accurate results.

Feature Accuracy(%)
BPLR+PHOG (Ours) 61.1
NBNN+Dense SIFT [5] 65.0
AsymRegionMatch+Geom [13] 61.3
SVM-KNN [32] 59.1
GB+Learned distance [11] 58.4
Segment+Learned distance [11] 55.1

GB+Vote [3] 52

BergMatching [4] 48.0

Table 3. Comparison to existing results on the Caltech-101 that use nearest
neighbor-based classifiers. Ours are among the leading results.*

5. Conclusions

We introduced a dense local detector that pro-
duces repeatable shape-preserving regions via a novel
segmentation-driven sampling strategy. As shown through
extensive experiments, the key characteristics that distin-
guish BPLR from existing detectors are: 1) it can improve
the ultimate descriptors’ distinctiveness, while still retain-
ing thorough coverage of the image, 2) it exploits segments’
shape cues without relying on them directly to generate re-
gions, thereby retaining robustness to segmentation vari-
ability, and 3) its generic bottom-up extraction makes it ap-
plicable whether or not prior class knowledge is available.
As such, BPLR can serve as a useful new addition to re-
searchers’ arsenal of well-used local feature techniques; to
make it easy to do so, we share our code.?

Acknowledgements: This research is supported in
part by NSF EIA-0303609, the Luce Foundation, LLNL
B594497 and a Fellowship from the ILJU Foundation, Ko-
rea. Thanks to Marius Muja for the FLANN code and Pablo
Arbelaez for the segmentation code.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. Classcut for Unsupervised
Class Segmentation. In ECCV, 2010.

[2] P. Arbelaez, M. Marie, C. Fowlkes, and J. Malik. From Contours to
Regions: An Empirical Evaluation. In CVPR, 2009.

[3] A.Berg. Shape Matching and Object Recognition. PhD thesis, Com-
pute Science Division, Berkeley, 2005.

4The authors of [5] report 65.0% when using dense SIFT with NBNN
(as shown in Table 3); despite substantial effort, our implementation of
this baseline yields only 55.2% (as shown in Table 2). We attribute the
discrepancy to some unknown difference in the feature sampling rate or
approximate neighbor search procedure parameters.

Shttp://vision.cs.utexas.edu/projects/bplr/bplr.htm]

1560

[4]
[5]

[6]

[8]
[9]

[10]

(1]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

(28]
[29]
[30]

[31]
[32]

A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recog-
nition Low Distortion Correspondences. In CVPR, 2005.

O. Boiman, E. Shechtman, and M. Irani. In Defense of Nearest-
Neighbor Based Image Classification. In CVPR, 2008.

A. Bosch, A. Zisserman, and X.Munoz. Representing Shape with a
Spatial Pyramid Kernel. 2007.

L. Cao and L. Fei-Fei. Spatially Coherent Latent Topic Model for
Concurrent Segmentation and Classification of Objects and Scenes.
In ICCV, 2007.

G. Carneiro and A. Jepson. Flexible Spatial Configuration of Local
Image Features. PAMI, 29(12):2089-2104, 2007.

V. Ferrari, T. Tuytelaars, and L. Gool. Object Detection by Contour
Segment Networks. In ECCV, 2006.

C. Galleguillos, B. Babenko, A. Rabinovich, and S. Belongie.
Weakly Supervised Object Localization with Stable Segmentations.
In ECCV, 2008.

C. Gu, J. Lim, P. Arbelaez, and J. Malik. Recognition Using Regions.
In CVPR, 2009.

F. Jurie and C. Schmid. Scale-Invariant Shape Features for Recogni-
tion of Object Categories. In CVPR, 2004.

J. Kim and K. Grauman. Asymmetric Region-to-Image Matching for
Comparing Images with Generic Object Categories. In CVPR, 2010.
P. Koniusz and K. Mikolajczyk. Segmentation Based Interest Points
and Evaluation of Unsupervised Image Segmentation Methods. In
BMVC, 2009.

Y. J. Lee and K. Grauman. Foreground Focus: Unsupervised Learn-
ing from Partially Matching Images. IJCV, 85(2), May 2009.

A. Levinshtein, C. Sminchisescu, and S. Dickinson. Multiscale Sym-
metric Part Detection and Grouping. In /CCV, 2009.

M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using Contours to
Detect and Localize Junctions in Natural Images. In CVPR, 2008.

T. Malisiewicz and A. Efros. Improving Spatial Support for Objects
via Multiple Segmentations. In BMVC, 2007.

J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. In BMVC, 2002.
K. Mikolajczyk and C. Schmid. Scale and Affine Invariant Interest
Point Detectors. IJCV, 1(60):63-86, October 2004.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. V. Gool. A Comparison of Affine
Region Detectors. IJCV, 65:43-72, 2005.

M. Muja and D. Lowe. Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration. In VISAPP, 2009.

E. Nowak, F. Jurie, and B. Triggs. Sampling Strategies for Bag-of-
Features Image Classification. In ECCV, 2006.

C. Pantofaru, G. Dorko, C. Schmid, and M. Hebert. Combining Re-
gions and Patches for Object Class Localization. In Beyond Patches,
Workshop in conjunction with CVPR, 2006.

T. Quack, V. Ferrari, B. Leibe, and L. Gool. Efficient Mining of
Frequent and Distinctive Feature Configurations. In /CCV, 2007.

X. Ren and J. Malik. Learning a Classification Model for Segmenta-
tion. In ICCV, 2003.

C. Rother, V. Komogorov, and A. Blake. Grabcut: Interactive Fore-
ground Extraction Using Iterated Graph Cuts. SIGGRAPH, 23:309—
314, 2004.

M. Sabuncu and P. Ramadge. Using Spanning Graphs for Efficient
Image Registration. IEEE Trans. on Image Processing, 17, 2008.

T. Sebastian, P. Klein, and B. Kimia. Recognition of Shapes by Edit-
ing their Shock Graphs. PAMI, 26:551-571, 2004.

S. Todorovic and N. Ahuja. Learning Subcategory Relevances for
Category Recognition. In CVPR, 2008.

T. Tuytelaars. Dense Interest Points. In CVPR, 2010.

H. Zhang, A. Berg, M. Marie, and J. Malik. SVM-KNN: Discrimina-
tive Nearest Neighbor Classfication for Visual Category Recognition.
In CVPR, 2006.





