


fine an objective function characterizing a capsule based on
its pieces’ mutual compatibility, the resulting outfits’ versa-
tility, and (optionally) its faithfulness to a user’s preferred
style. Then, we develop an efficient algorithm that maps a
large inventory of candidate garments into the best capsule
of the desired size. We design objectives that are submod-
ular for the addition of new outfits, ensuring the “diminish-
ing returns” property that facilitates near-optimal set selec-
tion [36, 28]. Then, since each garment added to a capsule
expands the possible outfits, we further develop an iterative
approach that exploits outfit submodularity to alternate be-
tween fixing and selecting each layer of clothing.

As a second main contribution, we introduce an unsuper-
vised approach to learn visual compatibility from full-body
images “in the wild”. We learn a generative model for outfit
compositions from unlabeled images that can score k-way
compatibility. Because it is built on predicted attributes, our
model can translate compatibility learned from the “in the
wild” photos to cleaner catalog photos of individual items,
where users need most guidance on mixing and matching.

We evaluate our approach on thousands of garments
from Polyvore, popular social commerce websites for fash-
ion. We compare our algorithm’s capsule creations to those
manually defined by fashionistas, as well as subjective user
studies. Furthermore, we show our underlying compatibil-
ity model offers advantages over some state of the art meth-
ods. Finally, we demonstrate the practical value of our al-
gorithm, which in seconds finds near-optimal capsules for
problem scales that are otherwise intractable.

2. Related Work
Attributes for fashion Attributes offer a natural repre-

sentation for clothing, since they can describe relevant pat-
terns (checked, paisley), colors (rose, teal), fit (loose), and
cut (V-neck, flowing) [4, 2, 8, 43, 6, 23, 33]. Topic models
on attributes are indicative of styles [20, 40, 17]. Inspired
by [17], we employ topic models. However, whereas [17]
seeks a style-coherent image embedding, we use correlated
topic models to score novel combinations of garments for
their compatibility. Domain adaptation [6, 19] and multi-
task curriculum learning [9] are valuable to overcome the
gap between street and shop photos. We devise a simple
curriculum learning approach to train attributes effectively
in our setting. None of the above methods explore visual
compatibility or capsule wardrobes.

Style and fashionability Beyond recognition tasks,
fashion also demands answering: How do we represent
style? What makes an outfit fashionable? The style of an
outfit is typically learned in a supervised manner. Lever-
aging style-labeled data like HipsterWars [22] or Deep-
Fashion [33], classifiers built on body keypoints [22],
weak meta-data [38], or contextual embeddings [27] show
promise. Fashionability refers specifically to a style’s pop-

ularity. It can also be learned from supervised data, e.g.,
online data for user “likes” [29, 37]. Unsupervised style
discovery methods instead mine unlabeled photos to detect
common themes in people’s outfits, with topic models [17],
non-negative matrix factorization [1], or clustering [34]. We
also leverage unlabeled images to discover “what people
wear”; however, our goal is to infer visual compatibility for
unseen garments, rather than trend analysis [1, 34] or image
retrieval [17] on a fixed corpus.

Compatibility and recommendation Substantial prior
work explores ways to link images containing the same or
very similar garment [11, 32, 42, 21, 30]. In contrast, com-
patibility requires judging how well-coordinated or comple-
mentary a given set of garments is. Compatibility can be
posed as a metric learning problem [41, 35, 16], addressable
with Siamese embeddings [41] or link prediction [35]. Text
data can aid compatibility [29, 39, 14]. As an alternative
to metric learning, a recurrent neural network models outfit
composition as a sequential process that adds one garment
at a time, implicitly learning compatibility via the transition
function [14]. Compatibility has applications in recommen-
dation [31, 18], but prior work recommends a garment at a
time, as opposed to constructing a wardrobe.

To our knowledge, all prior work requires labeled data
to learn compatibility, whether from human annotators cu-
rating matches [14, 18], co-purchase data [41, 35, 16], or
implicit crowd labels [29]. In contrast, we propose an un-
supervised approach, which has the advantages of scalabil-
ity, privacy, and continually refreshable models as fashion
evolves, and also avoids awkwardly generating “negative”
training pairs (see Sec. 3). Most importantly, our work
is the first to develop an algorithm for generating capsule
wardrobes. Capsules require going beyond pairwise com-
patibility to represent k-way interactions and versatility, and
they present a challenging combinatorial problem.

Subset selection We pose capsule wardrobe generation
as a subset selection problem. Probabilistic determinantal
point processes (DPP) can identify the subset of items that
maximize individual item “quality” while also maximizing
total “diversity” of the set [25], and have been applied for
document and video summarization [25, 12]. Alternatively,
submodular function maximization exploits “diminishing
returns” to select an optimal subset subject to a budget [36].
For submodular objectives, an efficient greedy selection cri-
terion is near optimal [36], e.g., as exploited for sensor
placement [13] and outbreak detection [28]. We show how
to adapt such solutions to permit accurate and efficient se-
lection for capsule wardrobes; furthermore, we develop an
iterative EM-like algorithm to enable non-submodular ob-
jectives for mix-and-match outfits.



3. Approach
We first formally define the capsule wardrobe problem

and introduce our approach (Sec. 3.1). Then in Sec. 3.2
we present our unsupervised approach to learn compatibil-
ity and personalized styles, two key ingredients in capsule
wardrobes. Finally, in Sec. 3.3, we overview our training
procedure for cross-domain attribute recognition.

3.1. Subset selection for capsule wardrobes
A capsule wardrobe is a minimal set of garments that

combine in versatile ways to create many compatible out-
fits (see Fig. 1). We cast capsule creation as the problem of
selecting a subset from a large set of candidates that maxi-
mizes quality (compatibility) and diversity (versatility).

3.1.1 Problem formulation and objective
We formulate the subset selection problem as follows.
Let i = 0; : : : ; (m � 1) index the m layers of clothing
(e.g., outerwear, upper body, lower body, hosiery). Let
Ai =

n
s0

i ; s
1
i ; :::; s

Ni�1
i

o
denote the set of candidate gar-

ments/pieces in layer i, where sj
i , j = 0; : : : ; (Ni � 1) is

the j-th piece in layer i, and Ni is the number of candidate
pieces for that layer. For example, the candidates could be
the inventory of a given catalog. If an outfit is composed of
one and only one piece from each layer, the candidate pieces
in total could generate a set Y of

Q
i Ni possible outfits.

Objective To form a capsule wardrobe, we must select
only T pieces, AiT =

n
sj1

i ; :::; s
jT
i

o
� Ai from each layer

i. The set of outfits y generated by these pieces consists of
A0T � A1T � : : : � A(m�1)T . Our goal is to select the
pieces A�iT ;8i such that their composed set of outfits y� is
maximally compatible and versatile. Fig. 2 visualizes this
problem.

To this end, we define our objective as:

y� = argmax
y�Y

C(y) + V (y);

s:t: y = A0T � A1T � : : :�A(m�1)T

(1)

where C(y) and V (y) denote the compatibility and versa-
tility scores, respectively.

A naı̈ve approach to find the optimal solution y� re-
quires computation on Tm outfits in a subset, multiplying
by
�

N
T

�m
to search through all possible subsets. Since our

candidate pool may consist of all merchandise in a shopping
site,N may be on the order of hundreds or thousands, so op-
timal solutions become intractable. Fortunately, our key in-
sight is that as wardrobes expand, subsequent outfits add di-
minishing amounts of new styles/looks. This permits a sub-
modular objective that allows us to obtain a near-optimal
solution efficiently. In particular, greedily growing a set for
subset selection is near-optimal if the objective function is
submodular; the greedy algorithm is guaranteed to reach a
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Figure 2: Selecting a subset of pieces from the candidates to form
a capsule wardrobe. Left shows candidates from all layers. The
selected pieces are checked and compose the subset on the right.

solution achieving at least a constant fraction 1� 1
e , or about

63%, of the optimal score [36].

Definition 3.1 Submodularity. A set function F is submod-
ular if, 8D � B � V , 8s 2 V nB, F (D[fsg)�F (D) �
F (B [ fsg)� F (B).

Submodularity satisfies diminishing returns. Since it is
closed under nonnegative linear combinations, if we design
C(y) and V (y) to be submodular, our final objective will
be submodular as well, as we show next.

We stress that items in a subset y are outfits—not gar-
ments/pieces. The capsule is the Cartesian product of all
garments selected per layer. Therefore, when greedily
growing a set at time step t, an incremental addition of one
garment sjt

i from layer i entails adding sjt
i �

Q
i0 6=i Ai0(t�1)

new outfits. While ultimately the algorithm must add gar-
ments to the capsule, for the sake of optimization, it needs
to reason about the set in terms of those garments’ combi-
natorial outfits. We address this challenge below.

Compatibility Suppose we have an algorithm that re-
turns the compatibility estimate c(oj) of outfit oj (to be de-
fined in Sec. 3.2). We define a set’s compatibility score as:

C(y) := �oj2yc(oj); (2)

the sum of compatibility scores for all its outfits. C(y) is
modular, a special case of submodularity, since an addi-
tional outfit oj to any set y will increase C(y) by the same
amount c(oj).

Versatility A good capsule wardrobe should offer a va-
riety of looks, or styles, for different uses and occasions. We
formalize versatility as a coverage function over all styles:

V (y) := �K
i=1vy(zi) (3)

where vy(zi) measures the degree to which outfits in y
cover the i-th desired style zi, and K is the total number
of distinct styles. Sec. 3.2 will define our model for styles
zi. To satisfy the diminishing returns property, we define
vy(i) probabilistically:

vy(zi) := 1�
Y

oj2y

(1� P (zijoj)); (4)



where P (zijoj) denotes the probability of a style zi given
an outfit oj . We define a generative model for P (zijoj) be-
low. The idea is that each outfit “tries” to cover a style with
probability P (zijoj), and the style is covered by a capsule
if at least one of the outfits in it successfully covers that
style. Thus, as y expands, subsequent outfits add diminish-
ing amounts of style coverage. A probabilistic expression
for coverage is also used in [10] for blog posts.

We have thus far defined versatility in terms of uniform
coverage over all K styles. However, each user has his/her
own preferences, and a universally versatile capsule may
contain pieces that do not meet one’s taste. Thus, as a per-
sonalized variant of our approach, we adjust each style’s
proportion in the coverage function by a user’s style prefer-
ence. This extends our capsules with personalized versatil-
ity:

V 0(y) := �K
i=1wivy(zi); (5)

where wi denotes a personalized preference for each style
i. Sec. 3.2 explains how the personalization weights are
discovered from user data.

3.1.2 Optimization
A key challenge of subset selection for capsule wardrobes
is that our subsets are on outfits, but we must form the sub-
set by selecting garments. With each garment addition, the
subset of outfits y grows superlinearly, since every new gar-
ment can combine with all previous garments to form new
outfits. Submodularity requires each addition to diminish a
set function’s gain, but adding more garments yields more
outfits, so the gain actually increases. Thus, while our ob-
jective is submodular for adding outfits, it is not submodular
for adding individual garments. However, we can make the
following claim:
Claim 3.2 When fixing all other layers (i.e., upper, lower,
outer) and selecting a subset of pieces one layer at a time,
the probabilistic versatility coverage function in Eqn (3) is
submodular, and the compatibility function in Eqn (2) is
modular. See Supplementary File for proof.

Thus, given a single layer, our objective function is sub-
modular for garments. By fixing all selected pieces in other
layers, any additional garment will be combined with the
same set of garments and form the same amount of new
outfits. Thus subsets in a given layer no longer grow super-
linearly. So the guarantee of a greedy solution on that layer
being near-optimal [36] still holds.

To exploit this, we develop an EM-like iterative approach
to approximate a greedy solution over all layers: we itera-
tively fix the subsets selected in other layers, and focus the
current selection in a single layer. After sufficient iterations,
our subsets converge to a fixed set. Algorithm 1 gives the
complete steps.

Our algorithm is quite efficient. Whereas a naı̈ve search
would take more than 1B hours for our data with N = 150,

Algorithm 1 Proposed iterative greedy algorithm for sub-
modular maximization, where obj(y) := C(y) + V (y).
1: AiT := ?; 8i
2: �obj := "+ 1 . " is the tolerance degree for convergence
3: objm�1

prev := 0

4: while �m�1
obj � " do

5: for each layer i = 0; 1; :::(m� 1) do
6: AiT = Ai0 := ? . Reset selected pieces in layer i
7: obji

cur := 0
8: for each time step t = 1; 2; :::T do
9: yt�1 = Ai(t�1) �

Q
i0 6=i Ai0T

10: sjt
i := argmaxs2AinAi(t�1)

�s . Max increment
11: where �s = obj(yt�1 ] s)� obj(yt�1)

12: Ait := sjt
i [Ai(t�1) . Update layer i

13: obji
cur := obji

cur + �
s
jt
i

14: end for
15: end for
16: �m�1

obj := objm�1
cur � objm�1

prev

17: objm�1
prev := objm�1

cur
18: end while
19: procedure INCREMENTAL ADDITION (yt := yt�1 ] s)
20: y+

t := s; s 2 Ai nAi(t�1)

21: for j 2 f1; : : : ;mg ; j 6= i do
22: if AjT 6= ? then
23: y+

t := y+
t �AjT

24: end if
25: end for
26: yt := yt�1 [ y+

t
27: end procedure

our algorithm returns an approximate capsule in only 200
seconds. Most computation is devoted to computing the ob-
jective function, which requires topic model inference (see
below). A naı̈ve greedy approach on garments would re-
quire O(NT 4) time for m = 4 layers, while our itera-
tive approach requires O(NT 3) time per iteration (details
in Supp.) For our datasets, it requires just 5 iterations.

3.2. Style topic models for compatibility

Having defined the capsule selection objective and opti-
mization, we now present our approach to model versatility
(via P (zijoj)) and compatibility c(oj) simultaneously.

Prior work on compatibility takes a supervised approach.
Given ground truth compatible items (either by manual la-
bels like curated sets of product images on Polyvore [29, 39,
14] or by using Amazon co-purchase data as a proxy [35,
41, 16]), a (usually discriminative) compatibility metric is
trained. See Fig. 3. However, the supervised strategy has
weaknesses. First, items purchased at the same time can be
a weak proxy for visual compatibility. Second, user-created
sets often focus on the visualization of the collage, usually
contain fewer than two main (non-accessory) pieces, and
lack layers like hosiery. Third, sources like Amazon and
Polyvore are limited to brands selected by vendors, a frac-
tion of the wide variety of clothing people wear in real life.
Fourth, obtaining the negative non-compatible examples re-
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