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The appearance of an attribute can vary considerably

from_class to class (e.g.,_ a " uffy” dog vs.a “ uffy” towel), Dog| Gk No '7'7
making standard class-independent attribute models break training
down. Yet, training object-speci c models for each at- examples

tribute can be impractical, and defeats the purpose of us-
ing attributes to bridge category boundaries. We propose a
novel form of transfer learning that addresses this dilemma
We develop a tensor factorization approach which, given
a sparse set of class-speci c attribute classi ers, can in-
fer new ones for object-attribute pairs unobserved during i
training. For example, even though the system has no la-| Eauing
beled images of striped dogs, it can use its knowledge of
other attributes and objects to tailor “stripedness” to the
dog category. With two large-scale datasets, we demon-Figure 1. Having learned a sparse set of object-speci ¢ attribute
strate both the need for category-sensitive attributesels w  classi ers, our approach infeemalogous attribute classi ersThe

as our method's successful transfer. Our inferred attrébut inferred models are object-sensitive, despite having no object-
classi ers perform similarly well to those trained with the SPeci ¢ labeled images of that attribute during training.

luxury of labeled class-speci c instances, and much better

than those restricted to traditional modes of transfer.

Category
Q

training
examples

A striped dog? Ye

that simply pooling a bunch of training images of any ob-
ject/scene with the named attribute and learning a diserimi
native classi e—the status quo approach—uwill weaken the
learned model to account for the “least common denomina-

Attributes are visual properties that help describe object " of the attribute's appearance, and, in some cases, com-
or scenes |6, 12,4, 18.116], such as “ uffy”, “glossy”, or pletely fail to generalize.
“formal”. A major appeal of attributes is the fact that they Accurate category-sensitive attributes would seem to re-
appear across category boundaries, making it possible to deduire category-sensitive training. For example, we could
scribe an unfamiliar object class [4], teach a system to rec-gather positive exemplar images for each category+atéribu
ognize new classes by zero-shot learning [13,[19, 16], orcombination (e.g., separate sets of uffy dog images, uffy
learn mid-level cues from cross-category images [12]. towel images). If so, this is a disappointment. Not only

But are attributes really category-independent? DoesWould learning a'ttrlbutes in this manner pe quite costly in
uf ness on a dog look the same as uf ness on a towel? €rms of annotations, but it would also fail to leverage the
Are the features that make a high heeled shoe look formalcommon semantics of the attributes that remain in spite of
the same as those that make a sandal look formal? In sucfinéir visual distinctions.
examples (and many others), while firguistic semantics To resolve this problem, we propose a novel form of
are preserved across categories, treial appearance of  transfer learning to infer category-sensitive attributedm
the property is transformed to some degree. That is, somee!s- Intuitively, even though an attribute's appearancg ma

attributes are specialized to the catedbrilhis suggests ~ be specialized for a particular object, there likely arerat
variables connecting it to other objects’ manifestatiofs o

Lwe use “category” to refer to either an object or scene class. the property. Plus, some attributee quite similar across

1. Introduction




some class boundaries (e.g., spots look similar on Dalma-we show that our method accurately infers analogous at-
tian dogs and Pinto horses). Having learned some categorytribute models, in spite of never seeing labeled examples
sensitive attributes, then, we ought to be able to prediet ho for that property and class. Furthermore, we show its ad-
the attribute might look on a new obje@yen without la-  vantages over applying traditional forms of transfer learn
beled examples depicting that object with the attribiter ing that fail to account for the intrinsic 2D nature of the
example, in FigurEll, suppose we want to recognize stripedobject-attribute label space.
dogs, but we have no separate curated set of striped-dog
exemplars. Having learned “spotted”, “brown”, etc. classi 2 Related Work
ers for dogs, cats, and equines, the system should leverage
those models to infer what “striped” looks like on a dog.  The standard approach to learn an attribute is to pool im-
For example, it might infer that stripes on a dog look some- ages regardless of their object category and train a discrim
what like stripes on a zebra but with shading in uenced by inative classi er [12[4[ 18,19, 16, 17]. While this design
the shape dogs share with cats. is well-motivated by the goal of having attributes that tran
Based on this intuition, we show how to infer anal- scend category boundaries, it sacri ces accuracy in prac-
ogous attribute—an attribute classi er that is tailored to tice, as we will see below. We are not aware of any prior
a category, even though we lack annotated examples ofwork that learns category-sensitive attributes, thoughs:l
that category exhibiting that attribute. Given a sparse setspeci ¢ attribute training is used as an intermediate fea-
of category-sensitive attribute classi ers, our approash ture generation procedure n [4,127], prior to training slas
discovers the latent structure that connects them, byrfacto independent models.
izing a tensor indexed by categories, attributes, andielass  While attribute learning is typically considered sepa-
er dimensions. Then, we use the resulting latent factors rately from object category learning, some recent work ex-
to complete the tensor, inferring the “missing” classi@-p  plores how to jointly learn attributes and objects, eitter t
rameters for any object+attribute pairings unobserved dur exploit attribute correlation§ [27], to promote featureush
ing training. As a result, we can create category-sensitiveing [25,[9], or to discover separable featuries [30, 20]. Our
attributes with only partial category-sensitive labeledad framework can be seen as a new way to jointly learn mul-
Our solution offers a middle ground between completely tiple attributes, leveraging structure in object-atttéotela-
category-independent training (the norm todayi [12, 4, 13, tionships. Unlike any prior work, we use these ties to di-
[19,[16/17]) and completely category-sensitive training. W rectly infer category-sensitive attribute models withtast
don't need to observe all attributes isolated on each cate-peled exemplars.
gory, and we capitalize on the fact that some categories and | [g], analogies between object categories are used to
some of their attributes share common parameters. regularize a semantic label embedding. Our method also
Compared to existing forms of transfer learning, our idea captures beyond-pairwise relationships, but the similari
has three key novel elements. First, performing transferties end there. In]8], explicit analogies are given as in-
jointly in the space of two labeled aspects of the data— put, and the goal is to enrich the features used for near-
namely, categories and attributes—is new. Critically, this est neighbor object recognition. In contrast, our approach
means our method is not con ned to transfer along same-implicitly discoversanalogical relationships amoimdpject-
object or same-attribute boundaries; rather, it discozres sensitive attribute classi ersand our goal is to generate
logical relationships based on some mixture of previously novel category-sensitive attribute classi ers.
seen objects and attributes. Second, our approach produces |n vision, factorized models have been used for vari-
a discriminative model for an attribute with zero tl’ainimj e ous prob'emsy from bi-linear models for Separating Sty|e
amples from that category. Third, while prior methods often and content[[7], to multi-linear models separating the
require information about which classes should transfer to modes of face image formation (e'g_, |dent|ty VS. expressio
which [2,[29/26[ 1] (e.g., that a motorcycle detector might vs. pose)[[22[24]. While often applied for visualization,
transfer well to a bicycle), our approach naturally discov- the discovered factors can also be used to impute missing
ers where transfer is pOSSible based on how the observed aTdata_for examp|e’ to generate images of novel f(mts [7] or
tribute models relate. It can transfer easily between pielti  jnfer missing pixels for in-painting tasks [15]. Tensor com
classes at once, not only pairs, and we avoid the guessworlgjetion is an area of active research in machine learning,
of manually specifying where transfer is likely. and forms the basis of modern recommender systems to in-
We validate our approach on two large-scale attribute fer missing labels (e.g., movie ratings) [I1] 28]. In costra
datasets, SUNL[17] and ImageNé&t [19], to explore both we use tensor factorization to infelassi ers, not data in-
object-sensitive and scene-sensitive attributes. We rst stances or labels. This enables a new “zero-shot” transfer
demonstrate that category-sensitive attributes on thdewho protocol: we leverage the latent factors underlying previ-
outperform conventional class-independent models. Thenously trained models to create new analogous ones without



any labeled instancés. training a single universal attribute. We attribute thiswo
Transfer learning has been explored for object recogni- things: (1) even in large-scale collections, the longethil
tion [5,[2,[29[18[ 26, 21,14] 1], where the goal is to learn a distribution of object/scene/attribute occurrences @real
new object category with few labeled instances by exploit- world means that some label pairs will be undersampled,
ing its similarity to previously learned class(es). While of leaving inadequate exemplars to build a statistically soun
ten the source and target classes must be manually speanodel, and (2) this naive approach completely ignores at-
ied [2] [1], some techniques automatically determine tributes' inter-class semantic ties.
which classes will bene t from transfer [21, 14,]10]. In our To overcome these shortcomings, we instead use an
setting the motivation to reduce labeled data requirementsimportance-weighted support vector machine (SVM) to
is as much about data availability as labeling cost: it can train each category-sensitive attribute. Let each trgieix
be dif cult to obtain suf cient category-speci c imagesfo  ample(x;;y;) consist of an image descripter 2 <P and
each possible attribute, even if we did not mind the label- its binary attribute labey; 2 f 1;1g. Suppose we are
ing effort. More importantly, as discussed above, our idea learning “furriness” for dogs. We use examples from all
for transfer learning jointly in two label spaces is new, and categories (dogs, cats, etc.), but place a higher penalty on
unlike the prior work, we can infer new classi ers without violating attribute label constraints for the same catggor

training examples. (the dog instances). This amounts to an SVM objective for
the hyperplanev:
3. Approach 0 1
. 1. X X
Given training images labeled by their category and one  minimize @EJJWUZ + Cq i+ Co ,—A 1)
or more attributes, our method produces as output a series of [ j
cgtegory-sensliti.ve att(ibute (_:Iassi ers. Some of thosgscl st yiwTx; 1 4 8i2S
si ers are explicitly trained with the labeled data, whikeet T )
rest are inferred by our method. We show how to create yyw'x; 1 ;8 20
these analogous attribute classi ers via tensor compietio i 0 0

In the following, we rst describe how we train category- . .
sensitive classi ers (SeE_3.1). Then we de ne the tensor of where the set§ andO denote those training instances in
attributes (Se€_312) and show how we use it to infer analo- e Same-class (dog) and other classes (non-dogs), respec-
gous models (SeE_3.3). Finally, we discuss certain salientliVely, andCs andC, are slack penalty constants. Nog,

aspects of the method design (S&d] 3.4). andO contain both positive and negative examples for the
attribute in consideration.
3.1. Learning Category-Sensitive Attributes Instance re-weighting is commonly used, e.g., to account

- . ) ) for label imbalance between positives and negatives. Here,
In existing systems, attributes are trained in a category- by settingCo < Cs, the out-of-class examples of the at-

|n|depende_nt mfa.nndﬂ]]EfI,IIIlEI 19] t’),l?]' Positive exem(;tribute serve as a simple prior for which features are rel-
phars ConS'StO? Images :qu various o jec;c;altegcj)rles, ar? evant. This way we benet from more training examples
they are used to train a discriminative model to detect the, o\ there are few category-speci ¢ examples of the at-

attribute Im novelimages. We will refer to such attributes a i, te byt we are inclined to ignore those that deviate too
universa far from the category-sensitive de nition of the property.

In this work, we challenge the convention of learning g we will see in results, these models typically outperform
attributes in a completely category-independent manner.ihqir universal counterparts.

As discussed above, while attributes' visual cues are often
shared amongomeobjects, the sharing is not universal. It 3.2. Object-Attribute Classi er Tensor

can dilute the learning process to pool cross-category exem Next we de ne a tensor to capture the structure un-

plars indiscriminately. derlvi "
. : . . " erlying many such category-sensitive models. iret=
The naive solution to instead tragategory-sensitivat- .. y v y gory

D o e eI o i AN ety = 11N idex eN possibl abjectscene
labeled examplés of all possible attribute+object corﬁbina catg gones. Lew_(n; m) denote a c_ategory-sensnwg SVM
) . ) weight vector trained for the-th object andn-th attribute
tions abundantly available, such a strategy might be suf—using EqnlL

cient. However, in initial experiments with large-scale '

datasets, we found that this a| hi tually infedor t We consruct a 3D tensat 2 <™ " ® using al
’ pproach s actually INteaort oy ailable category-sensitive models. Each entfy, con-

2This is not to be confused with zero-shot learning(inl [13] evéhun- tains the Value’_ of thed-th qimenSion of the glassi er
seen objects are learned by listing their attributes. w(n; m). For alinear SVM, this value re ects the impact of




thed-th dimension of the feature descriptoifor determin- images—namely, those that help explain structure in the ob-
ing the presence/absence of attribotdor the object class  jects and other attributes we have observed.
n. To use non-linear SVM classi ers, we use the ef cient We use Bayesian probabilistic tensor factorization [28]
kernel map approach df[23], which computes explicit linear to recover the latent factors. Using this model, the likeli-
embeddings for additive kernels, including the intersecti  hood for the explicitly trained classi ers (Séc.B.1) is
and 2 kernels commonly used in visual recognition. This
lets us maintain an explicit tens@v while still bene tting P(WJO;A;C; )= N M_ D N, jhOn;Am;Cqi; 1) '™ ;
from more powerful non-linear classi ebsIn this casep
is the dimension of the feature map embedding, and all else  WhereN (wj ; ) denotes a Gaussian with mearand
is the same. We test both variants in our experiments. precision , andl,, = 1 if object n has an explicit

The resulting tensor is quite sparse. We can only Il en- catégory-sensitive model for attribute, andl n =0 oth-
tries for which we have class-speci ¢ positive and negative €rwise. For each of the latent factd®s, Am, andCq, we
training examples for the attribute of interest. In today's US€ Gaussian priors. Let represent all their means and
most comprehensive attribute datasgts [19, 17], this mean§ovariances. Followind [28], we compute a distribution for
only  25% of the possible object-attribute combinations each missing tensor value by integrating out over all model
can be trained in a category-sensitive manner. Rather tharParameters and hyper-parameters, given all the observed at
resort to universal models for those “missing” combina- tribute classi ers:
tions, we propose to use the latent factors for the observed z
classi ers to synthesize analogous models for the unob-pwd. jw)=  pwd, jOn;Am;Cq; )p(O;A;C;; jW) dfO;A;C;;
served classi ers, as we explain next.

After initializing with the MAP estimates of the three

3.3. Inferring Analogous Attributes factor matrices, this distribution is approximated using

Having learned how certain attributes look for certain Markov chain Monte Carlo (MCMC) sampling:

object categories, our goal is to transfer that knowledge to %

hypothesize how the same attributes will look for other ob- p(wd W) p(wd jO(')'A(')'C(')' (|)): )
ject categories. In this way, we aim to infer analogous at- nm miEn e Tme e
tributes: category-sensitive attribute classi ers foijemits
that lack attribute-labeled data. We pose the “missing-clas g5ch of thel sampled ol Al Cé'); (Ng is generated

si er” problem as a tensor completion p_roblem. We recover with Gibbs sampling on a Markov chain whose stationary
the latent factors for the 3D object-attribute ten®br and  gjstribution is the posterior over the model parameters and
use them to impute the unobserved classi er parameters. hyper-parameters. We use conjugate distributions assprior

LetO 2< N A 2<K M andC 2<® P denote  forall the Gaussian hyper-parameters to facilitate samgpli
matrices whose columns are tKedimensional latent fea-  gee [28] for details.

1=1

ture vectors for each object, attribute, and classi er dime We use these factors to generate analogous attributes.
sion, respectively. We assume thvefl,, can be expressed Suppose we have no labeled examples showing an object
as an inner product of latent factors, of categoryn with attributem (or, as is often the case, we

have so few that training a category-sensitive model isprob
lematic). Despite having no training examples, we can use
the tensor to directly infer the classi er parameters

Win  h On;Am; Cai; @)

where a subscript denotq§ a column of the matrix. In ma-

trix form, we havew K, Ok Ak CK where a N T D 1.

" = . ' wW(n,m) =[N W I 4
superscript denotes the row in the matrix, antenotes the (nsm) = [ m] “)
vector outer product. where eachd. is the mean of the distribution in EqJ(3).

The latent factors of the tensiv are what affect how Our method is quite ef cient. For the datasets in $éc. 4,

the various attributes, objects, and image descriptomrgov  raining all explicit category-sensitive models takesuz
What r_nlght they correspond to?_We expect some W|II_ €ap- 5 minutes. Factorizing the tensor wilh = 59 andN =
ture mixtures of two or more attributes, e.g., factors disti  5g0andD = 512 takes around 180 seconds. Then inferring

guishing how “spots” appear on something “at” vs. how g e attribute classi er takes 0.05 seconds.
they appear on something “bumpy”. The latent factors can

also capture useful clusters of objects, or supercategorie 3.4. Discussion
that exhibit attributes in common ways. Some might cap-

ture other attributes beyond the portrayed in the training We stress that while tensor completion itself is certainly

not new, prior work in vision[[15.,]7, 22, 24] and data mining
3Alternatively, kernelized factorization methods could pelied. (e.g., [1128]) focuses on inferring missidgtainstances

g:



or missinglabels For example, for data problems, the ten-

sor could be a corrupted video in which one wants to in-
paint missing voxeld [15]; for missing label problems, the

tensor could be the movie ratings given by different users
for various Ims over time, and one wants to guess how a
user would rate a new movie [28].

Category

In contrast, we propose to use factorization to irdfes- :
si ers within a tensor representing two inter-related label " Attribute o Atribute
spaces. Our idea has two key useful implications. First, rigure 2. Data availability: white entries denote category-attribute
it leverages the interplay of both label spaces to generatepairs that have positive and negative image exemplars. In Ima-
new classi ers without seeing any labeled instances. This geNet, most vertical stripes are color attributes, and most horizon-
is a novel form of transfer learning. Second, by working di- tal stripes are man-made objects. In SUN, most vertical stripes are
rectly in the classi er space, we have the advantage of rst attributes that appear across different scenes, such as vacationing
isolating the low-level image features that are informeativ  Or playing, while horizontal stripes come from scenes with varied
for the observed attributes. This means the input training Properties, such as airport and park.
images can contain realistic (un-annotated) variatioms. |
comparison, existing data tensor approaches often assum
a strict level of alignment; e.g., for faces, examples are cu

;?;iiigzgfgtc%giightmg conditions,m speci ¢ ex SUN At_tributes ]. Imagel_\let contains 9,600 total i_m_-
ages, with 384 object categories and 25 attributes desgribi
Our design also means that the analogous attributes cagolor, patterns, shape, and texture. SUN contains 14,340
transfer information from multiple objects and/or attti#s  total images, with 717 scene categories and 102 attributes
simultaneously. That means, for example, our model is notdescribing global properties, activity affordances, miate
restricted to transferring the ufness of a dog from the 5|5, and basic textures. We use all 280 categories and 59
uf ness of a cat; rather, its analogous model for dog uf-  attributes for which SUN contains both positive and nega-
ness might just as well result from transferring a mixture of tjye examples for the scene-attribute pair. For both détase
cues from carpet uf ness, dog spottedness, and cat shape.ye yse features provided by the authors. For ImageNet, we
In general, transfer learning can only succeed if the concatenate color histograms, SIFT bag of words, and shape
source and target classes are related. Similarly, we wiji on context O = 1550). For SUN, we use GIST = 512).
nd an accurate low-dimensional set of factors if some com-  The datasets do not contain data for all possible
mon structure exists among the explicitly trained category category-attribute pairings. Figurk 2 shows which arelavai
sensitive models. Nonetheless, a nice property of our for-able: there are 1,498 and 6,118 pairs in ImageNet and SUN,
mulation is that even if the tensor is populated with a vgrriet respectively. The sparsity of these matrices actually un-
of classes—some with no ties—analogous attribute infer- derscores the need for our approach, if one wants to learn
ence can still succeed. Distinct latent factors can cower th category-sensitive attributes.
different clusters in the observed classi ers. For simitza- We split both datasets in half for training and testing.
sons, our approach naturally handles the question of “whereWwhen explicitly training an attribute, we randomly sample
to transfer”: sources and targets are never manually speciS% of the images from all other categorieS € 50% for
ed. Below, we consider the impact of building the tensor ImageNet andS = 10% for SUN, proportional to their
with a large number of semantically diverse categories ver-sizes). We usé. = 100 samples and x the number of
sus a smaller number of closely related categories. latent factorsK = 30, following [28]. We set the slack
penaltiesC, = 0:1 andCg = 1. We did not tune these val-
ues. Unless otherwise noted, all methods use linear SVMs.

Batasets and features We evaluate our approach on two
datasets: the attribute-labeled portion of ImageNet [b8] a

4. Experimental Results

4.1. Category-Sensitive vs. Universal Attributes

The experiments analyze four main aspects: (1) how
category-sensitive attributes compare to standard waver

attributes (Sed_411), (2) how well our inferred attributes

compete with the upper bound category-sensitive attribute

trained explicitly with images, and compared to a tradigion i
A J P ers for ImageNet and SUN, respectively. We compare

t f h (Sdc.#.2), (3) the i t of f ing th . o . ‘
ransfer approach ( ), (3) the impact of focusing ethelr predictions to those of universal attributes, wheee w

tensor on closely related classes ($ed. 4.3), and (4) the fea, . _
sibility of inferring non-linear models (Sec_4.4). train one model for each attribut¥( = 25 for ImageNet

First we test whether category-sensitive attributes are
evenbene cial. We explicitly train category-sensitive at-
tribute classi ers using importance-weighted SVMs, as de-
scribed in Sed_3l1. This yields 1,498 and 6,118 classi-



Datasets Trained explicitly Trained via transfer
# Categ(N) | #Attr (M) || Category-sens| Universal || Inferred (Ours)| Adopt similar | One-shot| Chance
ImageNet 384 25 0.7304 0.7143 0.7259 0.6194 0.6309 | 0.5183
SUN 280 59 0.6505 0.6343 0.6429 N/A N/A 0.5408
Table 1. Accuracy (mAP) of attribute prediction. Category-sensitiveleteoimprove over standard universal models, and our inferred
classi ers nearly match their accuracy with no training image examplesdifional forms of transfer (rightmost two columns) fall short,
showing the advantage of exploiting the 2D label space for transfere gsapose. These results are averages over thousands of attributes;
category-sensitive attributes achieve an average gain of 0.15 in AP4roVthe cases.

andM = 59 for SUN). When learning an attribute, both method would require 20labeled examples per classi er
models have access to the exact same images; the univeto train those models, our method uses zdioat amounts
sal method ignores the category labels, while the category-to saving348& total labeled images.That in turn means
sensitive method puts more emphasis on the in-category exsaving $17,400 in labeling costs, if we were to pay $0.05
ampleﬂ We evaluate both methods on the same test set. perimage for MTurkers to both track down and label images
Table[d (cols 4 and 5) shows the results, in terms of exhibiting all those class-attribute pairing®ue to ground
mean average precision across all 84 attributes and 664 catiruth availability, though, we can only validate against th
egories. Among those, our category-sensitive models meetheld-out attributes.)
or exceed the universal approach 76% of the time, with  The results so far presume we know which category's
average increases of 0.15 in AP, and gains of up to 0.83attribute model to apply to a novel image. If we fur-
in AP for some attributes. This indicates that the status ther require the category to be predicted automatically—
quo [12/4[13, 19,16, 17] pooling of training images across by marginalizing over the category label to estimate the at-
categories is indeed detrimental. tribute probability—our results remain similar. In particu
lar, the explicit category-sensitive results (col 4 of Edlb)
become 0.7249 and 0.6419, and the inferred results (col 6)
The results so far establish that category-sensitive at-become 0.7218 and 0.6401—still better than universal.
tributes are desirable. However, the explicit models above Table[1 also compares our approach to conventional
are impossible to train for 18K of the 26K possible at-  transfer learning. The rst transfer baseline infers thesni
tributes in these dataset$his is where our method comes ing classi er simply by adopting the category-sensitive at
in. It can infer all remaining 18 attribute models even tribute of the category that is semantically closest to it,
without class-speci c labeled training examples. where semantic distance is measured via WordNet using [3]
We perform leave-one-out testing: in each round, we re- (not available for SUN). For example, if there are no furry-
move one observed classi er (a white entry in Figlite 2), dog exemplars, we adopt the wolf's “furriness” classi er.
and infer it with our tensor factorization approach. Notth The second transfer baseline additionally uses one categor
even though we are removing one at a time, the full tensorspeci cimage example to perform “one-shot” transfer (e.g.
is always quite sparse due to the available data. Namely,it trains with both the furry-wolf images plus a furry-dog-ex
only 16% (in ImageNet) an®7% (in SUN) of all possible ampleﬁ Unlike the transfer baselines, our method uses nei-
category-sensitive classi ers can be explicitly trained. ther prior knowledge about semantic distances nor labeled
Table[1 (cols 4 to 6) shows this key result. In this ex- class-speci c examples. We see that our approach is sub-
periment, the explicitly trained category-sensitive e stantially more accurate than both transfer methods. This
the “upper bound”; it shows how well the model trained result highlights the bene t of our novel approach to trans-
with real category-speci ¢ images can do. We see that our fer, which leverages both label spaces (categories and thei
inferred analogous attributes (col 6) are nearly as aceurat attributes) simultaneously.
yet use zero category-speci c labeled images. They approx- Which attributes does our method transfer? That is,
imate the explicitly trained models well. Most importantly ~which objects does it nd to be analogous for an attribute?
our inferred models remain more accurate than the univer-To examine this, we rst take a categopyand identify its
sal approachOur inferred attributes again meet or exceed neighboring categories in the latent feature space, ne., i
the universal model's accuracy 79% of the time, with gains terms of Euclidean distance among the columngoR2
averaging 0.13 in AP. <K N Then, for each neighbdr, we sort its attribute
We stress that our method infers modelsdtrmissing classiers ((i; :), real or inferred) by their maximal co-
attributes. That is, using the explicitly trained attrigsit  sine similarity to any of categorjys attributesw (j; :). The
it infers another8; 064 and 10; 407 classi ers on Ima- resulting shortlist helps illustrate which attribute-egry
geNet and SUN, respectively. While the category-sensitive pairs our method expects to transfer to category

4.2. Inferring Analogous Attributes

430 the universal model also uses category-speci ¢ images. Mgt SWe also tried an Adaptive SVM [29] for the transfer baselibet, it
performs similarly whether it uses them or not. was weaker than the results reported above.
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Figure[3 shows 4 such examples, with one represen- .- ‘&w‘/ mrs )
tative image for each category. We see neighboring e~ —_— |

categories in the latent space are often semantically re- =
. H H T A = y i " LD . N .'\ ]
lated (e.g., syrup/bottle) or visually similar (e.g., démpe Universa) ﬁg@}x 15 Universad bnivega
Figure 5. Test images that our method (top row) and the univer-

cabin/conference center); although our method receives nc
explicit side information on semantic distances, it diszgv ’ ]
these ties through the observed attribute classi ers. Somea Method (bottom row) predicted most con dently as having the
semantically more distant neighbors (e.g., platypustrakg named_ attribute. X = positive for the attributeX = negative,
. according to ground truth.)

courtroom/cardroom) are also discovered to be amenable to
transfer. The words in Figufd 3 are the neighboring cate-
gories' top 3 analogous attributes for the numbered cayegor
to their left (hot attribute predictions for those images). It In all results so far, we make no attempt to restrict the
seems quite intuitive that these would be suited for transfe tensor to ensure semantic relatedness. The fact our method

Next we look more closely at where our method suc- succeeds in this case indicates that it is capable of discove
ceeds and fails. Figufd 4 shows the top (bottom) ve cat- ing clusters of classi ers for which transfer is possiblada
egory+attribute combinations for which our inferred clas- is fairly resistant to negative transfer.
si ers most increase (decrease) the AP, per dataset. As Still, we are curious whether restricting the tensor to
expected, we see our method most helps when the visuatlasses that have tight semantic ties could enhance perfor-
appearance of the attribute on an object is quite differentmance. We therefore test two variants: one where we re-
from the common case, such as “spots” on the killer whale. strict the tensor to closely related objects (i.e., downsam
On the other hand, it can detract from the universal model pling the rows), and one where we restrict it to closely re-
when an attribute is more consistent in appearance, sucHated attributes (i.e., downsampling the columns). Toctele
as “black”, or where more varied examples help capture aa set of closely related objects, we use WordNet to extract
generic concept, such as “symmetrical”. sibling synsets for different types of dogs in ImageNet.sThi

Figure[® shows qualitative examples that support theseyields 42 categories, such @asippy, courser, coonhound,
ndings. We show the image for each method that was corgi. To select a set of closely related attributes, we extract
predicted to most con dently exhibit the named attribute. only the color attributes.
By inferring analogous attributes, we better capture dbjec Table[2 shows the results. We use the same leave-one-
speci ¢ properties. For example, while our method cor- out protocol of Sed. 412, but during inference we only con-
rectly res on a “smooth wheel”, the universal model mis- sider category-sensitive classi ers among the selectéd ca
takes a Ferris Wheel as “smooth”, likely due to the smooth- egories/attributes. We see that the inferred attributes ar
ness of the background, which might look like other classes' stronger with the category-focused tensor, raising acgura
instantiations of smoothness. from 0.7173 to 0.7358, closer to the upper bound. This sug-

4.3. Focusing on Semantically Close Data



Subset Category- | Inferred | Inferred
sensitive | (subset)| (all)

Categories (dogs)| 0.7478 0.7358 | 0.7173

Attributes (colors)| 0.7665 0.7631 | 0.7628

Table 2. Attribute label prediction mAP when restricting the ten-
sor to semantically close classes. The explicitly trained category- [1]
sensitive classi ers serve as an upper bound. 2]

Category-sensitive Inferred | Universal
linear SVM 0.7304 0.7259 0.7143 [3]
ZsVM 0.7589 0.7428 | 0.7037

[4]
(5]
gests that among the entire dataset, attributes for which ca [6]
egories differ can introduce some noise into the latent fac- 71
tors. On the other hand, when we ignore attributes unrelated

to color, the mAP of the inferred classi ers remains similar (8]
This may be because color attributes use such a distinct set[gl
of image features compared to others (like stripes, round)

that the latent factors accounting for them are coheretit wit [10]
or without the other classi ers in the mix. From this prelim- 11]
inary test, we can conclude that when semantic side infor-

mation is available, it could boost accuracy, yet our method [12]
achieves its main purpose even when it is not.

Table 3. Using kernel maps [23] to infer non-linear SVMs.

(3]
4.4, Inferring Non-linear Classi ers

Finally, we demonstrate that our approach is not limited [14]
to inferring linear classi ers. We use the homogeneous ker- [15]
nel map [23] of order 3 to approximate & kernel non- 16]
linear SVM. This entails mapping the original features to a [17
space in which an inner product approximates tReker-
nel. Using the kernel maps, we repeat the experiment of[18l
Sec. 4.2. Table 3 shows the results on ImageNet. The nonyig
linear classi ers boost accuracy for both the explicit and i
ferred category-sensitive attributes. Unexpectedly, we 2]
the kernel map SVM decreases accuracy slightly for the uni- 1
versal approach; perhaps due to over tting.

[22]
23]
[24]

5. Conclusions

We introduced a new form of transfer learning, in which
analogous classi ers are inferred using observed classi e
organized according to two inter-related label spaces. We
developed a tensor factorization approach that solves the
transfer problem, even when no training examples are avail-[26]
able for the decision task of interest. 27

Our work highlights the reality that many attributes are
not strictly category-independent. We offer a practical to (28]
to ensure category-sensitive models can be trained even
if category-speci c labeled datasets are not possible. Asj2q)
demonstrated through multiple experiments with two large-
scale datasets, the idea seems quite promising.

In future work, we will explore one-shot extensions of
analogous attributes, and analyze their impact for legrnin
relative properties.

25]
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