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Abstract

The appearance of an attribute can vary considerably
from class to class (e.g., a “�uffy” dog vs. a “�uffy” towel),
making standard class-independent attribute models break
down. Yet, training object-speci�c models for each at-
tribute can be impractical, and defeats the purpose of us-
ing attributes to bridge category boundaries. We propose a
novel form of transfer learning that addresses this dilemma.
We develop a tensor factorization approach which, given
a sparse set of class-speci�c attribute classi�ers, can in-
fer new ones for object-attribute pairs unobserved during
training. For example, even though the system has no la-
beled images of striped dogs, it can use its knowledge of
other attributes and objects to tailor “stripedness” to the
dog category. With two large-scale datasets, we demon-
strate both the need for category-sensitive attributes as well
as our method's successful transfer. Our inferred attribute
classi�ers perform similarly well to those trained with the
luxury of labeled class-speci�c instances, and much better
than those restricted to traditional modes of transfer.

1. Introduction

Attributes are visual properties that help describe objects
or scenes [6, 12, 4, 13, 16], such as “�uffy”, “glossy”, or
“formal”. A major appeal of attributes is the fact that they
appear across category boundaries, making it possible to de-
scribe an unfamiliar object class [4], teach a system to rec-
ognize new classes by zero-shot learning [13, 19, 16], or
learn mid-level cues from cross-category images [12].

But are attributes really category-independent? Does
�uf�ness on a dog look the same as �uf�ness on a towel?
Are the features that make a high heeled shoe look formal
the same as those that make a sandal look formal? In such
examples (and many others), while thelinguistic semantics
are preserved across categories, thevisual appearance of
the property is transformed to some degree. That is, some
attributes are specialized to the category.1 This suggests

1We use “category” to refer to either an object or scene class.
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Figure 1. Having learned a sparse set of object-speci�c attribute
classi�ers, our approach infersanalogous attribute classi�ers. The
inferred models are object-sensitive, despite having no object-
speci�c labeled images of that attribute during training.

that simply pooling a bunch of training images of any ob-
ject/scene with the named attribute and learning a discrimi-
native classi�er—the status quo approach—will weaken the
learned model to account for the “least common denomina-
tor” of the attribute's appearance, and, in some cases, com-
pletely fail to generalize.

Accurate category-sensitive attributes would seem to re-
quire category-sensitive training. For example, we could
gather positive exemplar images for each category+attribute
combination (e.g., separate sets of �uffy dog images, �uffy
towel images). If so, this is a disappointment. Not only
would learning attributes in this manner be quite costly in
terms of annotations, but it would also fail to leverage the
common semantics of the attributes that remain in spite of
their visual distinctions.

To resolve this problem, we propose a novel form of
transfer learning to infer category-sensitive attribute mod-
els. Intuitively, even though an attribute's appearance may
be specialized for a particular object, there likely are latent
variables connecting it to other objects' manifestations of
the property. Plus, some attributesare quite similar across



some class boundaries (e.g., spots look similar on Dalma-
tian dogs and Pinto horses). Having learned some category-
sensitive attributes, then, we ought to be able to predict how
the attribute might look on a new object,even without la-
beled examples depicting that object with the attribute. For
example, in Figure 1, suppose we want to recognize striped
dogs, but we have no separate curated set of striped-dog
exemplars. Having learned “spotted”, “brown”, etc. classi-
�ers for dogs, cats, and equines, the system should leverage
those models to infer what “striped” looks like on a dog.
For example, it might infer that stripes on a dog look some-
what like stripes on a zebra but with shading in�uenced by
the shape dogs share with cats.

Based on this intuition, we show how to infer ananal-
ogous attribute—an attribute classi�er that is tailored to
a category, even though we lack annotated examples of
that category exhibiting that attribute. Given a sparse set
of category-sensitive attribute classi�ers, our approach�rst
discovers the latent structure that connects them, by factor-
izing a tensor indexed by categories, attributes, and classi-
�er dimensions. Then, we use the resulting latent factors
to complete the tensor, inferring the “missing” classi�er pa-
rameters for any object+attribute pairings unobserved dur-
ing training. As a result, we can create category-sensitive
attributes with only partial category-sensitive labeled data.
Our solution offers a middle ground between completely
category-independent training (the norm today [12, 4, 13,
19, 16, 17]) and completely category-sensitive training. We
don't need to observe all attributes isolated on each cate-
gory, and we capitalize on the fact that some categories and
some of their attributes share common parameters.

Compared to existing forms of transfer learning, our idea
has three key novel elements. First, performing transfer
jointly in the space of two labeled aspects of the data—
namely, categories and attributes—is new. Critically, this
means our method is not con�ned to transfer along same-
object or same-attribute boundaries; rather, it discoversana-
logical relationships based on some mixture of previously
seen objects and attributes. Second, our approach produces
a discriminative model for an attribute with zero training ex-
amples from that category. Third, while prior methods often
require information about which classes should transfer to
which [2, 29, 26, 1] (e.g., that a motorcycle detector might
transfer well to a bicycle), our approach naturally discov-
ers where transfer is possible based on how the observed at-
tribute models relate. It can transfer easily between multiple
classes at once, not only pairs, and we avoid the guesswork
of manually specifying where transfer is likely.

We validate our approach on two large-scale attribute
datasets, SUN [17] and ImageNet [19], to explore both
object-sensitive and scene-sensitive attributes. We �rst
demonstrate that category-sensitive attributes on the whole
outperform conventional class-independent models. Then

we show that our method accurately infers analogous at-
tribute models, in spite of never seeing labeled examples
for that property and class. Furthermore, we show its ad-
vantages over applying traditional forms of transfer learn-
ing that fail to account for the intrinsic 2D nature of the
object-attribute label space.

2. Related Work

The standard approach to learn an attribute is to pool im-
ages regardless of their object category and train a discrim-
inative classi�er [12, 4, 13, 19, 16, 17]. While this design
is well-motivated by the goal of having attributes that tran-
scend category boundaries, it sacri�ces accuracy in prac-
tice, as we will see below. We are not aware of any prior
work that learns category-sensitive attributes, though class-
speci�c attribute training is used as an intermediate fea-
ture generation procedure in [4, 27], prior to training class-
independent models.

While attribute learning is typically considered sepa-
rately from object category learning, some recent work ex-
plores how to jointly learn attributes and objects, either to
exploit attribute correlations [27], to promote feature shar-
ing [25, 9], or to discover separable features [30, 20]. Our
framework can be seen as a new way to jointly learn mul-
tiple attributes, leveraging structure in object-attribute rela-
tionships. Unlike any prior work, we use these ties to di-
rectly infer category-sensitive attribute models withoutla-
beled exemplars.

In [8], analogies between object categories are used to
regularize a semantic label embedding. Our method also
captures beyond-pairwise relationships, but the similari-
ties end there. In [8], explicit analogies are given as in-
put, and the goal is to enrich the features used for near-
est neighbor object recognition. In contrast, our approach
implicitly discoversanalogical relationships amongobject-
sensitive attribute classi�ers, and our goal is to generate
novel category-sensitive attribute classi�ers.

In vision, factorized models have been used for vari-
ous problems, from bi-linear models for separating style
and content [7], to multi-linear models separating the
modes of face image formation (e.g., identity vs. expression
vs. pose) [22, 24]. While often applied for visualization,
the discovered factors can also be used to impute missing
data—for example, to generate images of novel fonts [7] or
infer missing pixels for in-painting tasks [15]. Tensor com-
pletion is an area of active research in machine learning,
and forms the basis of modern recommender systems to in-
fer missing labels (e.g., movie ratings) [11, 28]. In contrast,
we use tensor factorization to inferclassi�ers, not data in-
stances or labels. This enables a new “zero-shot” transfer
protocol: we leverage the latent factors underlying previ-
ously trained models to create new analogous ones without



any labeled instances.2

Transfer learning has been explored for object recogni-
tion [5, 2, 29, 18, 26, 21, 14, 1], where the goal is to learn a
new object category with few labeled instances by exploit-
ing its similarity to previously learned class(es). While of-
ten the source and target classes must be manually spec-
i�ed [2, 26, 1], some techniques automatically determine
which classes will bene�t from transfer [21, 14, 10]. In our
setting the motivation to reduce labeled data requirements
is as much about data availability as labeling cost: it can
be dif�cult to obtain suf�cient category-speci�c images for
each possible attribute, even if we did not mind the label-
ing effort. More importantly, as discussed above, our idea
for transfer learning jointly in two label spaces is new, and,
unlike the prior work, we can infer new classi�ers without
training examples.

3. Approach

Given training images labeled by their category and one
or more attributes, our method produces as output a series of
category-sensitive attribute classi�ers. Some of those clas-
si�ers are explicitly trained with the labeled data, while the
rest are inferred by our method. We show how to create
these analogous attribute classi�ers via tensor completion.

In the following, we �rst describe how we train category-
sensitive classi�ers (Sec. 3.1). Then we de�ne the tensor of
attributes (Sec. 3.2) and show how we use it to infer analo-
gous models (Sec. 3.3). Finally, we discuss certain salient
aspects of the method design (Sec. 3.4).

3.1. Learning Category­Sensitive Attributes

In existing systems, attributes are trained in a category-
independent manner [12, 4, 13, 19, 16, 17]. Positive exem-
plars consist of images from various object categories, and
they are used to train a discriminative model to detect the
attribute in novel images. We will refer to such attributes as
universal.

In this work, we challenge the convention of learning
attributes in a completely category-independent manner.
As discussed above, while attributes' visual cues are often
shared amongsomeobjects, the sharing is not universal. It
can dilute the learning process to pool cross-category exem-
plars indiscriminately.

The naive solution to instead traincategory-sensitiveat-
tributes would be to partition training exemplars by their
category labels, and train one attribute per category. Were
labeled examples of all possible attribute+object combina-
tions abundantly available, such a strategy might be suf-
�cient. However, in initial experiments with large-scale
datasets, we found that this approach is actually inferior to

2This is not to be confused with zero-shot learning in [13], where un-
seen objects are learned by listing their attributes.

training a single universal attribute. We attribute this totwo
things: (1) even in large-scale collections, the long-tailed
distribution of object/scene/attribute occurrences in the real
world means that some label pairs will be undersampled,
leaving inadequate exemplars to build a statistically sound
model, and (2) this naive approach completely ignores at-
tributes' inter-class semantic ties.

To overcome these shortcomings, we instead use an
importance-weighted support vector machine (SVM) to
train each category-sensitive attribute. Let each training ex-
ample(x i ; yi ) consist of an image descriptorx i 2 < D and
its binary attribute labelyi 2 f� 1; 1g. Suppose we are
learning “furriness” for dogs. We use examples from all
categories (dogs, cats, etc.), but place a higher penalty on
violating attribute label constraints for the same category
(the dog instances). This amounts to an SVM objective for
the hyperplanew :

minimize
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where the setsS andO denote those training instances in
the same-class (dog) and other classes (non-dogs), respec-
tively, andCs andCo are slack penalty constants. Note,S
andO contain both positive and negative examples for the
attribute in consideration.

Instance re-weighting is commonly used, e.g., to account
for label imbalance between positives and negatives. Here,
by settingCo < C s, the out-of-class examples of the at-
tribute serve as a simple prior for which features are rel-
evant. This way we bene�t from more training examples
when there are few category-speci�c examples of the at-
tribute, but we are inclined to ignore those that deviate too
far from the category-sensitive de�nition of the property.
As we will see in results, these models typically outperform
their universal counterparts.

3.2. Object­Attribute Classi�er Tensor

Next we de�ne a tensor to capture the structure un-
derlying many such category-sensitive models. Letm =
1; : : : ; M index theM possible attributes in the vocabulary,
and letn = 1 ; : : : ; N index theN possible object/scene
categories. Letw (n; m) denote a category-sensitive SVM
weight vector trained for then-th object andm-th attribute
using Eqn. 1.

We construct a 3D tensorW 2 < N � M � D using all
available category-sensitive models. Each entrywd

nm con-
tains the value of thed-th dimension of the classi�er
w (n; m). For a linear SVM, this value re�ects the impact of



thed-th dimension of the feature descriptorx for determin-
ing the presence/absence of attributem for the object class
n. To use non-linear SVM classi�ers, we use the ef�cient
kernel map approach of [23], which computes explicit linear
embeddings for additive kernels, including the intersection
and� 2 kernels commonly used in visual recognition. This
lets us maintain an explicit tensorW while still bene�tting
from more powerful non-linear classi�ers.3 In this case,D
is the dimension of the feature map embedding, and all else
is the same. We test both variants in our experiments.

The resulting tensor is quite sparse. We can only �ll en-
tries for which we have class-speci�c positive and negative
training examples for the attribute of interest. In today's
most comprehensive attribute datasets [19, 17], this means
only � 25% of the possible object-attribute combinations
can be trained in a category-sensitive manner. Rather than
resort to universal models for those “missing” combina-
tions, we propose to use the latent factors for the observed
classi�ers to synthesize analogous models for the unob-
served classi�ers, as we explain next.

3.3. Inferring Analogous Attributes

Having learned how certain attributes look for certain
object categories, our goal is to transfer that knowledge to
hypothesize how the same attributes will look for other ob-
ject categories. In this way, we aim to infer analogous at-
tributes: category-sensitive attribute classi�ers for objects
that lack attribute-labeled data. We pose the “missing clas-
si�er” problem as a tensor completion problem. We recover
the latent factors for the 3D object-attribute tensorW , and
use them to impute the unobserved classi�er parameters.

Let O 2 < K � N , A 2 < K � M , andC 2 < K � D denote
matrices whose columns are theK -dimensional latent fea-
ture vectors for each object, attribute, and classi�er dimen-
sion, respectively. We assume thatwd

nm can be expressed
as an inner product of latent factors,

wd
nm � h On ; Am ; Cd i ; (2)

where a subscript denotes a column of the matrix. In ma-
trix form, we haveW �

P K
k=1 Ok � Ak � Ck , where a

superscript denotes the row in the matrix, and� denotes the
vector outer product.

The latent factors of the tensorW are what affect how
the various attributes, objects, and image descriptors covary.
What might they correspond to? We expect some will cap-
ture mixtures of two or more attributes, e.g., factors distin-
guishing how “spots” appear on something “�at” vs. how
they appear on something “bumpy”. The latent factors can
also capture useful clusters of objects, or supercategories,
that exhibit attributes in common ways. Some might cap-
ture other attributes beyond theM portrayed in the training

3Alternatively, kernelized factorization methods could be applied.

images—namely, those that help explain structure in the ob-
jects and other attributes we have observed.

We use Bayesian probabilistic tensor factorization [28]
to recover the latent factors. Using this model, the likeli-
hood for the explicitly trained classi�ers (Sec. 3.1) is

p(W jO ; A ; C ; � ) = � N
n =1 � M

m =1 � D
d=1

�
N (wd

nm jhOn ; A m ; Cd i ; � � 1 )
� I nm ;

whereN (wj�; � ) denotes a Gaussian with mean� and
precision � , and I nm = 1 if object n has an explicit
category-sensitive model for attributem, andI nm = 0 oth-
erwise. For each of the latent factorsOn , Am , andCd, we
use Gaussian priors. Let� represent all their means and
covariances. Following [28], we compute a distribution for
each missing tensor value by integrating out over all model
parameters and hyper-parameters, given all the observed at-
tribute classi�ers:

p(ŵd
nm jW ) =

Z
p(ŵd

nm jOn ; A m ; Cd ; � )p(O ; A ; C ; �; � jW ) df O ; A ; C ; �; � g:

After initializing with the MAP estimates of the three
factor matrices, this distribution is approximated using
Markov chain Monte Carlo (MCMC) sampling:

p(ŵd
nm jW ) �

LX

l =1

p(ŵd
nm jO( l )

n ; A ( l )
m ; C( l )

d ; � ( l ) ): (3)

Each of theL samplesf O( l )
n ; A ( l )

m ; C( l )
d ; � ( l ) g is generated

with Gibbs sampling on a Markov chain whose stationary
distribution is the posterior over the model parameters and
hyper-parameters. We use conjugate distributions as priors
for all the Gaussian hyper-parameters to facilitate sampling.
See [28] for details.

We use these factors to generate analogous attributes.
Suppose we have no labeled examples showing an object
of categoryn with attributem (or, as is often the case, we
have so few that training a category-sensitive model is prob-
lematic). Despite having no training examples, we can use
the tensor to directly infer the classi�er parameters

ŵ (n; m) = [ ŵ1
nm ; : : : ; ŵD

nm ]; (4)

where eacĥwd
nm is the mean of the distribution in Eq. (3).

Our method is quite ef�cient. For the datasets in Sec. 4,
training all explicit category-sensitive models takes around
5 minutes. Factorizing the tensor withM = 59 andN =
280andD = 512 takes around 180 seconds. Then inferring
a new attribute classi�er takes 0.05 seconds.

3.4. Discussion

We stress that while tensor completion itself is certainly
not new, prior work in vision [15, 7, 22, 24] and data mining
(e.g., [11, 28]) focuses on inferring missingdata instances



or missinglabels. For example, for data problems, the ten-
sor could be a corrupted video in which one wants to in-
paint missing voxels [15]; for missing label problems, the
tensor could be the movie ratings given by different users
for various �lms over time, and one wants to guess how a
user would rate a new movie [28].

In contrast, we propose to use factorization to inferclas-
si�ers within a tensor representing two inter-related label
spaces. Our idea has two key useful implications. First,
it leverages the interplay of both label spaces to generate
new classi�ers without seeing any labeled instances. This
is a novel form of transfer learning. Second, by working di-
rectly in the classi�er space, we have the advantage of �rst
isolating the low-level image features that are informative
for the observed attributes. This means the input training
images can contain realistic (un-annotated) variations. In
comparison, existing data tensor approaches often assume
a strict level of alignment; e.g., for faces, examples are cu-
rated undern speci�c lighting conditions,m speci�c ex-
pressions, etc. [22, 24].

Our design also means that the analogous attributes can
transfer information from multiple objects and/or attributes
simultaneously. That means, for example, our model is not
restricted to transferring the �uf�ness of a dog from the
�uf�ness of a cat; rather, its analogous model for dog �uf�-
ness might just as well result from transferring a mixture of
cues from carpet �uf�ness, dog spottedness, and cat shape.

In general, transfer learning can only succeed if the
source and target classes are related. Similarly, we will only
�nd an accurate low-dimensional set of factors if some com-
mon structure exists among the explicitly trained category-
sensitive models. Nonetheless, a nice property of our for-
mulation is that even if the tensor is populated with a variety
of classes—some with no ties—analogous attribute infer-
ence can still succeed. Distinct latent factors can cover the
different clusters in the observed classi�ers. For similarrea-
sons, our approach naturally handles the question of “where
to transfer”: sources and targets are never manually speci-
�ed. Below, we consider the impact of building the tensor
with a large number of semantically diverse categories ver-
sus a smaller number of closely related categories.

4. Experimental Results

The experiments analyze four main aspects: (1) how
category-sensitive attributes compare to standard universal
attributes (Sec. 4.1), (2) how well our inferred attributes
compete with the upper bound category-sensitive attributes
trained explicitly with images, and compared to a traditional
transfer approach (Sec. 4.2), (3) the impact of focusing the
tensor on closely related classes (Sec. 4.3), and (4) the fea-
sibility of inferring non-linear models (Sec. 4.4).
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Figure 2. Data availability: white entries denote category-attribute
pairs that have positive and negative image exemplars. In Ima-
geNet, most vertical stripes are color attributes, and most horizon-
tal stripes are man-made objects. In SUN, most vertical stripes are
attributes that appear across different scenes, such as vacationing
or playing, while horizontal stripes come from scenes with varied
properties, such as airport and park.

Datasets and features We evaluate our approach on two
datasets: the attribute-labeled portion of ImageNet [19] and
SUN Attributes [17]. ImageNet contains 9,600 total im-
ages, with 384 object categories and 25 attributes describing
color, patterns, shape, and texture. SUN contains 14,340
total images, with 717 scene categories and 102 attributes
describing global properties, activity affordances, materi-
als, and basic textures. We use all 280 categories and 59
attributes for which SUN contains both positive and nega-
tive examples for the scene-attribute pair. For both datasets,
we use features provided by the authors. For ImageNet, we
concatenate color histograms, SIFT bag of words, and shape
context (D = 1550). For SUN, we use GIST (D = 512).

The datasets do not contain data for all possible
category-attribute pairings. Figure 2 shows which are avail-
able: there are 1,498 and 6,118 pairs in ImageNet and SUN,
respectively. The sparsity of these matrices actually un-
derscores the need for our approach, if one wants to learn
category-sensitive attributes.

We split both datasets in half for training and testing.
When explicitly training an attribute, we randomly sample
S% of the images from all other categories (S = 50% for
ImageNet andS = 10% for SUN, proportional to their
sizes). We useL = 100 samples and �x the number of
latent factorsK = 30, following [28]. We set the slack
penaltiesCo = 0 :1 andCs = 1 . We did not tune these val-
ues. Unless otherwise noted, all methods use linear SVMs.

4.1. Category­Sensitive vs. Universal Attributes

First we test whether category-sensitive attributes are
evenbene�cial. We explicitly train category-sensitive at-
tribute classi�ers using importance-weighted SVMs, as de-
scribed in Sec. 3.1. This yields 1,498 and 6,118 classi-
�ers for ImageNet and SUN, respectively. We compare
their predictions to those of universal attributes, where we
train one model for each attribute (M = 25 for ImageNet



Datasets Trained explicitly Trained via transfer
# Categ(N ) # Attr (M ) Category-sens. Universal Inferred (Ours) Adopt similar One-shot Chance

ImageNet 384 25 0.7304 0.7143 0.7259 0.6194 0.6309 0.5183
SUN 280 59 0.6505 0.6343 0.6429 N/A N/A 0.5408

Table 1. Accuracy (mAP) of attribute prediction. Category-sensitive models improve over standard universal models, and our inferred
classi�ers nearly match their accuracy with no training image examples. Traditional forms of transfer (rightmost two columns) fall short,
showing the advantage of exploiting the 2D label space for transfer, as we propose. These results are averages over thousands of attributes;
category-sensitive attributes achieve an average gain of 0.15 in AP in 76% of the cases.

andM = 59 for SUN). When learning an attribute, both
models have access to the exact same images; the univer-
sal method ignores the category labels, while the category-
sensitive method puts more emphasis on the in-category ex-
amples.4 We evaluate both methods on the same test set.

Table 1 (cols 4 and 5) shows the results, in terms of
mean average precision across all 84 attributes and 664 cat-
egories. Among those, our category-sensitive models meet
or exceed the universal approach 76% of the time, with
average increases of 0.15 in AP, and gains of up to 0.83
in AP for some attributes. This indicates that the status
quo [12, 4, 13, 19, 16, 17] pooling of training images across
categories is indeed detrimental.

4.2. Inferring Analogous Attributes

The results so far establish that category-sensitive at-
tributes are desirable. However, the explicit models above
are impossible to train for 18K of the� 26K possible at-
tributes in these datasets.This is where our method comes
in. It can infer all remaining 18K attribute models even
without class-speci�c labeled training examples.

We perform leave-one-out testing: in each round, we re-
move one observed classi�er (a white entry in Figure 2),
and infer it with our tensor factorization approach. Note that
even though we are removing one at a time, the full tensor
is always quite sparse due to the available data. Namely,
only 16%(in ImageNet) and37%(in SUN) of all possible
category-sensitive classi�ers can be explicitly trained.

Table 1 (cols 4 to 6) shows this key result. In this ex-
periment, the explicitly trained category-sensitive result is
the “upper bound”; it shows how well the model trained
with real category-speci�c images can do. We see that our
inferred analogous attributes (col 6) are nearly as accurate,
yet use zero category-speci�c labeled images. They approx-
imate the explicitly trained models well. Most importantly,
our inferred models remain more accurate than the univer-
sal approach.Our inferred attributes again meet or exceed
the universal model's accuracy 79% of the time, with gains
averaging 0.13 in AP.

We stress that our method infers models forall missing
attributes. That is, using the explicitly trained attributes,
it infers another8; 064 and 10; 407 classi�ers on Ima-
geNet and SUN, respectively. While the category-sensitive

4So the universal model also uses category-speci�c images. We �nd it
performs similarly whether it uses them or not.

method would require� 20 labeled examples per classi�er
to train those models, our method uses zero.That amounts
to saving348K total labeled images.That in turn means
saving $17,400 in labeling costs, if we were to pay $0.05
per image for MTurkers to both track down and label images
exhibiting all those class-attribute pairings.(Due to ground
truth availability, though, we can only validate against the
held-out attributes.)

The results so far presume we know which category's
attribute model to apply to a novel image. If we fur-
ther require the category to be predicted automatically—
by marginalizing over the category label to estimate the at-
tribute probability—our results remain similar. In particu-
lar, the explicit category-sensitive results (col 4 of Table 1)
become 0.7249 and 0.6419, and the inferred results (col 6)
become 0.7218 and 0.6401—still better than universal.

Table 1 also compares our approach to conventional
transfer learning. The �rst transfer baseline infers the miss-
ing classi�er simply by adopting the category-sensitive at-
tribute of the category that is semantically closest to it,
where semantic distance is measured via WordNet using [3]
(not available for SUN). For example, if there are no furry-
dog exemplars, we adopt the wolf's “furriness” classi�er.
The second transfer baseline additionally uses one category-
speci�c image example to perform “one-shot” transfer (e.g.,
it trains with both the furry-wolf images plus a furry-dog ex-
ample).5 Unlike the transfer baselines, our method uses nei-
ther prior knowledge about semantic distances nor labeled
class-speci�c examples. We see that our approach is sub-
stantially more accurate than both transfer methods. This
result highlights the bene�t of our novel approach to trans-
fer, which leverages both label spaces (categories and their
attributes) simultaneously.

Which attributes does our method transfer? That is,
which objects does it �nd to be analogous for an attribute?
To examine this, we �rst take a categoryj and identify its
neighboring categories in the latent feature space, i.e., in
terms of Euclidean distance among the columns ofO 2
< K � N . Then, for each neighbori , we sort its attribute
classi�ers (w (i; :), real or inferred) by their maximal co-
sine similarity to any of categoryj 's attributesw(j; :). The
resulting shortlist helps illustrate which attribute+category
pairs our method expects to transfer to categoryj .

5We also tried an Adaptive SVM [29] for the transfer baseline,but it
was weaker than the results reported above.
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Figure 3. Analogous attribute examples for ImageNet (top) and
SUN (bottom). Words above each neighbor indicate the 3 most
similar attributes (learned or inferred) between leftmost query cat-
egory and its neighboring categories in latent space. Query cate-
gory:neighbor category= 1.Bottle: �lter, syrup, bullshot, gerenuk.
2.Platypus: giraffe, ungulate, rorqual, patas. 3.Airplane cabin:
aquarium, boat deck, conference center, art studio. 4.Courtroom:
cardroom, �orist shop, performance arena, beach house.

Figure 3 shows 4 such examples, with one represen-
tative image for each category. We see neighboring
categories in the latent space are often semantically re-
lated (e.g., syrup/bottle) or visually similar (e.g., airplane
cabin/conference center); although our method receives no
explicit side information on semantic distances, it discovers
these ties through the observed attribute classi�ers. Some
semantically more distant neighbors (e.g., platypus/rorqual,
courtroom/cardroom) are also discovered to be amenable to
transfer. The words in Figure 3 are the neighboring cate-
gories' top 3 analogous attributes for the numbered category
to their left (not attribute predictions for those images). It
seems quite intuitive that these would be suited for transfer.

Next we look more closely at where our method suc-
ceeds and fails. Figure 4 shows the top (bottom) �ve cat-
egory+attribute combinations for which our inferred clas-
si�ers most increase (decrease) the AP, per dataset. As
expected, we see our method most helps when the visual
appearance of the attribute on an object is quite different
from the common case, such as “spots” on the killer whale.
On the other hand, it can detract from the universal model
when an attribute is more consistent in appearance, such
as “black”, or where more varied examples help capture a
generic concept, such as “symmetrical”.

Figure 5 shows qualitative examples that support these
�ndings. We show the image for each method that was
predicted to most con�dently exhibit the named attribute.
By inferring analogous attributes, we better capture object-
speci�c properties. For example, while our method cor-
rectly �res on a “smooth wheel”, the universal model mis-
takes a Ferris Wheel as “smooth”, likely due to the smooth-
ness of the background, which might look like other classes'
instantiations of smoothness.
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Figure 4.(Category,attribute)pairs for which our inferred models
most improve (left) or hurt (right) the universal baseline.
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Figure 5. Test images that our method (top row) and the univer-
sal method (bottom row) predicted most con�dently as having the
named attribute. (X = positive for the attribute,X = negative,
according to ground truth.)

4.3. Focusing on Semantically Close Data

In all results so far, we make no attempt to restrict the
tensor to ensure semantic relatedness. The fact our method
succeeds in this case indicates that it is capable of discover-
ing clusters of classi�ers for which transfer is possible, and
is fairly resistant to negative transfer.

Still, we are curious whether restricting the tensor to
classes that have tight semantic ties could enhance perfor-
mance. We therefore test two variants: one where we re-
strict the tensor to closely related objects (i.e., downsam-
pling the rows), and one where we restrict it to closely re-
lated attributes (i.e., downsampling the columns). To select
a set of closely related objects, we use WordNet to extract
sibling synsets for different types of dogs in ImageNet. This
yields 42 categories, such aspuppy, courser, coonhound,
corgi. To select a set of closely related attributes, we extract
only the color attributes.

Table 2 shows the results. We use the same leave-one-
out protocol of Sec. 4.2, but during inference we only con-
sider category-sensitive classi�ers among the selected cat-
egories/attributes. We see that the inferred attributes are
stronger with the category-focused tensor, raising accuracy
from 0.7173 to 0.7358, closer to the upper bound. This sug-



Subset Category- Inferred Inferred
sensitive (subset) (all)

Categories (dogs) 0.7478 0.7358 0.7173
Attributes (colors) 0.7665 0.7631 0.7628

Table 2. Attribute label prediction mAP when restricting the ten-
sor to semantically close classes. The explicitly trained category-
sensitive classi�ers serve as an upper bound.

Category-sensitive Inferred Universal
linear SVM 0.7304 0.7259 0.7143
� 2 SVM 0.7589 0.7428 0.7037
Table 3. Using kernel maps [23] to infer non-linear SVMs.

gests that among the entire dataset, attributes for which cat-
egories differ can introduce some noise into the latent fac-
tors. On the other hand, when we ignore attributes unrelated
to color, the mAP of the inferred classi�ers remains similar.
This may be because color attributes use such a distinct set
of image features compared to others (like stripes, round)
that the latent factors accounting for them are coherent with
or without the other classi�ers in the mix. From this prelim-
inary test, we can conclude that when semantic side infor-
mation is available, it could boost accuracy, yet our method
achieves its main purpose even when it is not.

4.4. Inferring Non­linear Classi�ers

Finally, we demonstrate that our approach is not limited
to inferring linear classi�ers. We use the homogeneous ker-
nel map [23] of order 3 to approximate a� 2 kernel non-
linear SVM. This entails mapping the original features to a
space in which an inner product approximates the� 2 ker-
nel. Using the kernel maps, we repeat the experiment of
Sec. 4.2. Table 3 shows the results on ImageNet. The non-
linear classi�ers boost accuracy for both the explicit and in-
ferred category-sensitive attributes. Unexpectedly, we �nd
the kernel map SVM decreases accuracy slightly for the uni-
versal approach; perhaps due to over�tting.

5. Conclusions

We introduced a new form of transfer learning, in which
analogous classi�ers are inferred using observed classi�ers
organized according to two inter-related label spaces. We
developed a tensor factorization approach that solves the
transfer problem, even when no training examples are avail-
able for the decision task of interest.

Our work highlights the reality that many attributes are
not strictly category-independent. We offer a practical tool
to ensure category-sensitive models can be trained even
if category-speci�c labeled datasets are not possible. As
demonstrated through multiple experiments with two large-
scale datasets, the idea seems quite promising.

In future work, we will explore one-shot extensions of
analogous attributes, and analyze their impact for learning
relative properties.
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