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Abstract
We present Ego-Exo4D, a diverse, large-scale multi-

modal multiview video dataset and benchmark challenge.
Ego-Exo4D centers around simultaneously-captured ego-
centric and exocentric video of skilled human activities
(e.g., sports, music, dance, bike repair). 740 participants
from 13 cities worldwide performed these activities in 123
different natural scene contexts, yielding long-form cap-
tures from 1 to 42 minutes each and 1,286 hours of video
combined. The multimodal nature of the dataset is un-
precedented: the video is accompanied by multichannel
audio, eye gaze, 3D point clouds, camera poses, IMU,
and multiple paired language descriptions—including a
novel “expert commentary” done by coaches and teach-
ers and tailored to the skilled-activity domain. To push the
frontier of first-person video understanding of skilled hu-

man activity, we also present a suite of benchmark tasks
and their annotations, including fine-grained activity un-
derstanding, proficiency estimation, cross-view translation,
and 3D hand/body pose. All resources are open sourced to
fuel new research in the community.

1. Introduction

A dancer leaps across a stage; Lionel Messi delivers
a precise pass; your grandmother prepares her famous
dumplings. We observe and seek human skills in a myriad
of settings, from the practical (fixing a bike) to the aspira-
tional (dancing beautifully). What would it mean for AI to
understand human skills? And what would it take to get
there?



Figure 1. Ego-Exo4D offers egocentric video alongside multiple time-synchronized exocentric video streams for an array of skilled human
activities—1,286 hours of ego and exo video in total. The data is both multiview and multimodal, and it is extensively annotated with
language, 3D body and hand pose, keysteps, procedural dependencies, and proficiency ratings in support of our proposed benchmark tasks.

Advances in AI understanding of human skill could fa-
cilitate many applications. In augmented reality (AR), a
person wearing smart glasses could quickly pick up new
skills with a virtual AI coach that provides real-time guid-
ance. In robot learning, a robot watching people in its en-
vironment could acquire new dexterous manipulation skills
with less physical experience. In social networks, new com-
munities could form based on how people share their exper-
tise and complementary skills in video.

We contend that both the egocentric and exocentric
viewpoints are critical for capturing human skill. Firstly,
the two viewpoints are synergistic. The first-person (ego)
perspective captures the details of close-by hand-object in-
teractions and the camera wearer’s attention, whereas the
third-person (exo) perspective captures the full body pose
and surrounding environment context. See Figure 1. Not
coincidentally, instructional or “how-to” videos often alter-
nate between a third-person view of the demonstrator and a
close-up view of their near-field demonstration. For exam-
ple, a chef may describe their approach and the equipment
from an exo view, then cut to clips showing their hands ma-
nipulating the ingredients and tools from an ego-like view.

Secondly, not only are the ego and exo viewpoints syn-
ergistic, but there is a need to translate fluently from one
to the other when acquiring skill. For example, imagine
watching an expert repair a bike tire, juggle a soccer ball,

or fold an origami swan—then mapping their steps to your
own body. Cognitive science tells us that even from a very
young age we can observe others’ behavior (exo) and map it
onto our own (ego) [42, 108], and this actor-observer trans-
lation remains the foundation of visual learning.

Realizing this potential, however, is not possible using
today’s datasets and learning paradigms. Existing datasets
comprised of both ego and exo views (i.e., ego-exo) are
few [76, 77, 127, 139, 145], small in scale, lack synchro-
nization across cameras, and/or are too staged or curated to
be resilient to the diversity of the real world. Thus the cur-
rent literature for activity understanding primarily attends
to either the ego [28, 47] or exo [48, 67, 105, 149] view,
leaving the ability to move fluidly between the first- and
third-person perspectives out of reach. Instructional video
datasets [103, 159, 204, 207] offer a compelling window
into skilled human activity, but (like the above) are lim-
ited to single-viewpoint video, whether purely exocentric
or mixed with “ego-like” views at certain time points.

We introduce Ego-Exo4D, a foundational dataset to sup-
port research on ego-exo video learning and multimodal
perception. The result of a two-year effort by a consor-
tium of 15 research institutions, Ego-Exo4D is a first-of-its-
kind large-scale multimodal multiview dataset and bench-
mark suite. It constitutes the largest public dataset of time-
synchronized first- and third- person video, captured by 740



diverse camera wearers in 123 distinct scenes and 13 cities
worldwide. For every sequence, Ego-Exo4D provides both
the camera wearer’s egocentric video, as well as multiple
(4-5) exocentric videos from tripods placed around the cam-
era wearer. All views are time-synchronized and precisely
localized in a metric, gravity-aligned frame of reference.
The total collection has 1,286 hours of video and 5,035 in-
stances, each spanning 1 to 42 min. of continuous capture.

Ego-Exo4D focuses on skilled single-person activities.
The 740 participants perform skilled physical and/or proce-
dural activities—dance, soccer, basketball, bouldering, mu-
sic, cooking, bike repair, health care—in an unscripted man-
ner and in natural settings (e.g., gym, soccer field, kitchens,
bike shops, etc.), exhibiting a variety of skill levels from
novice to expert. All video is recorded with rigorous pri-
vacy and ethics policies and formal consent of participants.

Ego-Exo4D is not only multiview, it is also multimodal.
Captured with the unique open-source Aria glasses [38], all
ego video is accompanied by 7-channel audio, IMU, eye
gaze, both RGB and two grayscale SLAM cameras, and 3D
environment point clouds. Additionally, Ego-Exo4D pro-
vides multiple new video-language resources, all time in-
dexed: first-person narrations by the camera wearers de-
scribing their own actions; third-person play-by-play de-
scriptions of every camera wearer action; and third-person
spoken expert commentary critiquing their performance.
The latter is particularly novel: performed by domain-
specific experienced coaches and teachers, it focuses on
how an activity is executed rather than merely what is being
done, surfacing subtleties in skilled execution not perceiv-
able by the untrained eye. To our knowledge, there is no
prior video resource with such extensive and high quality
multimodal data.

Alongside this data, we introduce benchmarks for foun-
dational tasks for ego-exo video. We propose four fami-
lies of tasks: 1) ego-exo relation, for relating the actions of
a teacher (exo) to a learner (ego) by estimating semantic
correspondences and translating viewpoints; 2) ego(-exo)
recognition, for recognizing fine-grained keysteps and task
structure; 3) ego(-exo) proficiency estimation, for inferring
how well a person is executing a skill; and 4) ego pose,
for recovering skilled 3D body and hand movements from
ego-video. We provide annotations for each task—the result
of more than 200,000 hours of annotator effort. To kick-
start work in these new challenges, we also develop base-
line models and report their results (Appendices). We are
hosting the first public benchmark challenges in 2024.

In summary, Ego-Exo4D is the community’s first di-
verse, large-scale multimodal multiview video resource. We
have open sourced all the data, annotations, camera rig pro-
tocol, and benchmarks. With this release, we aim to fuel
new research in ego-exo, multimodal activity, and beyond.

2. Related work
Next we review prior work in datasets, human skill, and
cross-view analysis. Section 5 will discuss related work for
each benchmark task. Table 2 in Appendix 9 summarizes
Ego-Exo4D’s properties vs. existing datasets.

Egocentric datasets There has been a surge of interest in
egocentric video understanding, facilitated by recent ego-
video datasets showing unscripted daily-life activity as in
Ego4D [47], EPIC-Kitchens [27, 28, 163], UT Ego [78],
ADL [119], and KrishnaCam [147], or procedural activities
as in EGTea [81], AssistQ [172], Meccano [126], CMU-
MMAC [77], and EgoProcel [10]. Unlike any of the above,
Ego-Exo4D focuses on multimodal ego and exo capture,
and it is focused on the domain of skilled activities.

Multiview and ego-exo datasets Most existing multi-
view datasets focus on static scenes [20, 128, 151, 175, 176]
and objects [133, 173], with limited (exo only) multi-
view human activity [26, 169]. CMU-MMAC [77] and
CharadesEgo [145] are early efforts to capture both ego
and exo video. CMU-MMAC [77] features 43 partici-
pants in mocap suits who cook 5 recipes in a lab kitchen.
In CharadesEgo [145], 71 Mechanical Turkers record 34
hours of scripted scenarios (e.g., “type on laptop, then pick
up a pillow”) from the ego and exo perspectives sequen-
tially, yielding unsynchronized videos with non-exact activ-
ity matches. More recent ego-exo efforts focus on specific
activities in one or two environments. Assembly101 [139]
and H2O [76] provide time-synced ego and exo video at a
lab tabletop where people assemble toy cars or manipulate
handheld objects, with 53 and 4 participants, and 513 and
5 hours of footage, respectively. Homage [127] provides
30 hours of ego-exo video from 27 participants in 2 homes
doing household activities like laundry.

Compared to any of the prior efforts, Ego-Exo4D offers
an order of magnitude more participants, diverse locations,
and hours of footage (740 participants, 123 unique scenes,
13 cities, 1,286 hours). Importantly, our focus on skilled
tasks takes the participants out of the lab or home and
into settings like soccer fields, dance studios, rock climb-
ing walls, and bike repair shops. Such activities also yield
a wide variety of full body poses and movements within
the scene, beyond using objects at a tabletop. This vari-
ety means Ego-Exo4D augments existing 3D human body
pose datasets [49, 66, 68, 80, 193]. Finally, compared to
any prior ego-exo resource, Ego-Exo4D’s suite of modal-
ities and benchmark tasks are novel and will expand the
research directions the community can take for egocentric
and/or exocentric video understanding.

Human skill and video learning Analyzing skill and ac-
tion quality has received limited attention [12, 34, 35, 113,
120, 194]. Research in instructional or “how-to” videos is
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Figure 2. Ego-Exo4D captures skilled activity from 43 tasks and 689 keysteps in 8 domains, in a wide variety of 123 scenes in 13 cities in
Japan, Colombia, Canada, India, Singapore, and 7 US states. Each domain is captured at multiple sites—from 2 to 64 unique locations. In
total the dataset offers 1,286 hours of ego+exo video comprised of 5,035 takes from 740 camera wearers. An average take is 2.6 minutes.

facilitated by (largely exo) datasets like HowTo100M [103]
and others [11, 159, 204, 207]. Challenges include ground-
ing keysteps [10, 36, 37, 89, 103, 104, 178, 207], procedu-
ral planning [15, 17, 22, 71, 143, 167, 196, 201], learning
task structure [4, 9, 37, 107, 202, 205], and leveraging noisy
narrations [89, 103, 104]. A portion of Ego-Exo4D is pro-
cedural activities, but unlike the above, it offers simultane-
ous ego-exo capture. The scale and diversity of our data—
including its three forms of language descriptions—widen
the avenues for skilled activity understanding research.

Ego-exo cross-view modeling There is limited prior
work on ego-exo cross-view modeling, arguably due to a
lack of high-quality synchronized real-world data. Prior
work explores matching people between videos [5, 6, 40,
170, 179] and learning view-invariant [7, 141, 144, 182,
184, 185] or ego features [82]. Beyond the specific case
of ego-exo, cross-view methods are explored for translation
[130, 131, 134, 157], novel view synthesis [19, 90, 135, 137,
164, 168, 171], and aerial to ground matching [86, 132].
Ego-Exo4D provides a testbed of unprecedented size and
variety for cross-view modeling. In addition, our ego-
exo relation tasks (cf. Section 5) surface new challenges in
novel-view synthesis with widely varying viewpoints.

3. Ego-Exo4D dataset

Next we introduce the dataset and its scope. Notably, the
video capture was a distributed but coordinated effort per-
formed by 12 research labs. We present the common frame-
work, and reserve site-specific details for Appendix 10.

3.1. Ego-exo camera rig

Our goal is to capture simultaneous ego and exo video, to-
gether with multiple egocentric sensing modalities. One of
our contributions is to create and share a low-cost (less than

$3,000), lightweight ego-exo rig with a user-friendly cali-
bration and time sync procedure.

Our camera configuration features Aria glasses [38] for
ego capture, leveraging their rich array of sensors, includ-
ing an 8 MP RGB camera, two SLAM cameras, IMU, 7
microphones, and eye tracking (see Appendix 7). The ego
camera is calibrated and time-synchronized with four to five
(stationary) GoPros placed on tripods as the exo capture de-
vices, allowing 3D reconstruction of the environment point
clouds and the participant’s body pose. The number and
placement of the exocentric cameras is determined per sce-
nario in order to allow maximal coverage of useful view-
points without obstructing the participants’ activity.

Our time sync and calibration design relies on a QR-code
procedure to auto-sync the cameras and auto-separate the
individual “takes”, meaning instances of an activity. We
can do continuous recordings of up to ∼60 minutes, based
on the Aria battery life. See Appendix 8 for more details.

3.2. Domains and environments

Ego-Exo4D focuses on skilled human activity. This is in
contrast to existing ego-only efforts like Ego4D [47], which
has a broad span of daily-life activities. We intentionally
select the domains based on a few criteria: Will it illustrate
skill and a variety of expertise? Is there visual variety to
be expected across different instances? Will the ego and
exo views offer complementary information? Will it present
new challenges unaddressed by current datasets?

Intersecting these criteria, we arrived at two broad cat-
egories1 of skilled activity: physical and procedural, to-
gether comprising eight total domains. The physical do-
mains are soccer, basketball, dance, bouldering, and mu-
sic. They emphasize body pose and movements as well as

1Note that in general physical and procedural are not mutually exclu-
sive labels. An activity can both require physical skill and procedural steps.



interaction with objects (e.g., a ball, musical instrument).
The procedural domains are cooking, bike repair, and health
care. They require performing a sequence of steps to reach
a goal state (e.g., a completed recipe, a repaired bike) and
generally entail intricate hand-object manipulations with a
variety of objects (e.g., bike repair tools; cooking utensils,
appliances, and ingredients).

In total, we have 43 activities derived from the eight do-
mains (see Appendix 9). For example, cooking is comprised
of 14 recipes; soccer is comprised of 3 drills. The length of
a take ranges from 8 sec to 42 min, with procedural activi-
ties like cooking having the longest sustained captures.

To achieve visual diversity in the data, multiple labs
across our team (typically 3-5) captured each Ego-Exo4D
domain. The data is collected in authentic settings—such as
real-world bike shops, soccer pitches, or bouldering gyms–
—as opposed to lab environments. For example, we have
videos of chefs in New York City, Vancouver, Philadelphia,
Bogota, and others; soccer players in Tokyo, Chapel Hill,
Hyderabad, Singapore, and Pittsburgh. See Figure 2.

3.3. Participants: expertise and diversity

We recruited 740 total participants from the local commu-
nities of 12 labs. All scenarios feature real-world experts,
where the camera-wearer participant has specific creden-
tials, training, or expertise in the skill being demonstrated.
For example, among the Ego-Exo4D camera wearers are
professional and college athletes; jazz, salsa, and Chinese
folk dancers and instructors; competitive boulderers; pro-
fessional chefs who work in industrial-scale kitchens; bike
technicians who service dozens of bikes per day. Many of
them have (individually) over 10 years of experience.

Experts are prioritized given they are likely to con-
duct activities without mistakes or distractions, providing a
strong ground truth for how to approach a given task. How-
ever, we also include capture from people with varying skill
levels, as well—essential for our proposed skill proficiency
estimation task (Section 5). Notably, Ego-Exo4D represents
human intelligence in a new way by capturing domain-
specific expertise—both in the video as well as the accom-
panying expert commentary (see Section 4)—portraying the
evolution of a skill from beginners to experts.

According to the participant surveys (Appendix 11), the
camera wearers range in age from 18 to 74 years old, with
37% self-identifying as female 60% male and 3% as non-
binary or preferring not to say. In total, the participants self
report more than 24 different ethnicities.

3.4. Privacy and ethics

Ego-Exo4D was collected following rigorous privacy and
ethics standards. This included undergoing formal inde-
pendent review processes at each institution to establish the
standards for collection, management, and informed con-

Expert commentary
“The dancer's hand is rotated 
inwardly a bit. Her palm should 
be facing to the ground, …”

Atomic action descriptions
“C steps forward while 
shimmying her shoulders.”

Narrate and act
“Here we go, left forward, right 
back for one phrase 1 2 3 4 …”

Figure 3. Ego-Exo4D offers 3 paired language corpora. Word
cloud is from expert commentary which critiques the performance.

sent. Similarly, all Ego-Exo4D data collection adhered to
the Project Aria Research Community Guidelines for re-
sponsible research. Since the scenarios allow for closed en-
vironments (e.g., no passerbys) nearly all video is available
without de-identification. For information about each indi-
vidual partners’ protocols and restrictions, please see Ap-
pendix 10. Ego-Exo4D data is gated behind a license sys-
tem, which defines permitted uses, restrictions, and conse-
quences for non-compliance.

4. Natural language descriptions
Ego-Exo4D also offers three kinds of paired natural lan-
guage datasets, each time-indexed alongside the video. See
Figure 3. These language annotations are not steered to-
wards any single benchmark, but rather are a general re-
source that will support browsing and mining the dataset—
as well as challenges in video-language learning like
grounding actions and objects, self-supervised representa-
tion learning, video-conditioned language models, and skill
assessment. See Appendix 12.

The first language dataset is spoken expert commentary.
The goal is to reveal nuances of the skill that are not al-
ways visible to non-experts. We recruited 52 experts (dis-
tinct from the participants) to critique the recorded videos,
call out strengths and weaknesses, explain how the specific
behavior of the participant (e.g., hand/body pose, use of ob-
jects) affects the performance, and provide spatial markings
to support their commentary. The experts are not only well-
credentialed in their areas of expertise, but also have coach-
ing or teaching experience, which facilitates clear commu-
nication. They watch the video and pause every time they
have a comment, typically 7 times per minute of video.
Each piece of commentary is unbounded in length, and av-
erages 4 sentences. We provide both the transcribed speech
and the raw audio (interesting for its inflection and non-
word utterances), as well as the experts’ spatial drawings
and numeric ratings of each participant’s skill. Videos have
expert commentary by 2-5 distinct experts, offering a va-
riety of perspectives for the same content. In total, we
have 117,812 pieces of time-stamped, video-aligned com-
mentary. These commentaries are quite novel: they focus
on how the activity is executed rather than what it entails,
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Figure 4. The ego-exo relation family consists of the tasks of correspondence (left) and translation (right).

capturing subtle differences in skilled execution. We be-
lieve this can unlock new fundamental problems (e.g., profi-
ciency estimation below) and disruptive future applications
(e.g., AI coaching).

The second language dataset consists of narrate-and-act
descriptions provided by the participants themselves. They
are in the style of a tutorial or how-to video, where the par-
ticipant explains what they are doing and why. Unlike the
third-party expert commentary above, these are first-person
reflections on the activity given by the people doing them.
These narrations are available for about 10% of all takes
in the dataset, since we wanted participants to execute the
tasks without pausing for the bulk of the recordings.

The third language dataset consists of atomic action de-
scriptions. Whereas the commentary and narrate-and-act
language reveals spoken opinions and reasons for the ac-
tions (the “why and how”), this stream of text is specifically
about the “what”. Inspired by Ego4D’s narrations [47],
these are short statements written by third-party (non-
domain expert) annotators, timestamped for every atomic
action performed by the participant for all videos in the
dataset, for a total of 432K sentences. This data is valuable
for mining for taxonomies of objects and actions in the data,
indexing the videos with keywords for exploring the dataset,
and for future research in video-language learning, as has
been quite successful for the Ego4D narrations [8, 85, 123].

5. Ego-Exo4D benchmark tasks

Our second major contribution is to define the core re-
search challenges in the domain of egocentric perception of
skilled activity, particularly when ego-exo data is available
for training (if not testing). To that end, we devise a suite
of foundational benchmark tasks organized into four task
families: relation (Sec. 5.1), recognition (Sec. 5.2), profi-
ciency (Sec. 5.3), and ego-pose (Sec. 5.4). For each task,
we provide high quality annotations and baselines that pro-
vide a starting point from which the research community
can build. We will run the first formal Ego-Exo4D chal-
lenges in 2024. Due to space limits, we briefly overview

each task; see the referenced Appendices for all details in-
cluding baseline models and results. There are two publicly
released versions of Ego-Exo4D annotations: v1 is used to
train/test baselines in this paper; the larger v2 will be used
for future challenge leaderboards (see Table 7 in Appendix).

5.1. Ego-exo relation

Our ego-exo relation tasks deal with relating the video con-
tent across the extreme ego-exo viewpoint changes. They
take the form of object-level matching (correspondence)
and synthesis of one view from the other (translation).

5.1.1 Ego-exo correspondence

Motivation. Establishing object-level correspondences be-
tween ego and exo viewpoints would allow AI assistants
to provide visual instructions by matching third-person ob-
servations of objects from instructional videos to those in
the user’s first-person view. Compared to the general corre-
spondence problem, our setting requires tackling a number
of challenges: extreme viewpoint differences, high degrees
of object occlusion, and many small objects (e.g., cooking
utensils and bike repair tools).
Task definition. Given a pair of synchronized ego-exo
videos and a sequence of query masks of an object of in-
terest in one of the videos, the task is to predict the cor-
responding mask for the same object in each synchronized
frame of the other view, if it is visible. See Figure 4, left.
The task can be posed with query objects in either the ego or
exo video, with both directions presenting interesting chal-
lenges (e.g., high degree of occlusion in ego views, and
small object size in exo views). See Appendix 13.A.1.
Related work. Related tasks are image-level sparse corre-
spondence given query points (instead of object masks) [65]
and image-level object co-segmentation [166] for jointly
segmenting semantically similar objects. Our task goes be-
yond static object correspondence, since the interplay be-
tween human pose and object state changes during manip-
ulation necessitate using temporal context and tracking as
the query object can be highly occluded or blurry [158].



Remove WheelOpen Quick 
Release

Release 
Brakes Loosen the bead

Optional?

Next 
keysteps?Missing?

Mistake?Previous 
keysteps?

Detach 
tube

“Release Brakes”Joint training 
with Ego + Exo

Total energy:
Sensor + 

Compute +
Memory transfer

Keystep @ t

Procedure understandingFine-grained keystep recognition Energy-efficient multimodal recognition

Figure 5. Ego-exo keystep recognition. This family of tasks consists of fine-grained recognition (left, Section 5.2.1), procedure under-
standing (center, Section 5.2.3), and energy-efficient multimodal recognition (right, Section 5.2.2).

5.1.2 Ego-exo translation

Motivation. Our translation task entails synthesizing a tar-
get ego clip from a given exo clip. We believe this prob-
lem will drive novel research for combining recognition and
object synthesis. For example, in Figure 4 (right), the ap-
proach must make effective use of the hand’s object-specific
shape and appearance priors in order to synthesize the ego
view of the fingertips—which are not visible in the exo
clip. Furthermore, this task will stimulate advances in vi-
sual odometry, as the method must be able to infer the ego
camera pose from the third-person clip. Ego-exo transla-
tion also holds strong application potential, as it may un-
lock the ability to generate first-person renderings of videos
that were originally captured from a third-person perspec-
tive, e.g., benefitting robot perception or AR coaching.
Task definition. We decompose ego-exo translation into
two separate tasks: ego track prediction and ego clip gen-
eration (Figure 4, right). Ego track prediction estimates
the segmentation mask of an object in the unobserved ego
frames given the object masks in the observed exo clip. Ego
clip generation must generate the image values (i.e., RGB)
within the given ground-truth ego mask by making use of
the exo clip and the object masks in those frames. This de-
composition effectively splits the problem into two tasks:
1) predicting the location and shape of the object in the ego
clip, and 2) synthesizing its appearance given the ground-
truth position. For each, we consider a variant where the
pose of the ego camera with respect to the exo camera is
available to use at inference time. This simplifies the prob-
lem but reduces the applicability of the method, since this
information is typically not available for arbitrary third-
person videos. See Appendix 13.A.2.
Related work. Ego-exo translation relates to cross-view
image synthesis [96, 130, 157]. Within this genre, the prob-
lem of exo-to-ego generation was recently introduced for
both images [93] and video [94, 97], and approached using
GANs or diffusion conditioned on the input view. Our work

not only formalizes this task with ample data, but its formu-
lation also draws attention to the need for a semantic basis
to new view synthesis across extreme view changes.

5.2. Ego-exo keystep recognition

This family of tasks centers around recognizing the keysteps
of a procedural activity and modeling their dependencies.

5.2.1 Fine-grained keystep recognition

Motivation. Recognizing the step a camera wearer is per-
forming is non-trivial: keysteps in the same activity may
look similar (folding vs. smoothing the bedsheet) and may
involve hand-object interactions with heavy occlusions and
head motion. Models with access to multiple views during
training can leverage their complementarity to account for
the deficiencies of each one, by learning viewpoint invariant
representations or distilling multi-view signals into a single
model (e.g., human hands from ego; body pose from exo).
Task definition. We study ego-exo for video recogni-
tion. During training, models have access to paired ego-exo
data—time-synchronized captures of the same activity from
multiple known viewpoints. Each training instance has one
ego view, N exo views, and a corresponding keystep la-
bel (e.g., “flip the omelette”). At test time, given only
a trimmed egocentric video clip, the model must identify
the keystep performed from a taxonomy of 689 keysteps
across 17 procedural activities. See Figure 5, left. Impor-
tantly, all extra supervision (time-alignment, camera poses
etc.) is only available at training time; inference is stan-
dard keystep recognition, but with models that benefit from
cross-viewpoint training. See Appendix 13.B.1.
Related work. Keystep recognition has been studied in
first-person [10, 126, 145, 148] or third-person [9, 100, 159,
205, 207] videos; however, limited work considers both
views together. Prior work considers cross-view learning
with unpaired videos [7, 82, 182] and view-invariant fea-
ture learning on paired videos [144]. In contrast, we ex-



plore keystep recognition in large-scale, procedural activi-
ties with fully synchronized training videos.

5.2.2 Energy-efficient multimodal keystep recognition

Motivation. Current activity detection models assume ac-
cess to densely sampled clips from the full video and ample
computational resources to process them. These assump-
tions are incompatible with real-world devices (e.g., mobile
phones, AR glasses) where the camera is not always on and
the compute budget is limited by battery life. This task fo-
cuses on building energy-efficient video models to pave the
way for feasibility on real-world hardware.
Task definition. We formulate the problem as an online
action detection task, with a given energy budget. See Fig-
ure 5, right. Given a stream of audio, IMU, and RGB video
data, a model must identify the keystep being performed
at each frame, as well as decide which sensor(s) to use for
subsequent time-steps. This task will inspire models that
are strategic about which modality to deploy when. En-
ergy consumption is the sum of sensor energy (operating
the camera/audio/IMU sensors), model inference costs, and
memory transfer costs, and must be within 20mW to reflect
real-world device power constraints. See Appendix 13.B.2.
Related work. Prior work on efficient models considers
light-weight architectures [41, 56, 101, 155, 165, 195], ef-
ficient input processing [43, 44, 73, 102, 156], or inference
optimizations [39, 58, 121, 174, 206]. In all cases, they op-
timize computation (FLOPs), parameter count, or predic-
tion throughput (FPS), which in isolation are insufficient to
characterize running on real-world devices. To address this,
we propose the first benchmark for energy-efficient video
recognition that is tied to real-world, on-device constraints,
and measures total power consumed.

5.2.3 Procedure understanding

Motivation. Automatically understanding the structure of
a procedure from video (inferring keystep ordering, precon-
ditions, etc.) would allow assisting AR users in a task or
informing robots that learn from human demonstrations.
Task definition. In our procedure understanding task, given
a video segment st and its previous video segment history,
models have to 1) determine previous keysteps (to be per-
formed before st); infer if st is 2) optional or 3) a procedu-
ral mistake; 4) predict missing keysteps (should have been
performed before st but were not); and 5) next keysteps
(for which dependencies are satisfied). The task offers
two versions of weak supervision: instance-level: segments
and their keystep labels are available for train/test; and
procedure-level: only unlabeled segments and procedure-
specific keystep names are given for train/test. See Figure 5
(center) and Appendix 13.B.3.
Related work. Prior work focusing on procedural un-
derstanding learns an explicit graph [62, 150, 177] as

Proficiency Estimation

Demonstration proficiency: Correct / incorrect execution

Demonstrator proficiency: Novice? Intermediate? Late Expert?

Ego

Exo

Ego

Exo

Figure 6. Demonstrator and demonstration proficiency estimation.

ground truth or uses a task graph for representation learning
[9, 107, 202] and short-term step understanding [9, 36, 202].
Other work [32, 139] studies mistake detection in a super-
vised setting. We are the first to propose procedural under-
standing to evaluate the long-term structure of the task in a
weakly-supervised setting.

5.3. Ego-exo proficiency estimation

Motivation. Going beyond recognizing what a person is
doing, this task aims to infer the user’s skill level. Such
an ability could lead to novel coaching tools that let people
learn new skills more effectively, or new ways to evaluate
human performance in domains like sports or music.
Task definition. We consider two variants: (1) demon-
strator and (2) demonstration proficiency estimation. Both
tasks consider one egocentric and (optionally) M exocen-
tric videos synchronized in time as their inputs. Demonstra-
tor proficiency is formulated as a video classification task,
where the model has to output one of four labels (novice,
early, intermediate, or late expert). Demonstration profi-
ciency is formulated as a temporal action localization task
where given an untrimmed video, the model must output
a list of tuples, each containing a timestamp, a proficiency
category (i.e., good execution or needs improvement), and
its probability. Note that parts of the video that do not re-
veal the participant’s skill are left unlabeled. See Figure 6
and Appendix 13.C.
Related work. Prior work uses egocentric [12, 35] or ex-
ocentric [60, 114, 115] views for proficiency estimation in
sports [12, 115, 120], health [60, 92, 191, 208], and oth-
ers [35, 186]. We propose the first multi-view egocentric
and exocentric proficiency estimation benchmark. Unlike
prior work, our benchmark spans diverse, day-to-day physi-
cal and procedural scenarios and includes temporally local-
ized annotations of (in)correct executions.

5.4. Ego pose

This family of tasks is motivated by recovering the skilled
body movements of participants, even in the extreme setting
of monocular ego-video input in dynamic environments.



Figure 7. Hand and body keypoints for ego-pose estimation

Motivation. Estimating the physical state of a person’s
body—the 3D positions of the arms, legs, hands—from the
ego view is essential for wearable AI systems that can sup-
port human activity. Challenges include subtle and flexible
movements, frequent occlusion, and body parts out of view.
Task definition. For both the body and hand pose (“ego
pose”) estimation tasks, the input is an ego video. The out-
put is a set of 3D joint positions of the camera wearer’s body
and hands for each time step, parameterized as 17 3D body
joint positions and 21 3D joint positions per hand, following
the MS COCO convention [87]. To our knowledge, Ego-
Exo4D offers the largest manual ground truth (GT) egocen-
tric body and hand pose annotations to date. And, in total, it
offers ∼14M frames of 3D GT and pseudo-GT combined.
See Figure 7 and Appendix 13.D.
Related work. Limited prior work explores 3D body
pose from a wearable camera. Some methods assume no
body visibility [63, 80, 98, 187, 188], while others as-
sume partial observability by modifying cameras to cap-
ture the body [3, 57, 136, 161, 181]. Our dataset can be
used for both paradigms. Existing hand pose datasets use
constrained environments [106, 146] with simple hand mo-
tion [50, 76, 109], whereas we include diverse real-world
scenarios, e.g., with expert musicians and bike mechanics.

6. Conclusions
Ego-Exo4D provides a dataset of unprecedented scale and
realism for ego-exo video learning. It offers a unique win-
dow into skilled human activity from 8 compelling domains
by hundreds of real-world experts around the globe. To-
gether with the proposed benchmarks, we hope that this new
open source resource will set the stage for substantial new
research for the years to come.

Though we are motivated by skill learning, Ego-Exo4D
is poised for even broader influence, beyond the proposed
benchmarks. Whereas existing datasets lack activity model-
ing in real-world 3D contexts (e.g., restricted to mocap suits
and/or lab settings). Ego-Exo4D is a resource for general
3D vision—such as environment reconstruction, camera re-
localization, audio-visual mapping, and many others. Sim-
ilarly, our novel video-language resources will offer many
opportunities for grounding of actions and objects, multi-

modal representation learning, and language generation. Fi-
nally, though our tasks prioritize perception from the “ego-
only” perspective, the exo component of our data ensures
its utility for the more traditional exo viewpoint too, e.g.,
for activity recognition and body pose estimation.
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