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Fig. 1: Main idea. We aim to learn deep RL grasping policies for a dexterous robotic hand, injecting a visual affordance prior that encourages using parts
of the object used by people for functional grasping. Given an object image (left), we predict the affordance regions (center), and use it to influence the
learned policy (right). The key upshots are better grasping, faster learning, and generalization to successfully grasp objects unseen during policy training.

Abstract— Dexterous robotic hands are appealing for their
agility and human-like morphology, yet their high degree
of freedom makes learning to manipulate challenging. We
introduce an approach for learning dexterous grasping. Our
key idea is to embed an object-centric visual affordance model
within a deep reinforcement learning loop to learn grasping
policies that favor the same object regions favored by people.
Unlike traditional approaches that learn from human demon-
stration trajectories (e.g., hand joint sequences captured with
a glove), the proposed prior is object-centric and image-based,
allowing the agent to anticipate useful affordance regions for
objects unseen during policy learning. We demonstrate our
idea with a 30-DoF five-fingered robotic hand simulator on 40
objects from two datasets, where it successfully and efficiently
learns policies for stable functional grasps. Our affordance-
guided policies are significantly more effective, generalize
better to novel objects, train 3× faster than the baselines,
and are more robust to noisy sensor readings and actuation.
Our work offers a step towards manipulation agents that
learn by watching how people use objects, without requiring
state and action information about the human body. Project
website with videos: http://vision.cs.utexas.edu/
projects/graff-dexterous-affordance-grasp.

I. INTRODUCTION

Robot grasping is a vital prerequisite for complex ma-
nipulation tasks. From wielding tools in a mechanics shop
to handling appliances in the kitchen, grasping skills are
essential to everyday activity. Meanwhile, common objects
are designed to be used by human hands (see Fig. 1). Hence,
there is increasing interest in dexterous, anthropomorphic
robotic hands with multi-jointed fingers [12], [39], [15], [57],
[1], [33], [3]. Unlike simpler end effectors such as a parallel-
jaw gripper, a dexterous hand has the potential for fine-
grained manipulation. Furthermore, because its morphology

1 Department of Computer Science, The University of Texas at Austin
2 Facebook AI Research

Correspondences to {mandikal,grauman}@cs.utexas.edu

agrees with that of the human hand, in principle it is readily
compatible with the many real-world objects built for people’s
use. Of particular interest is functional grasping, where the
robot should not merely lift an object, but do so in such a
way that it is primed to use that object [7], [20]. For instance,
picking up a pan by its base for cooking or gripping a hammer
by its head for hammering is contrary to functional use.

Learning to perform functional grasping with a dexterous
hand is highly challenging. Typical hand models have 24
degrees of freedom (DoF) across the articulated joints, pre-
senting high-dimensional state and action spaces to master. As
a result, a reinforcement learning approach trained purely on
robot experience faces daunting sample complexity. Existing
methods attempt to control the complexity by concentrating
on a single task and object of interest (e.g., Rubik’s cube [1])
or by incorporating explicit human demonstrations [46], [12],
[39], [15], [57], [47], [38]. For example, a human “teacher"
wearing a glove instrumented with location and touch sensors
can supply trajectories for the agent to imitate [39], [15],
[38]. While inspiring, this strategy is limited by its expense
in terms of human time, the possible need to wear specialized
equipment, and the close coupling between the person’s
arm/hand trajectory and the target object of interest, which
limits generalization.

Towards overcoming these limitations, we propose a new
approach to learning to grasp with a dexterous robotic hand.
Our key insight is to shift from person-centric physical
demonstrations to object-centric visual affordances. Rather
than learn to mimic the sequential states/actions of the human
hand as it picks up an object, we learn the regions of objects
most amenable to a human interaction, in the form of an
image-based affordance prediction model. We embed this
visual affordance model (a convolutional neural network)
within a deep reinforcement learning framework in which the
agent is rewarded for touching the afforded regions. In this
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way, the agent has a “human prior" for how to approach an
object, but is free to discover its exact grasping strategy
through closed loop experience. Aside from accelerating
learning, a critical advantage of the proposed object-centric
design is generalization: the learned policy generalizes to
unseen object instances because the image-based module can
anticipate their affordance regions (see Fig. 1).

Our main contribution is to learn closed loop dexterous
grasping policies with object-centric visual affordances. We
demonstrate our idea with the 30 DoF AdroitHand model [21]
in the MuJoCo physics simulator [50]. We train the visual
affordance model from images annotated for human grasp
regions [6]. Importantly, image annotations are a much lighter
form of supervision than state-action trajectories from today’s
status quo expert demonstrations.

In experiments with 40 objects, we show our approach
yields significantly better quality grasps compared to other
pure RL models unaware of the human affordance prior, even
in the presence of sensor and actuation noise. The learned
grasping policies are stable under hostile external forces and
robust to changes in the objects’ physical properties (mass,
scale). Furthermore, our approach significantly improves the
sample efficiency of learning process, for a 3× speed up in
training despite having no state-action demonstrations. Finally,
we show our agent generalizes to pick up object instances
never encountered in training. For example, though trained
to pick up a hammer, the model leverages partial visual
regularities to pick up an axe. Our results offer a promising
step towards agents that learn by watching how people use
real-world objects, without requiring information about the
human operator’s body.

II. RELATED WORK

Grasping with planning Traditional analytical approaches
use knowledge of the 3D object pose, shape, gripper configu-
ration, friction coefficients, etc. to determine an optimal grasp
[5], [8]. With the advent of deep neural nets, learning-based
approaches to grasping have gained traction. A common
protocol estimates the 6-DoF object pose, followed by model-
based grasp planning [51], [30], [23], [48]. Image modules
trained to detect successful grasps by parallel jaw grippers
can accelerate the robot’s learning [22], [40], [35], [23], [26],
[31], [36]. The above strategies are typically employed for
simple pick-up actions (not functional grasps) with simple
end-effectors like parallel jaw grippers or suction cups, for
which a control policy is easier to codify. Some recent work
explores related open-loop strategies with complex controllers,
but, unlike our method, assumes access to the full 3D model
of the objects [10], [2], [4], [7], [44].

Reinforcement learning for closed-loop grasping Re-
inforcement learning (RL) models offer a counterpoint to
the planning paradigm. Rather than break the task into two
steps—static grasp synthesis followed by motion planning—
the idea is to use closed-loop feedback control based on
visual and/or contact sensing so the agent can dynamically
update its strategy while accumulating new observations [16],
[37], [28]. Our proposed model is also closed-loop RL and

hence enjoys this advantage. However, unlike prior work, we
inject an object-centric affordance prior learned from human
grasps. It boosts sample efficiency, particularly important for
the complex action space of dexterous robotic hands.

Some impressive RL-based systems for dexterous manipu-
lation tackle a specific task with a specific object, like solving
Rubik’s cube [1], shuffling Baoding balls [33], or reorienting
a cube [3]. In contrast, our focus is on grasping and lifting
objects, including novel categories, and again our injection
of object-centric human affordances is distinct.
Learning manipulation with imitation To improve sample
complexity, imitation learning from expert demonstrations is
frequently used, whether for non-dexterous [46], [43], [45],
[47] or dexterous [12], [39], [15], [57], [38] end effectors.
Though advancing the state of the art in dexterous manipu-
lation, the latter approaches rely on “person-centric" human
demonstrations with motion capture gloves. Aside from
gloves, demonstrations may be captured via teleoperation
and video [13] or paired video and kinesthetic demos [45],
[46]. In any case, expert demonstrations can be expensive,
are specific to the end effector of the demonstration, and their
trajectories need not generalize to novel objects.

In contrast, the proposed object-centric affordances sidestep
these issues, at the cost of instead supervising the pre-
dictive image model. We use supervision from thermal
image “hotspots" where people hold objects to use them [6],
though other annotation modes are possible. ContactGrasp [7]
leverages thermal image data to rank GraspIt [29] hand poses
for a model-based optimization approach. In contrast, our
approach 1) learns a closed-loop RL policy for grasping, and
2) incorporates a predictive image-based affordance model
that allows generalization to unseen objects. Furthermore,
once trained, our policy runs in real-time on new objects,
whereas ContactGrasp takes about 4 hours to sample GraspIt
poses for each unseen object.
Visual affordances A few methods infer visual affordances
for grasping with simple grippers [40], [19], [23], [20] and
explore non-robotics affordances [32], [9], [34], [11]. Tradi-
tionally, supervision comes from labeled image examples [32],
[9] or a robot’s grasp success/failure [40], [22], [23], while
newer work explores weaker modes of supervision from
video [34], [11]. Recent work has shown that visual models
can help focus attention for a pick and place robot [53], [55],
[56]. All of the prior methods make use of simple grippers in
an open-loop control setting [40], [22], [23], [53], [55], [56],
[19]. To our knowledge, ours is the first work to demonstrate
closed-loop RL policies learned with visual affordances.

III. APPROACH

Our goal is to learn dexterous robotic grasping policies
influenced by object-centric grasp affordances from images.
Our proposed model, called GRAFF for Grasp-Affordances,
consists of two stages (Fig. 3). First, we train a network to
predict affordance regions from static images (Sec. III-A).
Second, we train a dynamic grasping policy using the learned
affordances (Sec. III-B). All of our experiments are conducted
on a simulated tabletop environment using a 30 DoF dexterous
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Fig. 2: Affordance anticipation. a) Training images generated from 3D
thermal maps from ContactDB. Green denotes label masks overlaid on images.
b) Sample predictions for seen and novel objects from ContactDB and 3DNet,
respectively. Our anticipation model predicts functional affordances for novel
objects and viewpoints (e.g., graspable handles and rings).

hand as the robotic manipulator (detailed below). We next
detail each of these stages.

A. Affordance Anticipation From Images

We first design a perception model to infer object-centric
grasp affordance regions from static images. As discussed
above, an object-centric approach has the key advantage of
providing human intelligence about how to grasp while for-
going demonstration trajectories. Furthermore, by predicting
affordances from images, we open the door to generalizing
to new objects the robot has not seen before.
Thermal image contact training data We train the affor-
dance model with images with ground truth functional grasp
regions obtained from ContactDB [6]. ContactDB contains 3D
scans of 50 household objects along with real-world human
contact maps captured using thermal cameras. Participants
grasped each object using two different post-grasp functional
intents—use and hand-off —and a thermal camera on a
turntable recorded the multi-point “hotspots" where the object
was touched. Our model could alternatively be trained with
manual image annotations. Note that our work infers visual
affordances on new images, whereas ContactDB is a dataset
of actual grasp measurements.

We consider contact maps corresponding to the use intent
and exclude objects having bimanual grasps, which yields 16
total objects. Since each object has thermal maps captured
from 50 different participants, we use k-medoids clustering
to obtain a representative thermal map for each object.
Specifically, for a given object, we cluster the XYZ values
of mesh points with a contact strength value above 0.5
(following [7]), then take the medoid of the largest cluster
as our representative contact map for that object. We port
the 3D models into the MuJoCo physics simulator [50] and
render them on a tabletop to create an image training set.

a)  Learn object-centric grasp affordances

b)  Use learnt affordances to train a policy for dexterous robotic grasping
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Fig. 3: Overview of our GRAFF model. a) In Stage I, we train an
affordance prediction model that predicts object-centric grasp affordances
given an image. b) In Stage II, we train an RL policy that leverages these
affordances along with other visuomotor sensory inputs (RGB-D image +
hand joint variables) to learn a stable grasping policy.

For each object, we obtain a set of image-affordance pairs
(xi, yi) by rendering the 3D object and the 3D contact map,
respectively. See Fig. 2a. We rotate each object randomly
within a 0-180◦ range of the camera viewing angle and
augment the dataset with varying camera positions. Finally,
we obtain a dataset of ∼15k training pairs, which we divide
into an 80:10:10 train/val/test split.
Image affordance prediction model Let X represent the
domain of object RGB images, and let Y be the object-centric
grasp affordances. Our goal is to learn a mapping G : X → Y
that will infer the grasp affordance regions from an individual
image. During training, we have labelled (image, mask) pairs
{xi, yi}Ni=1. We pose the affordance learning problem as
a segmentation task to predict binary per-pixel labels, and
approximate G with a convolutional neural network. We adapt
the Feature Pyramid Network (FPN) [25] to perform semantic
segmentation and use an ImageNet-pretrained ResNet-50 [14]
as the backbone. See Fig 3a.

We now have a simple but effective model to infer object-
centric grasp affordances from static images, which we will
use below to guide a dexterous grasping policy. On the
ContactDB test split, the segmentation accuracy averages
80.4% in IoU. Fig. 2b shows sample predictions for both
ContactDB and 3DNet [52] ( see Sec. IV for dataset info). Our
affordance anticipation model is able to predict meaningful
functional affordances for novel objects and viewpoints. For
example, it faithfully infers graspable handles of saucepan,
axe, and pliers despite not having encountered these categories
in the training set.

B. Dexterous Grasping using Visual Affordances

We want a controller that can intelligently process sensory
inputs and execute successful grasps for a variety of objects
with diverse geometries. Towards this end, we develop a
deep model-free reinforcement learning model for dexterous
grasping. Our robot model assumes access to visual sensing
and proprioception, as well as 3D point tracking. However,



the agent does not have access to world dynamics, full object
state, or the reward function. Given the large action and
state spaces, sample efficiency is a significant challenge. We
show how the visual affordance model streamlines policy
exploration to focus on object regions most amenable to
grasping. See Fig. 3b.
Problem formulation We pose the problem of grasp acqui-
sition as a finite-horizon discounted Markov decision process
(MDP), with state space S, action space A, state transition
dynamics T : S × A → S, initial state distribution ρ0,
reward function r : S × A → R, horizon T , and discount
factor γ ∈ (0, 1]. Hence, we are interested in maximizing the
expected discounted reward J(π) = Eπ[

∑T−1
t=0 γtr(st, at)]

to determine the optimal stochastic policy π : S → P(A).
We use an actor-critic model to estimate state values Vθ(st)
and policy distribution πθ(at|st) at each time step.
State space The work space of the robot consists of an object
positioned on a table at a random orientation. The state space
consists of the visuomotor inputs used to train the control
policy: S = {X+, Y, P,D} (see Fig. 4). The visual input
at time t consists of an RGB-D image x+t ∈ X+ captured
by an egocentric hand-mounted camera that translates with
the hand but does not rotate. The affordance input yt ∈ Y
is the binary affordance map inferred from the RGB image
before the agent moves its hand in view, yt = G(xt). The
proprioception input pt ∈ P consists of the positions and
velocities of each DoF in the hand actuator.

The distance input dt ∈ D is the distance between the
agent’s hand and the object affordance region. We compute it
as the pairwise distance between M fixed points on the hand
and N points sampled from the backprojected affordance
map. We obtain the latter by backprojecting y0 to 3D points
in the camera coordinate system using the depth map at
t = 0, then tracking those points throughout the rest of the
episode. Hence we do not assume access to the full object
state (we do not know the object mesh or mass), but we
do assume perfect tracking of the affordance region that
was automatically detected in the agent’s first video frame.
In experiments, we study the effect of substantial tracking
failures to relax this assumption. We leave it as future work
to incorporate SoTA visual tracking, e.g., by strengthening
the segmentation model in the presence of occlusions.
Action space We use a 30-DoF position-controlled an-
thropomorphic hand from the Adroit platform [21] as our
manipulator. It consists of a 24-DoF five-fingered hand
attached to a 6-DoF arm. Hence, our action space consists
of 30 continuous position values.Delta angles are predicted
by sampling from a multivariate Gaussian of unit variance
whose mean is returned by the policy π.
Reward function The reward function should not only signal
a successful grasp, but also guide the exploration process
to focus on graspable object regions. To realize this, we
combine two rewards: Rsucc (positive reward when the object
is lifted off the table) and Raff (negative reward denoting
the hand-affordance contact distance). Raff is computed
as the Chamfer distance between the M and N points
described earlier. We also include an entropy maximization
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Fig. 4: Grasp policy learning architecture. The inputs to the policy consist
of RGB-D images and an inferred affordance map (top left), as well as the
agent’s proprioception and contact distances (bottom left). These streams
are independently processed before being sent to an actor-critic network that
samples actions and estimates state values.

term, Rentropy , to encourage exploration of the action space
[42]. Our total reward function is:

r = αRsucc + βRaff + ηRentropy. (1)

Through Raff , the agent is incentivized to explore areas of
the object that lie within the affordance region. The object-
centric formulation poses no constraints on the hand pose, and
can thus be seen as softer supervision than that employed in
imitation learning for manipulation which requires kinesthetic
teaching [45], [46] or tele-operation [13], [39], [27].
Implementation details We implement our approach with
the architecture shown in Fig. 4. The affordance network
is optimized using Dice loss for 20 epochs with a learning
rate of 1e − 4 and minibatch size of 8. We preprocess the
affordance map by computing its distance transform, which
helps densify the affordance input. The CNN encoder consists
of three 2D convolutional layers with filters of size [8,4,3], and
a bottleneck layer of dimension 512, with ReLU activations
between each layer. The proprioception and hand-object
distance inputs are processed using a 2-layer fully-connected
encoder of dimension [512,512]. For the hand-object contacts,
we use M = 10 and N = 20 uniformly sampled points.
The CNN and FC embeddings are concatenated and further
processed (FCs) before predicting the action values. We
optimize the network using the Adam optimizer [18] with
a learning rate of 5e− 5. The full network is trained using
PPO [42]. We train a single policy for all ContactDB objects
for 150M agent steps with an episode length of 200 time
steps. With each episode being 2 s long, this amounts to
∼150 hours of learning experience. The coefficients in the
reward function (Eq. 1) are set as: α = 1, β = 1, η = 0.001.
We train for four random seed initializations. All project code
is publicly available on the project website.

IV. EXPERIMENTS

Datasets We validate our approach with two datasets: Con-
tactDB [6] and 3DNet [52]. We train a single policy across
all 16 objects from ContactDB with one-hand grasps: apple,
cell phone, cup, door knob, flashlight, hammer, knife, light
bulb, mouse, mug, pan, scissors, stapler, teapot, toothbrush,
toothpaste. First we evaluate grasping on these 16 seen objects.
Then, we test on 24 novel object meshes from 3DNet, a CAD



model database with multiple meshes per category. We use
24 meshes from 9 categories that roughly align with the
objects in ContactDB. Four of the 3DNet categories exist in
ContactDB (hammer, knife, mug, scissors), and the other five
do not (axe, pencil, pliers, saucepan, wrench), making this a
good test of generalization.
Comparisons We first devise two pure RL baselines that
lack the proposed affordances: (1) NO PRIOR: uses the
lifting success and entropy rewards only. (2) COM: uses
the center of mass as a prior, which may lead to stable
grasps [41], [17], by penalizing the hand-CoM distance for
Raff . Both pure RL methods use our same architecture
(Fig. 4), allowing apples-to-apples comparisons. (3) DAPG:
We also compare to DAPG [39], a hybrid imitation+RL model
that uses motion-glove demonstrations. DAPG is trained with
object-specific mocap demonstrations collected by us in VR
for grasping each ContactDB object (25 demos per object).
We stress that DAPG is a strongly-supervised approach with
access to full motion trajectories of expert actions, whereas
our approach uses inferred object-centric affordances to guide
the policy. We train one policy per object for DAPG, allowing
it to specialize to each object’s demonstrations; our GRAFF is
a single policy trained on all ContactDB objects. A practical
advantage of our method is to replace heavy demonstrations
(state-action pairs) with image-based affordances.

We stress that the task at hand is dexterous grasp acquisition
with a multi-fingered hand, not end effector pose estimation.
Accordingly, we focus our comparisons on closed-loop
RL methods to pinpoint exactly where our method has
impact. Non-RL methods that evaluate only end-effector
pose, e.g.[7], as well as methods that directly regress 6-
DoF grasp poses for a parallel-jaw gripper followed by grasp
execution at that orientation [22], [40], [35], [23], [26], [31],
[36] are not applicable in this domain. In short, our idea is
quite different—not only in approach (dynamic RL policy
vs. pose estimation), but also in problem domain (dexterous
manipulation vs. gripper) and learning signal (human use
prior vs. solely geometry or robot experience).
Metrics We use three metrics: (1) Grasp Success: For a given
episode, a successful grasp has been executed if the object
has been lifted off the table by the hand for at least the last 50
time steps (a quarter of the episode length) to allow time to
reach the object and pick it up. (2) Grasp Stability: After an
episode completes, we apply perturbing forces of 5 Newtons
in six orthogonal directions to the object. If the object remains
held, the grasp is deemed stable. (3) Functionality: We report
the percentage of successful grasps in which the hand lies
close the GT affordance region (measured using Chamfer
distance). We execute 100 episodes per object with the objects
placed at different orientations ranging from [0,180◦], and
report mean and std dev of the metrics across all models
trained with four random seeds.
Noisy sensing and actuation When deploying trained poli-
cies on real robots, we might encounter a number of non-ideal
circumstances owing to faulty sensor readings or imperfect
robot executions. To better model such realistic settings,
we incorporate noise into our training and testing regimes
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Fig. 5: Grasping performance. Example frames from a) seen objects in
ContactDB and b) novel objects in 3D-Net. Our affordance-based GRAFF
is able to successfully grasp both seen and novel objects at their functional
grasp locations, while the baselines either fail to learn successful grasps (mug,
teapot, saucepan, pliers) or grasp at non-functional regions (pan, scissors).
Despite GRAFF’s weaker supervision compared to DAPG, it still generalizes
better to unseen objects, thanks to the image-based model.

in simulation [1], [58]. Following [58], we apply additive
Gaussian noise on the proprioceptive sensor readings (robot
joint angles and angular velocities), object tracking points,
and robot actuation. We also apply pixel perturbations in the
range [-5,5] and clip all pixel values between [0,255]. We
train all versions of all methods under these noisy conditions
(see Fig. 6, discussed below). We additionally test our method
with a tracking failure model that freezes the track for 20
frames at random intervals and find that mean success rate is
still reasonably high at 54%. These empirical results indicate
that GRAFF can remain fairly robust to tracking, sensing,
and actuation failures that real robotic systems encounter.

While our lab does not have access to a real dexterous
robotic hand, we believe that (like in [15], [24], [28], [39],
[54]) the high quality physics-based simulator together with
these noise models offers a meaningful study. We are also
encouraged by recent successes translating policies trained
only in simulation to real-world dexterous robots using
domain randomization [3], [49].
Grasping seen objects from ContactDB Fig 6 shows the
results on ContactDB. We show the mean and std dev over
different seeds. GRAFF (our model) outperforms both pure
RL baselines consistently on all metrics. Our gains persist
with noisy sensing and actuation as well. Fig. 5a shows
qualitative examples; please see the video for full episodes
and failure cases. GRAFF can successfully grasp the objects
at the anticipated affordance regions (handle of pan, mug,
teapot, knife, scissors), while the baselines fail to grasp objects
with complex geometries (pan, mug, teapot). This shows the
effectiveness of the affordance-guided policy in learning stable
functional grasps.

Our method also fares well compared to the more intensely
supervised imitation+RL method DAPG [39], outperforming
it on all metrics. This is a very encouraging result: not
only does our method outperform its RL counterparts, but



Fig. 6: Quantitative comparison. Our approach outperforms the baselines
and a state-of-the-art method that learns from expert demonstrations. The
differences remain even with noisy actuation, sensing, and tracking.

it is also competitive with a method that leverages expert
trajectories. We found that DAPG can be vulnerable to
imperfect demonstrations, yet in practice expert demos can
be difficult to obtain (e.g., with mocap gloves). We also
ran DAPG with the authors’ provided demonstrations for a
ball object, which performed slightly worse than the policies
trained with the object-specific DAPG policies in Fig. 6.
Robustness to physical properties of the objects To
evaluate robustness to changes in object properties, we
apply our policy to a range of object masses and scales
not encountered during training. Fig. 7 shows 3D plots. Here,
m0 = 1kg and s0 = 1 are the mass and scale values used
during training. GRAFF remains fairly robust across large
variations, which we attribute to GRAFF’s preference for
stable human-preferred regions.
Grasping unseen objects from 3DNet Next we push
the robustness challenge further by requiring the agent to
generalize its grasp behavior to objects it has not encountered
before (the 24 3DNet [52] objects). We first render the objects
and predict grasp affordances (cf. Fig. 2b). We then apply the
policy trained on ContactDB to execute grasps. For DAPG, we
use the trained policy of the ContactDB object that is closest
in shape to the one in 3DNet. Fig. 6b shows the results. We
outperform all three baselines by a large margin in both grasp
success and stability. The key factor is our visual affordance
idea: the anticipation model generalizes sufficiently to new
object shapes so as to provide a useful object-centric prior.
Note that we cannot report the functionality score for 3DNet
since there are no GT affordances for these objects. Fig. 5b
shows sample grasps. GRAFF successfully executes grasps
at the anticipated affordance regions (e.g., handle of axe and
finger rings on scissors), whereas the baselines may grasp
the scissors at its blades or fail to lift the axe.
Ablations The NO PRIOR baseline above (average success
rate 16%) is a key ablation for our method. To further tease
out elements of our approach, we compare our model with
only the hand-object contact term, adding the affordance map,
and adding the Raff reward. Average success rates are 39%,
42%, 63%, respectively. Thus our full model is most effective.
Training time Fig. 8 shows the grasp success rate versus
number of training samples. Not only does our model learn

GRAFF

S
uc

ce
s

COM

Training settings

S
ta

bi
lit

y

0.6
    

1.0
    

 1.4

0.6
    

1.0
    

1.4

(kg
)

(kg
)

= 0.1

Fig. 7: Robustness to changes in physical properties. GRAFF shows good
generalization across a range of mass and size variations of the objects.

Fig. 8: Training curves. GRAFF outperforms both baselines by a large
margin and provides a significant speed-up in terms of training time.

more successful policies, it also has a sharper learning curve.
While the pure RL baselines reach a maximum success rate
of 30% in 150M training samples (∼150 hours of robot
experience), our method reaches the same success rate in
only 50M samples (∼50 hours)—a 3× speedup. Recall that
150 hours is a one-time cost: we train a single policy for all
ContactDB objects, and simply execute that trained policy
when encountering an unseen object. Thus our affordance
prior meaningfully improves sample efficiency for dexterous
grasping, while convincingly outperforming the other pure
RL methods. GRAFF also learns faster and performs better
than the more heavily supervised DAPG for the same number
of training samples.

V. CONCLUSION

Our approach learns dexterous grasping with object-centric
visual affordances. Breaking away from the norm of expert
demonstrations, our GRAFF approach uses an image-based
affordance model to focus the agent’s attention on “good
places to grasp". To our knowledge, ours is the first work
to demonstrate closed-loop RL policies learned with visual
affordances. The key advantages of our design are its learning
speed and ability to generalize policies to unseen (visually
related) objects. While there is much more work to do in
this direction, we see the results as encouraging evidence for
manipulation agents learning faster with more distant human
supervision. In future work, we are interested in expanding
the visual affordance model, modeling the multi-modal
distribution of viable affordance regions, and investigating
manipulations beyond grasping (e.g., open, sweep).
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