
Interaction Hotspots From Video (Supplementary Material)
This section contains supplementary material to support

the main paper text. The contents include:

• (§S1) A video demonstrating our method on clips of
human-object interaction.

• (§S2) Ablation study of our model components in Sec-
tion 3.2 and Section 3.3 of the main paper.

• (§S3) EPIC Kitchens data annotation details.

• (§S4) Details about the anticipation loss Lant for EPIC
Kitchens described in Section 4 (Datasets).

• (§S5) Implementation details for our model and experi-
ments in Section 4.1.

• (§S6) Architecture details for the IMG2HEATMAP model
introduced in Section 4.1 (Baselines)

• (§S7) Additional details about the evaluation protocol for
our experiments in Section 4.1.

• (§S8) More examples of hotspot predictions on OPRA
and EPIC to supplement Figure 4 in the main paper.

• (§S9) Clustering visualizations to accompany the results
in Section 4.2.

S1. Interaction Hotspots on Video Clips
We demonstrate our method on videos from EPIC by

computing hotspots for each frame of a video clip. Note
that the OPRA test set consists only of static images (Ta-
ble 2 in main paper), as following the evaluation protocol
in [12]. The video can be found on the project page. Our
model is trained on all actions, but we show hotspots for 5
frequent actions (cut, mix, adjust, open and wash) for clar-
ity. Our model is able to derive hotspot maps on inactive
objects before the interaction takes place. During this time,
the objects are at rest, and are not being interacted with,
yet our model can anticipate how they could be interacted
with. In contrast to prior weakly supervised saliency meth-
ods, our model generates distinct maps for each action that
aligns with object function. Some failure modes include
when our model is presented rare objects/actions or unfa-
miliar viewpoints, for which our model produces diffused
or noisy heatmaps.

S2. Ablation Study
As noted in the main paper (Section 4.1), we study the

effect of each proposed component in Section 3.2 and Sec-
tion 3.3 on the performance of our model. Table S1 shows
how they contribute towards more affordance aware activa-
tion maps. Specifically, we see that increasing the back-
bone resolution to N=28 increases AUC-J from 0.707 to
0.766. Using L2-pooling to ensure that spatial locations

OPRA EPIC

KLD ↓ SIM ↑ AUC-J ↑ KLD ↓ SIM ↑ AUC-J ↑
OURS (BASIC) 1.561 0.349 0.707 1.342 0.396 0.714
+ RESOLUTION 1.492 0.352 0.766 1.343 0.395 0.731
+ L2 POOL 1.489 0.349 0.770 1.361 0.385 0.727
+ ANTICIPATION 1.427 0.362 0.806 1.258 0.404 0.785
DIRECT CLS 1.606 0.343 0.682 1.263 0.408 0.767

Table S1: Ablation study of model enhancements. Using a
larger backbone feature resolution, L2-pooling, and the anticipa-
tion module improves our model performance, and are essential
for well localized hotspot maps.

produce gradients as a function of their activation magni-
tudes increases this to 0.770, and using our anticipation
model (Section 3.2 of the main paper) further increases
AUC-J to 0.806. Note that without the anticipation mod-
ule, the network does not have access to the static images.
DIRECT CLS is a CNN (not LSTM) variant of our model
that is trained to directly predict affordance classes from in-
dividual images. It has access to all the data our model uses
during training—video frames and the inactive images used
by our anticipation module—but it overall underperforms
our method. Note that within our model, hotspots could be
be derived at the output hypothesized image, corresponding
to hotspots on a regular video frame, but this does not align
with the static images, causing a drop in performance (0.806
vs. 0.723 AUC-J). Propagating gradients back through the
anticipation module produces correctly aligned gradients.
More generally, we observe consistent improvement for our
components across all metrics on both OPRA and EPIC.

S3. Data Collection Setup for EPIC-Kitchens
Annotations

As mentioned in Section 4 (Datasets), we collect annota-
tions for interaction keypoints on EPIC Kitchens to quanti-
tatively evaluate our method in parallel to OPRA (where an-
notations are available). We note that these annotations are
collected purely for evaluation, and are not used for train-
ing our model. We select the 20 most frequent verbs, and
31 nouns that afford these interactions. The list of verbs
and nouns can be found in Table S2. To select instances
for annotation, we first identify frames in the EPIC Kitchen
videos which contain the object, and crop out the object us-
ing the provided bounding box annotations. Most of these
object crops are active i.e. the objects are not at rest and/or
they are being actively manipulated. We discard instances
where hands are present in the crop using an off the shelf
hand detector, and manually select inactive images from the
remaining object crops. These images are then annotated.

We crowdsource these annotations using the Amazon
Mechanical Turk platform. Following [12], our annotation

In Proceedings of the International Conference on Computer Vision (ICCV) 2019



Figure S1: Interface for collecting annotations on EPIC. Users
are asked to watch a video containing an interaction, and mark
keypoints at the location of the interaction.

verbs take, put, open, close, wash, cut, mix, pour, throw, move,
remove, dry, turn-on, turn, shake, turn-off, peel, adjust,
empty, scoop

nouns board:chopping, bottle, bowl, box, carrot, colander, con-
tainer, cup, cupboard, dishwasher, drawer, fork, fridge,
hob, jar, kettle, knife, ladle, lid, liquid:washing, mi-
crowave, pan, peeler:potato, plate, sausage, scissors,
spatula, spoon, tap, tongs, tray

Table S2: Verbs and nouns annotated for EPIC.

setup is as follows. A user is asked to watch a short video
(2-5s) of an object interaction (eg. person cutting carrot),
and place 1-2 points on an image of the object for where
the interaction is performed. We solicited 5 annotations for
the same image (from unique users) to account for inter-
annotator variance. Overall, we collected 19800 responses
from 613 workers for our task, resulting in 1871 annotated
(image, verb) pairs. Our annotation interface is shown in
Figure S1.

Finally, following [12], we convert these annotations into
a heatmap by centering a gaussian distribution over each
point. We use this heatmap as our ground truth M described
in Section 4 (Datasets). Some examples of these collected
annotations and their correspondingly derived heatmaps are
shown in Figure S2.

Compared to asking annotators to label static images
with affordance labels (e.g., label ”openable”), annotations
collected by watching videos and then placing points is
well-aligned with our objective of learning fine-grained ob-
ject interaction. The annotations are better localized and are
grounded in real human demonstration, making them mean-
ingful for evaluation.

S4. Anticipation Loss for EPIC-Kitchens

As mentioned in Section 3.2 and Section 3.3, we require
inactive images to train the anticipation model. For OPRA,
these are the catalog photos of the object provided with each
video. In EPIC, we crop out inactive objects from frames

Figure S2: Top: Example annotations provided as keypoints on
EPIC object crops Bottom: The resulting heatmaps derived from
these annotations, to be used as ground truth for evaluation.

using the provided bounding boxes B, and select the inac-
tive image that has the same class label as the object in the
video. Unlike OPRA, these images may be visually differ-
ent from the object in the video, preventing us from using
the L2 loss directly. Instead, we use a triplet loss for the
anticipation loss term as follows:

L�
ant(V , xI , xI�) = max [0, d(P (xt∗), P (�xI)

−d(P (xt∗), P (�xI�)) +M ] ,

where xI and xI� represent inactive image features with the
correct and incorrect object class respectively. d denotes
Euclidean distance, and M is the margin value. We normal-
ize the inputs before computing the triplet loss, thus we keep
the margin value fixed at 0.5. This term ensures that inac-
tive objects of the correct class can anticipate active features
better than incorrect classes, and is less sensitive to appear-
ance mismatches compared to Equation 5 in the main paper.

S5. Implementation Details
We provide implementation and training details for our

experiments in Section 4. For all experiments, we use
an ImageNet [33] pretrained ResNet-50 [23] modified for
higher output resolution. To increase the output dimension
from n = 7 to n = 28, we set the spatial stride of res4 and
res5 to 1 (instead of 2), and use dilation of 2 (res4) and 4
(res5) for its filters to preserve the original scale. For Fant

we use 2 sets of (conv-bn-relu) blocks, with 3x3 convolu-
tions, maintaining the channel dimension d = 2048. We
use a single layer LSTM (hidden size 2048) as A, and train
using chunks of 16 frames at a time. For our combined loss
(Equation 7 in the main paper), we set λcls = λaux = 1 and
λant = 0.1 based on validation experiments. Our models
are implemented in PyTorch. Adam with learning rate 1e-4,
weight decay 5e-4 and batch size 128 is used to optimize
the models parameters.

S6. Supervised Baseline Architecture Details
The IMG2HEATMAP model in Section 4.1 is a fully

convolutional encoder-decoder to predict the affordance



Figure S3: Clustering of the average object embedding in the appearance vs. interaction hotspot feature space. Appearance features
capture similarities in shapes and textures (knife, tongs) and object co-occurrence (pan, lid; cup, kettle). In contrast, our interaction hotspot
features encode similarities that are aligned with object function and use (cupboard, microwave, fridge - characteristically swung open;
carrot, sausage - cut and held similarly). Similarity in this space refers to L2 distance between average object embeddings.

heatmap for an image. The encoder is an ImageNet pre-
trained VGG16 backbone (up to conv5), resulting in an en-
coded feature with 512 channels and spatial extent 7. This
feature is passed through a decoder with an architecture mir-
roring the backbone, where the max-pooling operations are
replaced with bilinear upsampling operations. This results
in an output of the same dimension as the input, and as many
channels as the number of actions. The output of this net-
work is fed through a sigmoid operator and reconstruction
loss against the ground truth affordance heatmap is calcu-
lated using binary cross-entropy.

S7. Evaluation Protocol for Grounded Affor-
dance Prediction

As discussed in Section 4.1, the heatmaps generated by
our model and the baselines are evaluated against the manu-
ally annotated ground truth heatmaps provided in the OPRA
dataset and collected on EPIC (results in Table 2). For a sin-
gle action (e.g. “press” a button), the ground truth heatmaps
may occur distributed across several instances (e.g. differ-
ent clips of people pressing different buttons on the same
object). We simply take the union of all these heatmaps as
our target affordance heatmap for the action. For evaluation,
this leaves us with 1042 (image, action) pairs in OPRA, and
571 (image, action) pairs in EPIC. For AUC-J, we binarize
heatmaps using a threshold of 0.5 for evaluation.

S8. Additional Examples of Hotspot Maps
We provide more examples of our hotspot maps to ac-

company our results in the main paper. Figure S4 and Fig-

ure S5 contains more examples of these on OPRA and EPIC
respectively to supplement our results in Figure 4 in the
main paper. Unlike the baselines, our model highlights mul-
tiple distinct affordances for an object and does so without
heatmap annotations during training. The last 4 images in
each figure show some failure cases where our model is un-
able to produce heatmaps for small or unfamiliar objects.

S9. Clustering Visualization for Appearance
vs. Our Interaction Hotspot Features

We show the full clustering of objects in the appearance
vs. interaction hotspot feature space to supplement the near-
est neighbor visualizations presented in Section 4.2 of the
main paper. Each object is represented by a vector obtained
by averaging the embeddings of all instances for that spe-
cific object class. The resultant average object representa-
tions for all classes are then clustered using agglomerative
hierarchical clustering. L2 distance in this space represents
average similarity between object classes.

Figure S3 shows how our learned representation groups
together objects related by their function and interaction
modality, more so than the original appearance-based visual
representation. Appearance features capture similarities in
shapes and textures (knife, tongs) and object co-occurrence
(pan, lid; cup, kettle). In contrast our representation en-
codes object function. Cupboards, microwaves, fridges that
are characteristically swung opened; knives and scissors
that afford the same cutting action; carrots, sausages that
are cut and held in the same manner, are clustered together.



Figure S4: Generated affordance heatmaps on inactive images from OPRA. Our interaction hotspot maps show holdable, rotatable,
and pushable regions (in red, green, and blue respectively). Saliency heatmaps do not discriminate between interactions and produce
a single heatmap shown in yellow. Recall that the DEMO2VEC approach [12] is strongly supervised, whereas our approach is weakly
supervised. Some failure cases due to small or unfamiliar objects can be seen in the last 4 examples.



Figure S5: Generated interaction hotspot maps on inactive images from EPIC-Kitchens. Our interaction hotspot maps show cuttable,
mixable, adjustable, and openable regions (in red, green, blue, and cyan, respectively). Failure cases can be seen in the last 4 examples.




