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Abstract

Object State Changes (OSCs) are pivotal for video un-
derstanding. While humans can effortlessly generalize OSC
understanding from familiar to unknown objects, current
approaches are confined to a closed vocabulary. Address-
ing this gap, we introduce a novel open-world formulation
for the video OSC problem. The goal is to temporally local-
ize the three stages of an OSC—the object’s initial state,
its transitioning state, and its end state—whether or not
the object has been observed during training. Towards this
end, we develop VIDOSC, a holistic learning approach that:
(1) leverages text and vision-language models for super-
visory signals to obviate manually labeling OSC training
data, and (2) abstracts fine-grained shared state representa-
tions from objects to enhance generalization. Furthermore,
we present HowToChange, the first open-world benchmark
for video OSC localization, which offers an order of mag-
nitude increase in the label space and annotation volume
compared to the best existing benchmark. Experimental re-
sults demonstrate the efficacy of our approach, in both tra-
ditional closed-world and open-world scenarios.1

1. Introduction
In video understanding, the study of objects primarily re-
volves around tasks like recognition [16], detection [24],
and tracking [8, 62], with the assumption that objects main-
tain a consistent visual appearance throughout the video.
Yet, objects in video are often dynamic. They can undergo
transformations that change their appearance, shape, and
even topology. For example, a pineapple goes from whole
to peeled to sliced, or wood is carved into a new shape.

Object State Changes (OSCs) [2, 15, 17, 22, 47, 50–
52, 60, 64] add a critical dimension to video understand-
ing. On the one hand, they provide insights into human
actions—observing a piece of metal being shaped into a
hook, for instance, implies the action of bending; observ-
ing an egg shell go from whole to broken implies the ac-
tion of cracking. On the other hand, OSCs are essential

1Project webpage: https://vision.cs.utexas.edu/
projects/VidOSC/.

Figure 1. Top: The video OSC objective is to temporally localize
an object’s three states (i.e., initial, transitioning, end). Bottom:
OSCs naturally exhibit a long tail. Certain OSCs, such as melting
butter or marshmallow, are frequently showcased in instructional
videos while others like melting jaggery might be rarely seen. We
introduce an innovative open-world formulation that requires ex-
trapolating to novel objects never encountered during training.

for assessing goal completion, in a way that is invariant to
the specific procedure used. For instance, the readiness of
cake batter signifies the completion of a mixing task, re-
gardless of whether it was stirred by hand or a mechanical
mixer. These core functionalities are instrumental for vari-
ous real-world applications [5, 6, 12, 13, 20, 21, 66], rang-
ing from AR/VR assistants [42] that guide users through
complex tasks by monitoring object states, to robotic ma-
nipulation [9, 55] where understanding the state of objects
is critical for task planning and failure recovery.

However, the development of video OSC is still at a
primitive stage. Existing approaches [1, 2, 15, 46, 50, 51,
58] assume a closed vocabulary, where each state transfor-
mation is associated with a limited set of objects—often just
1 or 2. For example, the concept of “melting” might be lim-
ited to familiar items like butter and marshmallow. Conse-
quently, the learned models are only capable of identifying
state changes for objects observed during training and stum-
ble when presented with novel objects. In contrast, in real-
world situations a single state transition like “melting” can
be linked with a plethora of objects—some ubiquitous and

https://vision.cs.utexas.edu/projects/VidOSC/
https://vision.cs.utexas.edu/projects/VidOSC/


others rare. Importantly, there is an intrinsic connection that
threads these OSC processes together. As humans, even if
we have never encountered an unusual substance (e.g., jag-
gery) before, we can still understand that it is experiencing
a “melting” process based on its visual transformation cues
(see Fig. 1, bottom).

In light of these limitations, we propose a a novel open-
world formulation of the video OSC problem. We for-
mally characterize OSCs in videos in terms of three states
that must be temporally localized: initial, transitioning, and
end (see Fig. 1, top). In our open-world setting, there
are known objects and novel objects. The model is only
presented with known objects during training (e.g., fry-
ing chicken, frying onions). Then, it is evaluated on both
known and novel objects (e.g., frying cauliflower). In ad-
dition to this fundamental open-world generalization, we
also tackle a more comprehensive notion of the transitioning
state. Specifically, our transitioning states encapsulate not
only action-induced modifications to the object (e.g., peel-
ing), but also passive transformations the object undergoes
without human interference (e.g., melting) and edited-out
transformations (e.g., the cake goes from raw to baked even
if baked off camera). Though largely overlooked in existing
approaches [1, 15, 46, 58], these cases are both common and
technically interesting, since they force a model to reason
about the effects of the core state change rather than search
for evidence of a human actor carrying out the action.

Armed with this new problem formulation, we propose
a holistic video OSC learning approach, anchored by two
innovative ideas. First, we explore text and vision-language
models (VLMs) for supervisory signals during training. We
pioneer the use of textual state descriptions to generate a
long tail of object state pseudo-labels, by leveraging the re-
markable capabilities of VLMs [23, 44, 63] and large lan-
guage models (LLMs) [40, 53, 54]. This strategy eliminates
the need for exhaustive label collection for training data, fa-
cilitating large-scale model training.2 Second, to confront
the open-world challenge, we propose object-agnostic state
prediction, consisting of three key techniques: a shared state
vocabulary to unify the label space across objects sharing
the same state transition (e.g., melting butter and melting
marshmallow), temporal modeling to grasp the progression
of state changes over time, and object-centric features that
better represent the objects during an OSC. These designs
equip our model with the ability to generalize state under-
standing from known objects to novel ones. We term our
approach VIDOSC.

Complementing this, we present a large-scale real-world
dataset HowToChange. Sourced from the HowTo100M col-
lection [36], it sets a new benchmark in the field of unprece-
dented scale and an authentic long-tail distribution, setting

2Note that at test time, our model requires only the video, with no need
for additional text, ensuring utmost flexibility and applicability.

it apart from the constrained scope and closed-world setting
of earlier benchmarks (see Table 1). Finally, experimental
results demonstrate the efficacy of VIDOSC, surpassing the
state-of-the-art in both traditional closed-world and novel
open-world scenarios by a great margin.

2. Related Work

Object State Changes Image-based methods explore the
compositional nature of objects and their attributes, includ-
ing zero-shot recognition of unseen combinations [22, 29,
33, 37–39, 41, 43], but do not consider the temporal pro-
gression of OSCs in video, which brings new challenges.
Video-based methods develop human-centric models that
leverage state change cues to facilitate action recognition
[1, 15, 46, 58], or explore joint discovery of object states
and actions [2, 50, 51]. Notably, all the existing meth-
ods assume a closed world, recognizing only the OSC cat-
egories (“known” objects) seen during training. Our ap-
proach distinguishes itself in three crucial ways: (1) we in-
troduce a novel open-world3 formulation, where the objects
encountered during evaluation can be entirely unseen dur-
ing training; (2) we adopt an object-centric perspective, al-
lowing for scenarios where OSCs occur with no observable
human actions in the video; and (3) we propose to utilize
the text modality and VLMs as supervisory signals, greatly
scaling up model training and boosting performance.

Early datasets for video OSC capture a limited array of
OSCs in fewer than 1,000 videos [2, 31]. The more re-
cent ChangeIt dataset [50] marks an advance in dataset scale
(34K videos), yet is still restricted to a small OSC vocabu-
lary of 44 total object-state transitions. It lacks the scope
to adequately test unseen objects, since most state changes
coincide with only 1 or 2 objects across all the videos (see
Table 1). Other datasets explore different aspects of video
OSCs, including object state recognition [47], point-of-no-
return (PNR) frame localization [17], and object segmen-
tation [52, 64], but they lack any temporal annotations of
fine-grained OSC states needed for our task’s evaluation.
Our HowToChange dataset increases the OSC vocabulary
space by an order of magnitude and allows for the first time
rigorous study of the open-world temporal OSC challenge.
Vision and Language LLMs [40, 53, 54] have revolution-
ized various research fields with their exceptional perfor-
mance across diverse applications. Building on this mo-
mentum, the use of web-scale image-text data has emerged
as a powerful paradigm in computer vision, with pow-
erful VLMs now advancing an array of image tasks, in-
cluding zero-shot classification [44], detection [18], seg-
mentation [32] and visual question answering [27, 28].
Similarly, joint video-text representation learning [3, 30,
36, 67] has been advanced by multimodal datasets like

3also called “unseen compositions” in object-attribute learning [34, 37].



HowTo100M [36] and Ego4D [17], which offer large-scale
collections of videos paired with their corresponding nar-
rations. These datasets have also facilitated tasks like step
discovery [11], localization in procedural activities [35] and
long egocentric videos [45]. The vision-language multi-
modal cycle consistency loss proposed in [14] helps dis-
cover long-term temporal dynamics in video. In line with
these developments, we propose to leverage the text ac-
companying instructional videos as well as existing high-
performing VLMs to provide supervisory signals that guide
the training of our video OSC model and allow learning for
the open world.
Learning in an Open World The open world setting
has received increasing attention, predominantly within
the image domain for object recognition [4, 48], detec-
tion [10, 18, 25, 65] and object-attribute compositional-
ity [29, 33, 37–39, 41, 43]. In the video domain, compo-
sitionality is advanced by the Something-Else dataset [34],
where the training combinations of verbs and nouns do not
overlap with the test set, sparking work on the dynamics of
subject-object interactions [7, 34, 47]. More recent efforts
leverage VLMs for zero-shot action recognition [7, 26, 57].
Concurrent work explores video object segmentation with
state-changing objects [64] and recognition of novel object-
state compositions for food chopped in different styles [47].
Despite these advances, temporal video OSC understanding
in the open world remains unexplored. Our open-world for-
mulation requires generalizing the temporal localization of
fine-grained object states from known to novel objects.

3. Approach
We present the VIDOSC framework for learning video
OSCs, detailing the open-world formulation (Sec. 3.1),
model design for object-agnostic state prediction (Sec. 3.2),
and text-guided training scheme (Sec. 3.3).

3.1. Video OSC in the Open World

We begin by formally defining an object state change (OSC)
in videos as a visually detectable transformation, where an
object experiences a change that is not easily reversible,
in line with [17]. We characterize an OSC category as
an object combined with a specific state transition, such
as “chicken + shredding”, and delineate an OSC process
through three distinct states: initial (precondition state),
transitioning, and end (postcondition state).4 It is essential
to highlight that we take an object-centric perspective: the
“transitioning state” accounts for instances where the video
depicts an active action applied to the object, as well as sce-
narios where the object undergoes a passive transformation
absent of human intervention (e.g., melting, drying).

4Due to real-world data variation, some videos may lack one of the
OSC states, and there may be multiple segments in a video corresponding
to the same state. Our formulation accounts for all these scenarios.

Given a video in which an object may be changing state,
the objective is to temporally localize each of the three OSC
states. Consistent with prior work [50, 51], we formulate
the task as a frame-wise classification problem. Formally,
a video sequence is represented by a temporal sequence of
T feature vectors X = {x1,x2, · · · ,xT }, where T denotes
the video duration. The goal is to predict the OSC state la-
bel for each timepoint, denoted by Y = {y1,y2, · · · ,yT },
yt ∈ {1, · · · ,K + 1}, where K is the total number of OSC
states, and there is one additional category representing the
background class not associated with any OSC state.5

Next, we propose an open-world problem formulation,
capturing the intrinsic long-tail distribution observed in
real-world scenarios. Consider N state transitions, each
paired with a set of associated objects, denoted by On =
{on1 , on2 , · · · , onm(n)}, for n = {1, 2, · · · , N}, where m(n)
denotes the number of objects linked with the n-th state
transition. Within a specific state transition (like frying),
certain objects in the set (such as chicken or onions) are fre-
quently observed, while the combination of the same state
transition with other objects (such as cauliflower) appear
less often. Motivated by this inherent long-tail, we propose
to split On into two distinct subsets: On

known covering the
common combinations observed during training, and On

novel
comprising the infrequent combinations, which are unseen
during training due to their rarity. During inference, the
model is evaluated on the entire object set On for a com-
prehensive reflection of the open-world setting.

3.2. Object-Agnostic State Prediction

To address the open-world challenges and ensure robust
generalization to novel objects, VIDOSC integrates three
key techniques: (1) a shared state vocabulary that consoli-
dates the state label space; (2) temporal modeling within the
video OSC model design; and (3) object-centric features.
Shared State Vocabulary The inherent link among dif-
ferent OSC categories is overlooked in prior work. Com-
mon practice involves developing separate models for each
OSC category [2, 50] (e.g., one model exclusively for melt-
ing butter and another for melting chocolate), or using one
single model that still treats every OSC as a distinct en-
tity in the label space [51] (e.g., considering melted but-
ter and melted chocolate as two separate end states). Such
a formulation results in an extensive label set with K =
3×

∑N
n=1 m(n), where 3 denotes the number of OSC states

(i.e., initial, transitioning and end) and
∑N

n=1 m(n) is the
total number of OSC categories. This compartmentalized
view can inadvertently hinder the model’s generalization
ability. Yet, on closer inspection, states across varied ob-
jects are intrinsically related. For instance, the “melting”
principle remains consistent, even when applied to visually

5Not all training videos may feature an OSC due to data collection
noise, yet all evaluation videos are manually verified to include one.



[ASR transcription]
you're going to use some
rotisserie chicken so just
get your rotisserie chicken
and shred it up

(c) Model Training

Video Encoder

Decoder

... ......

...

(d) Model Testing

(b) Pseudo Label Generation(a) Mining for OSC examples

LLAMA2

This video may contain the
OSC of chicken + shredding

(object + state transition)

Known OSCs

shredding chicken

...
shredding cabbage

Novel OSCs

shredding onion shredding coconut

State Description [whole chicken, shredding chicken, shredded chicken] 

...
State = Initial State = Transitioning State = Background State = End 

CLIP

✖

object features

...

Figure 2. Our proposed VIDOSC framework: (a) Mining for OSC examples (Sec. 3.3): We leverage ASR transcriptions paired with
videos and the capabilities of LLM to automatically mine OSC examples. (b) Pseudo Label Generation (Sec. 3.3): We utilize textual
state descriptions and a VLM for supervisory signals during training; (c) Model Training (Sec. 3.2): We develop a video model for object-
agnostic state prediction. (d) Model Testing (Sec. 3.1): We propose an open-world formulation, evaluating on both known and novel OSCs.
Notably, while we employ the text modality to guide model training, our model is purely video-based and requires no text input at the test
phase, ensuring maximum flexibility and applicability. Ground truth for the test set is manually annotated.

distinct objects like butter and chocolate. This motivates us
to group OSC labels that share the same state transition as
one, and train a single model per state transition.6 By adopt-
ing object-agnostic OSC labels, we encourage the model to
learn state representations shared by visually different ob-
jects, and thus facilitate the transfer from known to novel
objects.

Temporal Modeling Recognizing that state changes un-
fold over time, it is important to capture the temporal dy-
namics in videos. An object’s state at any frame, be it
initial, transitioning, or end, is often best understood in
the context of preceding and succeeding frames. Con-
trary to prior works [2, 50, 51] that rely on isolated frame-
wise modeling without considering the temporal progres-
sion of video OSCs, we address this gap by proposing a
temporally-aware model design. As illustrated in Fig. 2(c),
we adopt an encoder-decoder architecture. For the encod-
ing phase, input video features X = {x1,x2, · · · ,xT }
are first projected using an MLP fproject, and augmented
with sinusoidal positional embeddings, Zpos. Subsequently,
a transformer encoder [56] ftransformer is adopted to cap-
ture the temporal dynamics among these features, yield-

6See Supp. for the multi-task model variant, where we develop one
unified model for all state transitions.

ing Z = ftransformer(fproject(X) + Zpos). For the decoding
phase, a MLP decoder g, maps these temporally-aware hid-
den representations to OSC state predictions: Ỹ = g(Z).
See Sec. 5 for architecture and training details. This design
ensures that when predicting the state for a frame, the model
has assimilated temporal context from the entire sequence.
Essentially, our model exploits the fact that the dynamics of
the state change has greater invariance to the object cate-
gory than how the object looks, emphasizing temporal ob-
ject transformations over objects’ static appearances, and
thereby enhancing generalization to novel OSCs.
Object-Centric Features Finally, we discuss how to better
represent “object” features in the problem. In many scenar-
ios, due to camera placement and framing, the object going
through a state transition might only occupy a small portion
of the frame, surrounded by other visual elements such as
background, people, or bystander objects. Recognizing this
challenge, we introduce an enhancement to our model’s in-
put features X to emphasize the object of interest. To be
specific, we leverage an off-the-shelf detector [49] to iden-
tify the active object (i.e., the object being manipulated) re-
gion at each timepoint t, yielding feature xobj

t that centers
on the object (see bounding boxes in Fig. 2 (c)). The input
feature is then constructed as a concatenation of the orig-
inal global feature and the localized object-centric feature,



i.e., X = {[xt,x
obj
t ]}Tt=1. By emphasizing the object in this

manner, our model is better positioned to discern the intri-
cate state changes and provide more informed predictions.

3.3. Text and VLMs as Supervision

To scale up training and ensure broad generalization, we
propose a novel training pipeline that leverages LLMs and
VLMs for OSC mining and pseudo-labeling.
Mining for OSC examples Utilizing a vast collection of
“how-to” instructional videos as the training source, we
develop an automated mining process to capture the rich,
real-world variability of OSCs. The motivation is that in-
structional videos usually have accompanying Automatic
Speech Recognition (ASR) transcriptions that offer valu-
able OSC cues. For example, a speaker mentioning, “so just
get your rotisserie chicken and shred it up” suggests that the
chicken may undergo a state transition of shredding in the
video. Leveraging this fact, we employ LLAMA2 [54] to
analyze ASR transcriptions for identifying candidate videos
and their associated OSC categories. This text mining stage
allows us to corral a long tail of OSCs, discovering likely
state change terms—even if rare—from the free-form nat-
ural language narrations given by how-to instructors in the
training videos. See Fig. 2 (a).
Pseudo Label Generation Next, to negate the need of
manually labeling large-scale training data, we propose a
novel pseudo-labeling pipeline facilitated by VLMs. From
the identified OSC category (e.g., shredding chicken), we
form three textual state descriptions for its initial, tran-
sitioning, and end states (e.g., whole chicken, shredding
chicken, and shredded chicken). We then adopt both the
vision and language encoder from a well-trained VLM (we
experiment with CLIP [44] and VideoClip [61]) to compute
the cross-modal similarity between every frame in training
video and the three state descriptions, producing a score ma-
trix S ∈ RT×3. The pseudo label ŷt at timepoint t is then
assigned based on this score matrix:

ŷt =



Background if
∑

(S[t, :]) < τ

Initial elif S[t, 0]− S[t, 1] > δ and S[t, 0]− S[t, 2] > δ

Transitioning elif S[t, 1]− S[t, 0] > δ and S[t, 1]− S[t, 2] > δ

End elif S[t, 2]− S[t, 0] > δ and S[t, 2]− S[t, 1] > δ

Ambiguous otherwise

where δ is the threshold that separates states and τ is the
threshold that differentiates between states and background.
Essentially if the VLM scores some state more strongly than
the other two—and the cumulative confidence score of all
states is high—then it is adopted as the pseudo label. Oth-
erwise it is omitted as ambiguous. See Fig. 2(b).

To further refine these labels, we enforce a causal order-
ing constraint. Given the inherent progression of OSCs, the
anticipated order is initial states followed by transitioning
states, and finally, the end states. Any frame whose pseudo
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Figure 3. Ground truth annotation distribution across 20 state tran-
sitions (top) and 134 objects (bottom) in HowToChange (Evalua-
tion). In line with our open-world formulation, annotations cover a
diverse range of object-state transition combinations, categorized
into known and novel OSCs.

label does not respect this natural progression is re-assigned
to the ambiguous category. Our training employs a cross-
entropy loss between pseudo label ŷt and the corresponding
model prediction ỹt, with ambiguous frames excluded to
maintain clarity and distinction among the state labels. See
Section 4.2 in Supp. for detailed pseudo label analysis.

4. The HowToChange Dataset

Existing OSC datasets fall short in capturing the open-
world’s diversity and long-tail distribution of OSCs. To ad-
dress this gap, we introduce HowToChange. It encompasses
varied state transitions coupled with a diverse range of ob-
jects, providing an authentic reflection of their real-world
frequency—from the commonplace to the rare.
Data Collection The HowTo100M collection [36] contains
a wealth of instructional videos that often feature OSCs and
is particularly suitable for this task. We specifically focus
on the HowTo100M Food & Entertaining category because
(1) it constitutes a third of the entire HowTo100M videos,
(2) cooking tasks offer a wealth of objects, tools, and state
changes, providing an excellent test bed for open-world
OSC, and (3) in cooking activities a single state transition
can often be associated with a varied range of objects, open-
ing the door to learning compositionality. (Note, we also ex-
periment with non-cooking domains below.) We process a
total of 498,475 videos and 11,390,287 ASR transcriptions
with LLAMA2. From the responses, we identify the most
frequently seen state transitions and objects associated with
them to establish an OSC vocabulary, resulting in 134 ob-
jects, 20 state transitions, and 409 unique OSCs. The num-
ber of objects associated with each state transition (m(n))



Datasets # Obj # ST # OSC ObjPer # Videos
GT

Label?
Alayrac et al. [2] 5 6 7 1.2 630 ✓

Task-Fluent [31] 25 14 32 2.3 809 ✓

ChangeIt (Training) [50] 42 27 44 1.6 34,428 ✗

ChangeIt (Evaluation) [50] 42 27 44 1.6 667 ✓

HowToChange (Training) 122 20 318 15.9 36,075 ✗

HowToChange (Evaluation) 134 20 409 20.5 5,424 ✓

Table 1. Comparison with existing video datasets focusing on ob-
ject states. ‘Obj’ and ‘ST’ represent objects and state transitions,
respectively. ‘ObjPer’ denotes the average number of objects asso-
ciated with each state transition; higher values indicate more need
to generalization across objects. We present the first open-world
benchmark for temporal video OSC, with an order of magnitude
increase in OSC vocabulary and annotation volume.

spans from 6 for “zesting” to 55 for “chopping”. The state
transitions applied to each object vary from 1 to 15, with
onions being the most versatile. In total, we identify 36,075
videos for the training set of HowToChange, with an aver-
age duration of 41.2 seconds.
Data Splits In line with our open-world formulation, we di-
vide the 409 identified OSCs into two disjoint subsets based
on their frequency of occurrence. Within each state transi-
tion, we categorize the top 75% frequent objects as known
and the bottom 25% as novel. This yields a total of 318
known OSCs that are seen during training and testing, span-
ning 20 state transitions associated with 122 objects, and 91
novel OSCs that are only seen during testing, encompassing
the same transitions across 58 objects.
Ground Truth Label Collection (Evaluation Set) To fa-
cilitate thorough evaluation, we obtain manual annotations
for a subset of 5,424 videos from the collected dataset.7 The
annotation workflow is as follows: each annotator is pre-
sented with a video segment along with an OSC category
that was previously identified by LLAMA2. The annota-
tor has the option to reject the video segment if it does not
contain the specified OSC. Otherwise, they label the time
ranges corresponding to the initial, transitioning, and end
states of the OSC. Adhering to our object-centric empha-
sis, annotators are instructed to label based on the visual
changes of the object, rather than human-centric actions,
and exclude time ranges where the object of interest is not
visible, ensuring clean and focused temporal labels. Fig. 3
provides the distribution of annotated videos. On average,
we collect 271 annotations per state transition, with a video
duration of 41.5 seconds, and 12.9% of videos belong to
the novel category. The entire annotation process required
around 1,507 hours by 30 professional annotators.
Dataset Comparison Table 1 compares HowToChange
with existing video datasets on temporal OSC understand-

7Our training is purely guided by a VLM and requires no ground truth
labels. The annotations are reserved exclusively for evaluation.

ing. HowToChange offers an unprecedented scale—with
9.3x more OSC categories and 8.1x more annotated video
instances compared to the previous largest collection [50].
Furthermore, notably, in prior datasets, each state transition
is typically coupled with 1 or 2 objects, preventing sub-
sequent models from generalizing to new objects, as we
will see in results. In contrast, HowToChange pioneers the
open-world formulation, presenting a much broader range
of objects associated with each state transition—from 6 to
55 objects per state transition, and averaging 20. This fa-
cilitates the development of models with generalized OSC
understanding. Please see Supp. for full data collection and
annotation details.

5. Experiments

Datasets In addition to our new HowToChange dataset,
we also evaluate on ChangeIt [50] due to its expansive
data scale (34K videos spanning many activities) and high
relevance to our task. Beyond the conventional split of
ChangeIt, we propose a new split tailored to our open-world
formulation. Specifically, from the 44 available OSC cat-
egories in ChangeIt, we concentrate on the 25 categories
where each state transition is paired with more than one
object. With those, we form the “ChangeIt (open-world)”
subset that comprises 8 state transitions and 25 objects.
Within each state transition, objects are randomly divided
into known and novel categories, yielding 13 known OSC
categories for training and 12 novel OSC categories exclu-
sively reserved for evaluation. A detailed breakdown of this
split can be found in Supp. To sum up, our evaluation en-
compasses: ChangeIt; ChangeIt (open-world); and How-
ToChange, offering a comprehensive setup in both closed-
world and open-world scenarios.
Evaluation For ChangeIt and ChangeIt (open-world), we
adhere to the original dataset’s evaluation protocol [50], re-
porting action and state precision@1 as the evaluation met-
rics. For our dataset, besides precision@1, which evaluates
a single frame for each state within a video, we advocate for
the use of F1 score and precision over all frames to ensure
a more holistic evaluation.
Baselines We compare our approach with four base-
lines across two categories: (a) self-supervised approaches
on identifying object states enforced by the causal order-
ing constraint: LookForTheChange [50] trains a dedicated
model for each OSC category, while MultiTaskChange [51]
evolves this into a multi-task approach8, catering to sev-
eral OSCs concurrently; (b) zero-shot VLMs: image-
based CLIP [44], video-based VideoCLIP [61] and Intern-
Video [59]. All baselines in (a) use the same training data
as our model, whereas the zero-shot models (b) are directly

8To ensure a thorough evaluation, we train both single-task and multi-
task variants of our approach. See Supp. for a detailed discussion.



Method
ChangeIt ChangeIt (open-world) HowToChange

State
Prec.@1

Action
Prec.@1

State Prec.@1 Action Prec.@1 F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel known novel known novel

CLIP [44] 0.30 0.63 0.29 0.29 0.71 0.70 26.9 25.4 27.3 26.6 47.5 47.5
VideoCLIP [61] 0.33 0.59 0.25 0.24 0.62 0.55 36.6 34.3 39.7 38.5 48.3 44.8
InternVideo [59] 0.27 0.57 0.29 0.25 0.60 0.61 29.9 29.5 31.4 30.8 46.9 46.3
LookForTheChange [50] 0.35 0.68 0.36 0.25 0.77 0.68 30.3 28.7 32.5 30.0 37.2 36.1
MultiTaskChange [51] 0.49 0.80 0.41 0.22 0.72 0.62 33.9 29.9 38.5 34.1 43.1 38.8
VIDOSC (ours) 0.57 0.84 0.56 0.48 0.89 0.82 46.4 43.1 46.6 43.7 60.7 58.2

Table 2. Results on ChangeIt, ChangeIt (open-world), and HowToChange. VIDOSC outperforms all approaches in both closed-world and
open-world scenarios, across known and novel OSCs.

peeling avocado

tying rope

Transitioning StateInitial State End State

tying tie

peeling dragon fruit

grating orange grating cauliflower

Known OSCs Novel OSCs

chopping shallot chopping capsicum

Transitioning StateInitial State End State

Figure 4. Top-1 frame predictions given by VIDOSC for the initial, transitioning, and end states, on ChangeIt (open-world) (first 2 rows)
and HowToChange (last 2 rows). VIDOSC not only accurately localizes the three fine-grained states for known OSCs, but also generalizes
this understanding to novel objects, such as cauliflower and capsicum, which are not observed during training.

evaluated on the test set with no training.
Implementation Videos are sampled at one frame per sec-
ond. Each one-second video segment gets assigned to an
OSC state label, and is encoded by InternVideo [59], a
general video foundation model (which is kept frozen for
training efficiency). Our video model consists of a 3-layer
transformer with a hidden dimension of 512 and 4 atten-
tion heads as the encoder and a 1-layer MLP as the decoder.
Consistent with prior work [50, 51], our model predicts
the OSC state label (i.e., initial, transitioning, end state, or
background) for a video, assuming the video OSC category
is known (say from a recognition model’s output or a user’s
specific query). While the standard output does not include
the state transition name, our multi-task version detailed in
Supp. is capable of this.
Main Results Table 2 presents results on all three datasets.
VIDOSC outperforms all approaches in both traditional
closed-world and our newly introduced open-world set-
tings. The large performance gains—as much as 9.6%

jumps in precision vs. the next best method—underscore
the effectiveness of two pivotal components in VIDOSC.
First, its use of text and VLMs for supervisory signals dur-
ing training: particularly on novel OSCs , VIDOSC extracts
meaningful cues from the video modality to refine pseudo
labels from VLMs, and ultimately surpasses the VLM base-
lines. Second, our model for object-agnostic state predic-
tion, designed for the open-world context, effectively nar-
rows the gap between known and novel OSCs. For instance,
on ChangeIt (open-world), MultiTaskChange [51] experi-
ences a 19% decline in state precision@1 while VIDOSC
has only a 8% drop. Note that we observe a more pro-
nounced performance drop of all approaches on ChangeIt
(open-world) than on HowToChange due to its limited num-
ber of objects available per state transition. These results
also point to the potential for future development in bridg-
ing the known and novel OSC performance gap.

Qualitative Results Fig. 4 presents VIDOSC’s top-1 frame
predictions on ChangeIt (open-world) and HowToChange,



CLIP

VideoCLIP

LookForTheChange

MultiTaskChange

VIDOSC (ours)

Ground Truth

Slicing Shallot

Background Initial State Transitioning State End State

InternVideo

Figure 5. Comparison of model predictions across a test video
depicting the OSC of “slicing shallot” on HowToChange. The
x-axis represents temporal progression through the video. VI-
DOSC gives temporally smooth and coherent predictions that best
align with the ground truth, significantly outperforming baselines
in capturing the video’s global temporal context.

Shared Temporal Object Prec.@1 (%)
State Modeling Centric known novel ∆

✗ ✓ ✓ 58.5 53.3 5.2
✓ ✗ ✓ 52.9 48.2 4.7
✓ ✓ ✗ 59.8 56.7 3.1
✓ ✓ ✓ 60.7 58.2 2.5

Table 3. Ablation Study. ∆ denotes the performance gap between
known OSCs and novel OSCs.

across both known and novel OSCs. Notably, despite never
seeing objects such as cauliflower and capsicum during
training, VIDOSC effectively leverages visual state change
cues and correctly localizes the three states of these objects
going through OSCs, demonstrating its strong generaliza-
tion capability. For a more holistic view, Fig. 5 compares
VIDOSC’s frame-by-frame predictions with all baselines
for a given test video. VIDOSC provides temporally co-
herent predictions, smoothly progressing through the OSC
states in the natural order (i.e., from initial to transitioning
then end). In contrast, baseline approaches often yield frag-
mented and inconsistent predictions, indicating a lack of
understanding of the video’s global temporal context, pri-
marily due to their reliance on frame-wise modeling. See
Supp. and Supp. video for more qualitative examples and
VIDOSC’s interpretability on object relations.
Ablation To further dissect the performance gains brought
by our three model design techniques (i.e., shared state vo-
cabulary, temporal modeling, and object-centric features),
we conduct an ablation study, removing one component at
a time. Table 3 confirms the essential role of each ele-
ment. A shared state vocabulary is particularly crucial in
the open-world context, as its absence increases the gap be-
tween known and novel OSCs from 2.5% to 5.2%. Fur-
thermore, temporal modeling provides a substantial perfor-
mance boost, and object-centric features offer further gains.
See Supp. for an additional analysis of VIDOSC’s perfor-
mance with different pseudo labels.

Query (novel) Retrieved Nearest (known)

cauliflower (pre-mashing) potato (post-mashing) strawberry (post-mashing)

Retrieved Furthest (known)

pepper (pre-grilling) tomato (post-grilling) zucchini (post-grilling)

peach (pre-peeling) squash (post-peeling) garlic (post-peeling)

Figure 6. Frame retrieval on the HowToChange test set. Given a
query frame showcasing a novel OSC at its initial state, VIDOSC
retrieves the nearest and furthest frame among all known OSCs at
their end states. The closest post-OSC frame follows the transition
trajectory of the query while the furthest post-OSC frame depicts a
substantially different object, demonstrating VIDOSC’s capability
to generalize the OSC progression for novel objects.

Frame Retrieval VIDOSC learns features that accurately
characterize the evolution of an OSC process. To illus-
trate, we consider a novel frame retrieval setting. Within
the HowToChange test set, when presented with a query
video featuring a novel OSC at its initial state, VIDOSC
seeks the most similar and most contrasting video from a
pool of candidates at their end states. The frame triplets
with the smallest and largest feature distance are shown in
Fig. 6. Remarkably, the retrieved nearest post-OSC frames
correspond to the query’s anticipated state transition trajec-
tory, despite the object and state gap. Conversely, the fur-
thest frames exhibit end states of markedly different objects.
These results further lend support to VIDOSC’s capability
to understand the evolution of an OSC process, even for
novel objects it has never encountered during training.

6. Conclusion
This work aims at a comprehensive exploration of video
OSCs, with a novel open-world formulation. To address the
challenges, we leverage text and VLMs to assist the train-
ing of a video OSC model at scale and design three mod-
eling techniques to achieve object-agnostic state prediction
for better generalization to novel OSCs. Furthermore, we
present the most expansive video OSC dataset collection
HowToChange, which echoes the natural long-tail of state
transitions coupled with varied objects, fostering a realistic
representation of real-world scenarios. As for future work,
we will consider extending VIDOSC to video sequences
featuring concurrent OSC processes, and integrating spatial
understanding of OSC within our open-world framework.
Acknowledgements: UT Austin is supported in part by the IFML
NSF AI Institute. KG is paid as a research scientist by Meta.
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Girdhar. Learning video representations from large lan-
guage models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6586–
6597, 2023. 2



1. Video Containing Qualitative Results
We invite the reader to view the video available at https:
//vision.cs.utexas.edu/projects/VidOSC/, where
we provide: (1) a comprehensive overview of VIDOSC, (2) video
examples from HowToChange, and (3) qualitative examples of
VIDOSC’s predictions. These examples highlight VIDOSC’s
ability in identifying non-OSC moments as background and ef-
fectively distinguishing among the three OSC states. It delivers
temporally smooth and coherent predictions that follow the natu-
ral OSC progression (from initial to transitioning, and then to the
end state), and shows strong performance even with novel OSCs
not seen in training. All these underscore the efficacy of VIDOSC.

2. Video OSC
Expanding on Sec. 3.1, we clarify three aspects of our definition of
video OSC. First, we focus on OSCs that lead to a visible change
in an object’s appearance. Processes that are non-visual or in-
volve mere spatial movements (such as moving an apple from the
sink to the cutting board) do not qualify as OSCs. Second, in line
with previous works [2, 31, 50, 51], we operate under the assump-
tion that each input video predominantly features a single OSC.
The challenge of handling videos with multiple concurrent OSCs
remains an intriguing avenue for future research. Lastly, during
training, the input video and its OSC category name (e.g., shred-
ding chicken) are available (as provided in both ChangeIt and our
HowToChange, although not always accurate due to data collec-
tion noise). For evaluation, every test video (in both ChangeIt and
HowToChange) is accompanied by a manually verified OSC cate-
gory.

2.1. Data Collection
We streamline our dataset collection via an automated pro-
cess. First we apply LLAMA2 [54] to ASR transcriptions in
HowTo100M [36] with the following text prompt, one sentence
at a time:

[Text Prompt to LLAMA2] You will receive descrip-
tions corresponding to a how-to instructional video.
Your task is to identify any instances of Object State
Change (OSC) based on the provided text. An OSC
is a visually detectable transformation where an object
undergoes a change that is difficult to reverse. Exam-
ples include apple peeling/cutting, bacon frying, milk
boiling, butter melting, cake frosting, eggs whisking,
cream whipping, etc.

• Note 1: OSCs must be visually detectable. General
actions like food preparing, or non-visual processes
like onions sweetening, are not included.

• Note 2: Simple spatial transitions, resulting from ac-
tions like add, mix, put, or place, are not considered
OSCs.

• Note 3: To qualify as an OSC, there must be a tran-
sition from one state to another, which should be in-
dicated by an active action in the text description.
The mere presence of a state (e.g., sliced pineapples,
peeled apples) does not count unless there is explicit

ASR transcription
time stamp = 1:31

you're going to use some rotisserie
chicken so just get your rotisserie

chicken and shred it up

LLAMA2

[1:11-1:51]

potential OSC
object = chicken

state transition = shredding
+

H
TM

-A
A

Figure 7. Our proposed data collection process for HowToChange.
HTM-AA [19] denotes the auto-aligned version of HowTo100M.

text describing the change (e.g., we slice the pineap-
ples).

• Note 4: Generally, sentences without OSCs are far
more common than those with OSCs.

To report identified OSCs, please use the following for-
mat: [object] + [state transition of the OSC]. Ensure the
first word in each identified OSC is the object, and the
subsequent words describe a state transition. If multi-
ple OSCs are identified, separate them with semicolons
(;). If no OSCs are detected, simply reply with None.

From the responses given by LLAMA2, we identify object and
state transitions corresponding to the ASR transcription. Utilizing
the HTM-AA dataset [19], where each ASR sentence corresponds
to a time stamp in the video, we extract a clip centered around the
identified time stamp with a ± 20 second window. The result is a
cropped video segment of 40 seconds, paired with an OSC text (in
the form of object + state transition). Finally, when multiple clips
from the same video illustrate the same OSC with overlapping start
and end times, we combine them into a single, extended clip. The
whole process is illustrated in Fig. 7.

3. The HowToChangeDataset
To establish the OSC taxonomy, we identify 20 most frequent state
transitions and the objects associated with these state transitions
that appear more than 200 times. Utilizing a 0.25 quantile thresh-
old for each state transition, we categorize the top 75% frequent
OSCs as known and the bottom 25% as novel, resulting in 318
known and 91 novel OSC categories in total. See Table 4 for
the complete OSC taxonomy. With these 318 known OSCs, we
compose the training set of HowToChange, encompassing 36,076
video segments from HowTo100M. Fig. 9 provides the detailed
distribution of HowToChange (Training).

3.1. Ground Truth Label Collection
For evaluation, we collect annotations from 30 trained professional
human annotators for a subset of 5,423 video clips from How-
ToChange, amounting to 62.5 hours of video. See Fig. 8 for the
annotation user interface. We collect an average of 13.3 annotated
videos per OSC category. The annotations for known and novel

https://vision.cs.utexas.edu/projects/VidOSC/
https://vision.cs.utexas.edu/projects/VidOSC/


Figure 8. The annotation user interface. Annotators view a video paired with an OSC category, identified from the OSC mining process
(outlined in Sec. 3.3). They are instructed to either reject the video if it does not demonstrate the specified OSC, or to annotate the time
ranges corresponding to the initial, transitioning, and end states of the OSC shown in the video.

OSCs cap at 15 and 10, respectively. Fig. 10 provides the detailed
distribution of HowToChange (Evaluation).

The breakdown of annotated time ranges within these videos is
as follows: 19.8% for the initial state, 25.9% for the transitioning
state, and 16.9% for the end state, with the remaining categorized
as non-OSC-related background. Fig. 11 shows the distribution of
video duration (seconds) and the number of annotated time ranges
per state in the HowToChange (Evaluation) set. Importantly, the
distribution demonstrates the granularity of our annotations, with
a varied number of annotated time ranges per video. This is a
result of our guidelines that instruct the annotators to exclude any
time ranges where the OSC of interest is not observable, thereby
ensuring precise labeling.

4. Experiments
4.1. Experimental Setup

Datasets We conduct experiments on ChangeIt [50] and our
proposed HowToChange. Other related datasets are not included
due to their small scale and differing OSC definition [2], unavail-
ability for public access [31], or the absence of OSC category /
temporal labels necessary for our problem [17, 47]. Beyond the
conventional split of ChangeIt, we introduce a novel split designed
specifically for our open-world framework. The OSC taxonomy
is detailed in Table 5. Note the inherent challenge of this set-

ting: each state transition is associated with fewer than five ob-
jects. This scarcity of objects per state transition can significantly
impede the model’s ability to generalize the concept of states and
state transitions without becoming overly dependent on specific
objects, and reinforces the motivation for creating our new How-
ToChange dataset to augment this existing resource.

Evaluation For ChangeIt and ChangeIt (open-world), we ad-
here to the original dataset’s evaluation protocol, reporting action
and state precision@1 as the evaluation metrics. For our collected
HowToChange, while we also adopt state precision@1, due to our
definition that positions the midpoint between the initial and end
states as “transitioning states” rather than “action”, our evaluation
takes into account three distinct states, unlike the two states in
ChangeIt. In addition, since precision@1 solely evaluates a sin-
gle frame for each state within a video, we advocate for the use
of F1 score and precision over all frames to ensure a more holistic
evaluation. For each video, we compute the state precision@1, F1
score and precision for the present states (considering that a video
might not always contain all three states: initial, transitioning, and
end) and then compute their average over states. Subsequently, we
average these values across videos within a state transition cate-
gory and report the overall average for all state transitions. Lastly,
for the two open-world datasets, we present these metrics on both
known and novel OSCs.
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Figure 9. Data distribution of HowToChange (Training). The y-axis denotes the number of annotated videos, and numbers in parentheses
represent the count of unique objects associated with each state transition. Our data collection process mines video OSCs that authentically
reflects the real-world’s long-tail.
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Figure 10. Data distribution of HowToChange (Evaluation). Known and novel OSCs are shown in light blue and dark green, respectively.
HowToChange (Evaluation) presents a comprehensive evaluation benchmark, encompassing a diverse array of objects and state transitions.



State Transition Objects (known) Objects (novel)
blending banana, egg, tomato, strawberry, garlic, butter, oat, sugar, milk, ice, onion, date, cashew,

sauce, almond, cheese, mango
cream, pepper, avocado, ginger, coconut

browning onion, chicken, garlic, meat, beef, sausage, butter, crust, bacon, pork, meatball, mush-
room, tofu, turkey, steak, potato

bread, vegetable, sugar, apple, banana

chopping onion, garlic, tomato, apple, parsley, carrot, pepper, mushroom, bacon, cilantro, spinach,
cabbage, nut, banana, strawberry, cucumber, chocolate, rosemary, chive, shallot, peanut,
vegetable, herb, kale, celery, mint, dill, mango, chicken, walnut, leaf, potato, jalapeno,
zucchini, chili, egg, pecan, ginger, coriander, basil, avocado, broccoli, scallion, lettuce

cauliflower, almond, sausage, pineapple,
date, leek, butter, chilies, capsicum, olive,
thyme

coating chicken, potato, fish, apple, tofu, bread, shrimp, cake onion, butter, pasta
crushing garlic, biscuit, oreo, cooky, potato, ice, walnut, ginger, strawberry, cracker, tomato,

peanut, nut
almond, pepper, pineapple, onion

frying onion, garlic, potato, bacon, chicken, tortilla, egg, fish, plantain, tofu, bread, mushroom,
tomato, rice, sausage, batter, paneer, eggplant, shallot, beef, vegetable, shrimp, ginger,
okra, pork, banana

cauliflower, carrot, steak, meat, pepper

grating cheese, ginger, potato, carrot, garlic, nutmeg, orange, zucchini, cucumber, parmesan,
chocolate, apple, lemon, onion

cauliflower, tomato, butter, mozzarella, co-
conut

grilling chicken, steak, corn, fish, pineapple, salmon, onion, bread, tomato, zucchini, asparagus,
bacon, eggplant

shrimp, sausage, cheese, potato, pepper

mashing banana, potato, avocado, garlic, tomato, bean, butter, chickpea, strawberry berry, egg, cauliflower
melting butter, chocolate, cheese, sugar, marshmallow, ghee, caramel, jaggery, gelatin, margarine,

mozzarella, shortening, candy
honey, cream, ice

mincing garlic, ginger, onion, shallot, jalapeno, cilantro, parsley, beef, meat, scallion pepper, tomato, carrot
peeling banana, potato, apple, onion, garlic, plantain, egg, orange, ginger, carrot, cucumber,

lemon, tomato, squash, avocado, mango, eggplant, pumpkin, shrimp, pear, beet, zuc-
chini, prawn

pepper, shallot, peach, pineapple, kiwi

roasting pepper, peanut, garlic, tomato, eggplant, potato, coconut, onion, nut, pumpkin, almond,
chicken, vegetable, cauliflower, carrot, hazelnut, turkey, chickpea, corn, asparagus

broccoli, squash, beet, mushroom

rolling dough, fondant, pastry, meatball, clay, cake, bread, pasta, tortilla sausage, crust, cheese
sauteing onion, garlic, mushroom, vegetable, carrot, ginger, celery, pepper, tomato, shallot spinach, shrimp, chicken, potato
shredding chicken, cheese, cabbage, carrot, potato, zucchini, beef, pork, meat, lettuce coconut, mozzarella, parmesan, onion
slicing onion, tomato, apple, potato, mushroom, garlic, lemon, banana, strawberry, cabbage,

meat, zucchini, chicken, mango, pepper, cake, shallot, egg, sausage, watermelon, car-
rot, tofu, ginger, leek, beef, cucumber, scallion, eggplant, avocado, bread, pear, steak,
pineapple, radish, peach, bacon

jalapeno, celery, butter, olive, mozzarella,
orange, ham, lime, almond, cheese, pepper-
oni

squeezing lemon, lime, orange, garlic, potato, spinach, avocado, zucchini, tomato, grapefruit, cab-
bage

ginger, cucumber, onion, tofu

whipping cream, egg, butter, sugar, milk, potato, ganache, buttercream, batter, yogurt, frosting mascarpone, strawberry, meringue
zesting lemon, orange, lime, citrus, grapefruit clementine

Table 4. The OSC taxonomy for HowToChange encompasses 134 objects undergoing 20 distinct state transitions, resulting in 409 unique
OSCs (318 known and 91 novel).

State Transition Objects (known) Objects (novel)
peeling apple, dragon fruit,

onion, pineapple
avocado, corn, eggs,
garlic

frying bacon potatoes
pouring beer, tea juice, milk
wrapping tortilla gift/box
melting butter chocolate
cleaning pan shoes
tying tie, ribbon rope
cutting tile tree

Table 5. The OSC taxonomy for ChangeIt (open-world). Align-
ing with our open-world formulation, we propose a new split of
ChangeIt [50] that randomly splits objects associated with the
same state transition as known and novel.

Baselines For results on ChangeIt, we reference the metrics as
officially reported in their original papers. For results on ChangeIt

(open-world), we reimplement the baselines to accommodate our
newly introduced data split. As the LookForTheChange base-
line [50] requires a model for every OSC category, when evalu-
ating novel OSCs, we apply every model trained on OSCs with
the same state transition and report best model performance. For
the MultiTaskChange baseline [51], we train one multi-task model
across all known OSCs and evaluate on both known and novel
OSCs. On HowToChange, baseline results [50, 51] were obtained
using InternVideo features, not their originally proposed features,
to ensure comparability. Aligning with our own approach, we
adopt a shared vocabulary for both baselines. This means group-
ing OSCs with the same state transition as one category to enhance
generalization. On all datasets, following their original papers, we
enforce an additional casual ordering constraint during test time as
we observe better performance of the baselines in this setting. We
adopt adaptive weights for baaselines on open-world ChangeIt us-
ing the values from their original papers but not on HowToChange
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Figure 11. Distribution of video duration (upper) and number of
annotated time ranges (lower).

due to no exemplar images.
Regarding the three zero-shot baselines (i.e., CLIP [44], Video-

Clip [61] and InternVideo [59]), we adopt both the vision and lan-
guage encoders to compute the similarity score between each (im-
age/video, text) pair. The OSC state description text is same as
adopted in our pseudo label generation process (Sec. 3.3). Based
on the similarity scores, we then conduct a grid search within each
state transition to pinpoint the optimal threshold distinguishing
background classes from OSC state categories, and report the best
value.

Implementation For training pseudo label generation, we first
employ GPT-4 [40] to automatically generate text descriptions for
each OSC category in the dataset. We then assign pseudo labels
to each video segment based on the similarity scores given by a
CLIP [44] model for ChangeIt and a VideoCLIP [61] trained on
HowTo100M [36] for HowToChange. We conduct a grid search
for the two pseudo label thresholds δ and τ to identify the best
value. We employ the AdamW optimizer with a learning rate
of 1e-4 and a weight decay of 1e-4. Models are trained using a
batch size of 64, over 50 epochs. Training takes a few hours on a
NVIDIA A100.

To ensure a thorough evaluation, we train both single-task and
multi-task variants of our approach. We note that the approach
is designed differently for ChangeIt and HowToChange, due to
their distinct characteristics: (1) For ChangeIt and ChangeIt (open-
world), the term single-task denotes training a separate model for
each OSC category (e.g. peeling apples), whereas multi-task de-
notes training a unified model for all OSC categories. Regard-
ing baseline methods, LookforTheChange [50] aligns with the
single-task paradigm while MultiTaskChange [51] belongs to the
multi-task one. (2) For HowToChange, where each state transi-
tion is associated with a much broader range of objects, we adopt
a shared state vocabulary to enhance model generalization, both
for our approach and the baselines. In this context, the single-task
model is developed for each state transition (e.g, peeling) rather
than each OSC (e.g. peeling apples). Consequently, a single-
task model is already capable of identifying states for any OSCs
that fall within the same state transition category. The multi-task

State Transition
F1 (%) Prec (%) Prec.@1 (%)

known novel known novel known novel

chopping 46.5 44.1 43.7 42.4 58.3 58.2
slicing 48.6 45.6 49.7 44.9 68.6 63.7
frying 56.3 53.7 53.5 50.8 61.2 54.5
peeling 49.0 42.4 51.4 45.8 65.6 57.7
blending 42.2 45.2 43.4 50.7 59.1 66.7
roasting 36.5 40.8 40.3 44.4 59.2 64.6
browning 44.9 51.5 46.3 54.4 55.1 60.5
grating 52.5 51.3 51.6 50.4 66.6 65.0
grilling 54.6 53.7 54.0 49.6 67.8 61.0
crushing 39.2 32.2 38.3 28.0 58.9 52.8
melting 34.9 36.8 35.1 38.2 46.6 38.9
squeezing 54.4 54.6 54.0 54.6 61.0 66.1
sauteing 47.7 36.4 47.1 41.4 56.3 46.0
shredding 53.3 41.8 52.8 44.8 66.6 58.7
whipping 45.1 43.1 46.9 44.3 57.8 45.5
rolling 39.7 32.6 43.5 39.3 62.2 60.0
mashing 52.4 52.0 52.2 53.8 66.7 69.4
mincing 45.3 37.2 41.7 32.1 54.7 55.1
coating 35.5 30.0 37.8 28.5 55.1 48.3
zesting 49.6 36.2 49.3 35.3 65.9 70.8

Average 46.4 43.1 46.6 43.7 60.7 58.2

Table 6. Detailed per-state-transition results of VIDOSC on How-
ToChange.

model extends this concept to accommodate all 20 state transitions
in HowToChange. Both baselines, LookforTheChange [50] and
MultiTaskChange [51] fall into the single-task implementation as
we observe worse performance and prohibitive long training time
with the multi-task formulation.

Our multi-task model follows the same design as the single-
task, with the modification of an expanded output label dimen-
sion to encapsulate all categories. Essentially, the multi-task vari-
ant can be conceptualized as a hierarchical classification problem.
During testing, the model first determines the most probable state
transition (e.g., peeling) based on prediction scores. Subsequently,
it provides a prediction of fine-grained states for each time point
(e.g., initial, transitioning and end state of peeling, or background).
It’s important to note that while the single-task variant only per-
forms the latter prediction step, the multi-task variant adds the
ability to name the state transition. The multi-task model thus of-
fers the benefit of a single, unified model that can predict OSC
states for all categories of videos, eliminating the need for devel-
oping individual specialized models.

Finally, we emphasize that our model, irrespective of the vari-
ant, relies solely on video as input. This is in contrast to VLM
baselines (i.e., CLIP [44], VideoCLIP [61] and InternVideo [59]),
where the OSC text is required as input to calculate the cross-
modality similarity.

4.2. Results
Detailed per-state-transition results Supplementing Ta-
ble 2 in the main paper, we provide a detailed breakdown of VI-
DOSC’s performance on HowToChange per state transition in Ta-
ble 6. We observe superior results in transitions like mashing,
squeezing, and grilling, while transitions such as melting and coat-



Method
ChangeIt ChangeIt (open-world) HowToChange

State
Prec.@1

Action
Prec.@1

State Prec.@1 Action Prec.@1 F1 (%) Prec (%) Prec.@1 (%)
known novel known novel known novel known novel known novel

VIDOSC (multi-task) 0.44 0.69 0.43 0.29 0.75 0.63 40.7 37.9 41.8 39.0 56.8 54.8
VIDOSC (single-task) 0.57 0.84 0.56 0.48 0.89 0.82 46.4 43.1 46.6 43.7 60.7 58.2

Table 7. A comparison of the single-task and multi-task variant of VIDOSC. The multi-task variant offers the benefit of a single, unified
model capable of predicting fine-grained OSC states for videos of all OSC categories, while the single-task variant is optimized for each
individual OSC and demonstrates superior performance.
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Transitioning StateInitial State End State
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Figure 12. Top-1 frame predictions given by VIDOSC for the initial, transitioning, and end states, on HowToChange(Evaluation). VIDOSC
not only accurately localizes the three fine-grained states for known OSCs, but also generalizes this understanding to novel objects, which
are not observed during training.
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Figure 13. Comparison of model predictions on HowToChange
(Evaluation). The x-axis represents temporal progression through
the video. VIDOSC gives temporally smooth and coherent pre-
dictions that best align with the ground truth, significantly outper-
forming baselines in capturing the video’s global temporal context.

ing show comparatively weaker performance, possibly due to the
ambiguity in their OSC states. In addition, the known-novel OSC
gap is smallest for chopping, grating and mashing, whereas shred-
ding and sauteing exhibit larger performance discrepancies. In-
tuitively, state transitions like chopping and mashing share more
invariant representations across objects, with objects consistently
going from whole to pieces or a mashed state. In contrast, shred-
ding and sauteing may demonstrate less consistent transformation
patterns across different objects, leading to greater variability and
thus larger performance discrepancies. We hope these results pro-
vide insight for further analysis and development in this area.

Single-task vs Multi-task We train both single-task and
multi-task variants of VIDOSC, and compare their performance
in Table 7. While the multi-task model offers the convenience of
a unified framework that can handle various state transitions si-
multaneously, they generally underperform their single-task coun-
terparts. This performance disparity is a long-standing problem
in multi-task learning and could stem from multiple factors such

as varied convergence rates and potential competition among dif-
ferent OSCs, suggesting promising areas for future research. In
terms of the comparison of VIDOSC (multi-task) with the Mul-
tiTaskChange baseline [51], for ChangeIt (open-world), VIDOSC
achieves a +0.02 increase in state precision@1 and +0.03 in action
precision@1 for known OSCs, and a +0.07 and +0.01 increase for
novel OSCs, respectively. For the standard ChangeIt dataset, our
reimplementation of MultiTaskChange based on their officially re-
leased code achieves a state precision@1 of 0.40 and an action
precision@1 of 0.69, lower than the original paper’s reported 0.49
and 0.80. VIDOSC (multi-task) surpasses the reproduced num-
bers with a 0.04 improvement in state precision@1. Lastly, we
note that HowToChange features closely related state transitions
(such as crushing and mashing, melting and browning) as well as
fine-grained variations within a general transition, (such as various
cutting ways: chopping, slicing and mincing). These variations
present both challenges and opportunities for the advancement of
multi-task models, particularly in modeling the similarities and
fine distinctions among different state transition categories. We
leave it as future work.

Further Qualitative Results We provide more qualitative
results supplementing Fig. 4 and Fig. 5 in the main paper. Fig. 12
showcases more examples of VIDOSC’s top-1 predictions on
HowToChange (Evaluation). VIDOSC gives correct predictions
for various state transitions, across both known and novel objects.
In addition, Fig. 13 provides more examples of VIDOSC’s predic-
tions from a global perspective. Compared with all approaches,
VIDOSC consistently delivers temporally coherent predictions
that closely align with the ground truth labels. All these results
help demonstrate the strong performance of VIDOSC.

Interpretability on Object Relations VIDOSC provides
interpretable insights on how object relate to each other during
specific state transitions. To illustrate this, we calculate features
that belong to the transitioning state of “crushing”, averaged over
objects across all test videos. We then compute a feature distance
matrix from these object features, as depicted in Fig. 14. While
VIDOSC is purely video-based and has no access to ground truth
object names, the feature embeddings it produces well captures the
relations between each object pair during the “crushing” transition.
For instance, crushing cracker is more similar to crushing oreo or
biscuit than to crushing pineapple, which aligns with our intuition.
Furthermore, the heatmap reveals how VIDOSC effectively lever-
ages known object relationships to reason about novel objects. For
example, the novel object “almond” is closet in feature space to
“walnut” and “peanut” among all known objects.

Pseudo Label Analysis The pseudo label thresholds δ and τ
in Section 3.3 are decided via a hyperparameter search. Figure
15 illustrates the process, showing F1 scores for different δ and τ
for the state transition of slicing and sauteing. According to this
analysis, we set pseudo label thresholds τ = 12 and δ = 0 for the
state transition of slicing and τ = 6 and δ = 0.05 for sauteing. We
repeat this process for all other state transitions and for zero-shot
baselines as well for a fair comparison.

In addition, we experiment with no ordering constraint en-
forced in pseudo label generation (Section 3.3) on HowToChange.
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Figure 14. Distance matrix between object features produced by
VIDOSC during the “crushing” process. A lighter color indicates
smaller feature distance, and object pairs with relative small dis-
tance are marked by a circle. The heatmap offers interpretability
on object relations during a state transition and provides insight on
how the model generalizes from known to novel objects.

Method
F1 (%) Prec (%) Prec.@1 (%)

known novel known novel known novel

CLIP [44] 26.9 25.4 27.3 26.6 47.5 47.5
VIDOSC (CLIP) 35.5 34.1 38.6 36.3 51.1 48.5
Improvement +8.6 +8.7 +11.3 +9.7 +3.6 +1.0

VideoCLIP [61] 36.6 34.3 39.7 38.5 48.3 44.8
VIDOSC (VideoCLIP) 46.4 43.1 46.6 43.7 60.7 58.2
Improvement +9.8 +8.8 +6.9 +5.2 +12.4 +13.4

Table 8. A comparison of VIDOSC using pseudo labels provided
by CLIP [44] and VideoCLIP [61]. VIDOSC is a flexible frame-
work can be combined with different VLMs. Employing a better
VLM (VideoCLIP over CLIP) further enhances VIDOSC’s per-
formance.

Method
F1 (%) Prec (%) Prec.@1 (%)

known novel known novel known novel

VIDOSC (no ordering) 41.1 36.6 41.7 37.4 52.1 47.5
VIDOSC 46.4 43.1 46.6 43.7 60.7 58.2

Table 9. A comparison of VIDOSC with and without ordering
constraint enforced in pseudo label generation. Enforcing causal
ordering leads to better pseudo labels and performance gains.

Table 9 underscores the positive impact of enforcing causal order-
ing, since otherwise the VLM-derived labels would be noisier and
unordered in nature.

Lastly, we compare the performance of VIDOSC using pseudo
labels generated by two different VLMs, CLIP [44] and Video-

0.0 0.1 0.2 0.3 0.4

0.4

0.5

F1
 (%

)

=6

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=8

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=10

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=12

(a) Slicing

0.0 0.1 0.2 0.3 0.4

0.4

0.5

F1
 (%

)

=6

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=8

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=10

0.0 0.1 0.2 0.3 0.4

0.4

0.5

=12

(b) Sauteing

Figure 15. Analysis of pseudo label thresholds δ and τ for the state
transition of (a) slicing and (b) sauteing.

CLIP [61] on HowToChange. As demonstrated in Table 8, VI-
DOSC learns to generalize and improve upon the pseudo labels
it receives during training, outperforming the VLM baseline by
a great margin. Notably, VideoCLIP yields better performance
than CLIP. Correspondingly, VIDOSC incorporating VideoCLIP
also surpasses VIDOSC using CLIP, achieving additional gains
over the VideoCLIP baseline. This underscores the potential of
VIDOSC: it can be synergistically combined with any advanced
VLM to further augment performance.

Task-specific model vs general VLMs. We conclude with
a discussion comparing VIDOSC with all-purpose VLMs.

We highlight that our VIDOSC addresses unique challenges in
the open-world video OSC problem, which current VLMs are not
yet equipped to handle. Long video temporal reasoning. Our task
involves understanding long videos (input videos range from 40 to
140 seconds, as shown in Figure 11). This requires long tempo-
ral reasoning beyond the capabilities of current VLMs, which are
primarily image-based or limited to processing short video clips.
For instance, the state-of-the-art video foundation model Intern-
Video [59], which we use for feature extraction and as a baseline,
is constrained to processing short clips of a few seconds. Fine-
grained state understanding. The core of our challenge lies in dis-
tinguishing fine-grained states within an OSC process. This level
of detail requires a nuanced understanding that general VLMs cur-
rently lack. While they may excel in recognizing objects and basic
actions, discerning subtle state changes in a process is a frontier
yet to be fully explored by these models.

To substantiate our claims, we experiment with the advanced
GPT-4V [40]. When tasked with predicting OSC states for a 40-
second video, GPT-4V fails to produce meaningful outputs, as
shown by replies like “I’m sorry, but I can’t provide assistance
with the task as described.”, “I cannot process the request as it in-
volved 40 separate images.” or “Unfortunately, I cannot assist with
labeling or categorizing images in sequences.” This underscores
the current limitations of VLMs in long video modeling. Sim-
plifying the task to single-frame state classification, we present
prediction results of GPT-4V (on 3 individual runs) and ours in
Figure 16. While GPT-4V correctly classifies the background cat-
egory in most cases, it shows great instability in distinguishing the
three OSC states. This highlights its limitations in fine-grained
state understanding. Note that we do not have access to GPT-4V’s
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Figure 16. Comparison of VIDOSC with GPT4-V on a 40-second
test video. VIDOSC provides more temporally coherent predic-
tions.

underlying features and are limited to interacting via API.
Looking forward, we fully acknowledge and embrace the

power of VLMs, which drives our automatic pseudo labeling ap-
proach. Benefiting from the rapid progress of general-purpose
VLMs, VIDOSC is specialized in long and fine-grained video un-
derstanding, an area uncharted by VLMs; our work helps lay ex-
actly the missing groundwork.
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