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Abstract

Conventional supervised methods for image categorizatiynon manually annotated (labeled) examples to learn good
object models, which means their generality and scalatdé@pends heavily on the amount of human effort availablelip h
train them. We propose an unsupervised approach to cortstiscriminative models for categories specified simplyhyrt
names. We show that multiple-instance learning enablesett@very of robust category models from images returned by
keyword-based search engines. By incorporating condsdirat reflect the expected sparsity of true positive exasipto a
large-margin objective function, our approach remainswaete even when the available text annotations are impeded
ambiguous. In addition, we show how to iteratively imprdwelearned classifier by automatically refining the repréagon
of the ambiguously labeled examples. We demonstrate olioch@tith benchmark datasets, and show that it performs well
relative to both state-of-the-art unsupervised approacied traditional fully supervised techniques.

1. Introduction

The problem of recognizing generic object categories ligkaheart of computer vision research. It is challenging.on
number of levels: objects of the same class may exhibit amedilcle variability in appearance, real-world images relty
contain large amounts of irrelevant background “clutterid subtle context cues can in many cases be crucial to proper
perception of objects. Nonetheless, recent advances hawnghe feasibility of learning accurate models for a nundje
well-defined object categories (e.gL?[ 20, 16]).

Unfortunately, the accuracy of most current approachéssrékavily on the availability of labeled training exangofer
each class of interest, which effectively restricts erptiesults to relatively few categories of objects. Manuedillecting
(and possibly further annotating, aligning, cropping,.Jeimage examples is an expensive endeavor, and having achuma
in the loop will inevitably introduce biases in terms of tlypeés of images selected]. Arguably, the protocol of learning
models from carefully gathered images has proven fruitfut,it is too expensive to perpetuate in the long-term.

The Web is thus an alluring source of image data for visioeaeshers, given both the scale at which images are freely
available as well as the textual cues that surround them.ry@ugea keyword-based search engine (e.g., Google Image
Search) or crawling for meta-tags (e.g., on Flickr) willuvatly yield images of varying degrees of relevance: onlp#ipn
will contain the intended category at all, others may cantastances of its homonym, and in others the object may yarel
be visible due to clutter, low resolution, or strong viewpgoiariations. Still, dataset creators can use such retargenerate
a candidate set of examples, which are then manually pruneghiove irrelevant images and/or those beyond the scope of
difficulty desired for the dataset (e.gL, 9]).

Though appealing, it is of course more difficult to learn eiscategory models straight from the automatically coédct
image data. Recent methods attempt to deal with the imagek’df homogeneity indirectly, either by using clustering
techniques to establish a mixture of possible visual thefigsl1, 17], or by applying models known to work well with
correctly labeled data to see how well they stretch to accodate “noisily” labeled datal3, 24]. Unfortunately, the
variable quality of the search returns and the difficulty imoanatically estimating the appropriate number of themeéaso
make such indirect strategies somewhat incompatible Wwéhask.

In this work, we propose a more direct approach to learn idisicative category models from images associated with
keywords. We introduce an unsupervised methodhfaltiple-instancevisual category learning that explicitly acknowledges
and accounts for their ambiguity. Given a list of categorynea, our method gathers groups of potential images of each
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category via a number of keyword-based searches on the WatauBe the occurrence of true exemplars of each category
may be quite sparse, we treat the returned group®sisive bagthat contain some unknown amount of positive examples,
in addition to some unrelated negative examples. Compleanenegative bagsre obtained by collecting sets of images
from unrelated queries, or alternatively from any existigjabase having categories outside of the input list. Wevsho
how optimizing a large-margin objective function with ctmaints that reflect the expected sparsity of true positka®les
yields discriminative models that can accurately prediet presence of the object categories within novel imagefpan
provide a good re-ranking of the initial search returns.tlien we develop a means for the learned classifier to iteigti
improve itself by continually refining the representatidithe ambiguously labeled examples.

Our main contribution is a multiple-instance learningdshspproach for weakly supervisedategory learning from
images. Our learning paradigm exploits the wealth of textaaunding natural images that already exists, while prigper
accounting for their anticipated noise and ambiguity. Expental results indicate the approach’s promise: on beack
image datasets it competes well with several fully suped/imethods, is more accurate than a single-instance |ga®vivi
baseline, and improves on state-of-the-art unsupervinadeé classification results.

2. Related Work

Given the expense of labeled image data, researchers hpl@ezk various ways to reduce supervision requirements.
Recent work has provided methods to reduce the number off@aesrequired to learn a categog [L0], novel sources of
annotated image dat&,[11, 3, 4, 24], and clustering techniques for grouping unlabeled imag#sminimal supervision5,
15,17, 23).

A number of authors have studied probabilistic clusterirgthads originally used for text—such as Latent Semantic
Analysis (pLSA), Latent Dirichlet Analysis, and Hierarchl Dirichlet Processes—to discover the hidden mixture sfi&i
themes (“topics”) in a collection of unorganizeds[ 23] or semi-organized1l, 17] image data. A clustering approach
based on Normalized Cuts is also proposed.iij.[Clustering methods are most appropriate for mining imadaf@, but not
necessarily for learning categories: they may sometimes #lemes associated with semantic categories, but ikare
way to guarantee it. Additionally, these approaches faedltfiiculty of selecting the appropriate number of clustéos
images collected with Web search this number is bound to diglyhivariable. Finally, many such methods are themselves
not equipped to provide models to classify novel examples.ekample, pLSA requires some way to select which topic to
use for each class model, and must resort to a “folding-iniriséc when used for predictiori ], 25]; the Normalized Cuts
approach 5] must find prototypes that can serve as good training exaneir approach streamlines these limitations,
allowing categories of interest to be directly specified] producing a large-margin classifier to recognize noveaimses.

Vision researchers have identified innovative ways to takeatage of data sources where text naturally accompanies
images, whether in news photograph captidgijsgnnotated stock photo librarieS]] or generic web page<7, 4, 24]. Our
method also exploits text-based indexing to gather imagengles, however thereafter it learns categories from ttagém
content alone.

The multiple-instance learning (MIL) setting (to be definedletail below) was first identified in/[, who represented
ambiguously labeled examples using axis-parallel hyptargles and demonstrated applications for drug activégigtion.
More recently MIL has received various treatments withimttachine learning community 9, 1, 14, 22, 5]. In [5], a large-
margin MIL formulation that addresses the possibility ofyweparse positive bags is proposed, and it is demonstrated o
several machine learning datasets. The ability to leam Bparse positive bags is in fact critical to our applicative show
how to integrate their MIL objective for the purpose of unsryised category learning.

Previous instances of MIL in vision have focused on the tdslegmentation, that is, separating foreground regiomna fro
background within the same image9] 26, 28]. While in that setting one image is a positive bag, and onlylasst of
the component blobs are true positive examples (i.e., spored to foreground), we consider the problem of learniogfr
an imperfectly labeled collection of images, where only las&t of image examples correspond to the category of interes
We are the first to frame unsupervised category learning asLapkbblem, to provide a direct solution to constructing
discriminative category models from keyword-based imagech, and to develop an MIL approach to simultaneouslyeefin
the classifier and bag representation.

1our method is unsupervised in the sense that it does not eelquiman input, but we also refer to it as “weakly supervisetéeisome partitioning is
being done by the search engine.
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(a) MIL for visual category learning (b) Iterative model improvement

Figure 1.0verview of the proposed approach. (a) Given a category naoremethod automatically collects noisy “positive bags” oftances via
keyword-based image search on multiple search engines inpleulinguages. Negative bags are constructed from imageseviddoels are known, or from
unrelated searches. The sparse MIL classifier can discrientha true positive instances from the negatives, even Wiensparsity in the positive training
bags is high. (b) From the initial sparse MIL solution, thassiifier improves itself by iteratively updating the repreagon of the training bags. Stronger
positive instances have more impact on the decision boundhilg detected false positives (depicted here with smathages) have less impact.

3. Approach

The goal of this work is to enable automatic learning of visizegories. Given a list of the names of classes of interest
our method will produce discriminative models to distirefjuthem. The main idea is to exploit the keyword-based image
search functionality of current web search engines toaewtra collection of images that may have some relationshtipeto
concept of interest, and use them to train classifiers. Hewéext-based search is an inexpensive but rather impedeic
for indexing images; it is driven almost entirely by matahthe query to keywords that appear within an image file name or
surrounding text, both of which need not correspond to deisaal content.

Therefore, rather than simply treat all images returnedksyavord search as positive instances of the class of iriteves
formulate a multiple-instance learning problem to exglijaencode this ambiguity. We insert a constraint into thérojza-
tion function for a large-margin decision boundary thateet the fact that as few as one example among those retriesed
be a true positive. Further, from an initial MIL solution, whow how to iteratively improve both the representationhef t
images and the classifier itself. Having learned classif@rsach category of interest, our method can predict thegmee
of the learned categories within new images, or re-rankrttegies from the original searches according to the relev@eee
Figurel).

In the following we overview multiple-instance learningdeem MIL approach for sparse positive bags, then describe how
our method generates MIL training sets, our iterative tegmto boost sparse MIL, and the manner in which novel images
are classified.

3.1. Multiple Instance Learning

The traditional (binary) supervised classification problegssumes the learner is provided a collectioivofibeled data
points {(z;,y;)}Y,, where each:; € R? has a labely; € {+1,—1}, fori = 1,...,N. The goal is to determine the
function f : R? — {+1, —1} that best predicts labels for new input patterns drawn fieersame distribution as the training
examples, such that the probability of error is minimizeds iA[7], one can conceive of more general situations where a
learner is provided witlsets(bags) of patterns rather than individual patterns, andlg wld that at least one member of
any positive bags truly positive, while every member of amggative bads guaranteed to be negative. The goal of MIL is
to induce the function that will accurately label individirgstances such as the ones within the training bags. THeeoge
is that learning must proceed in spite of the label ambiguftg ratio of negative to positive instances within evergifiee
bag can be arbitrarily high.

One might argue that many MIL settings—including ours—coindpsy be treated as a standard “single-instance learn-
ing” (SIL) setting, just where the labels are noisy. Foramste, a support vector machine (SVM) has slack parametatrs th
enable soft-margins, which might deal with some of the falsgtive training examples. However, a recent study coimpar
various supervised learners and their MIL counterpartealsvthat ignoring the MI setting of a learning problem can be
detrimental to performance, depending on the sparsity @stdlalitions of the data”]”]. Further, our results comparing our



MIL approach to an SIL baseline corroborate this finding Seetion4).

3.2. Keyword-based Image Search and MIL

We observe that the mixed success of keyword-based imagehdeads to a natural MIL scenario. A single search for
a keyword of interest yields a collection of images withinieth(we assume) at least one image depicts that object, thus
comprising a positive bag. To generate multiple positivgsbaf images, we gather the results of multiple keyword-thase
image queries, by translating the query into multiple laggs, and then submitting it to multiple search engines. The
negative bags are collected from random samples of imagessting labeled datasets, from only those categorieshwihic
not have the same name as the category of interest, or frowokdymage search returns for unrelated words (we expetimen
with both ideas below).

There are several advantages to obtaining the trainingibdlys manner: doing so requires no supervision (an autednat
script can gather the requested data), the collection psaseefficient since it leverages the power of large-scalkestearch
engines, and the images are typically available in greatrausn Perhaps more interesting, however, is that most afthges
will be natural, “real-world” instances illustrating thesual category that was queried. Standard object recogrdtitabases
used extensively in the vision community have some inhdsises or simplifications (e.g., limitations to canonicases,
unnaturally consistent backgrounds, etc.), which cantin kimit the scope of the visual categories learned. Our @ggn
will be forced to model a visual category from a much richescasnent of examples, which in some cases could lead to
richer category models, or at least may point to a need foerfiexible representations.

3.3. Sparse MIL

To recover a discriminative classifier between positive aegative bags of images, we consider the objective function
suggested inf] to determine a large-margin decision boundary while anting for the fact that positive bags can be
arbitrarily sparse. The sparse-MIL (sMIL) optimizationagts a standard SVM formulation to accommodate the multi-
instance setting.

We consider a set of training bags of imaggswhich is itself comprised of a set of positive batjs C A and a set of
negative bagst,, C X. Let X be a bag of images, antl, = {z|z € X € X,} andX, = {z|z € X € X,,} be the set of
instances from positive and negative bags, respectivelyarficular image instanceis described in a kernel feature space
as¢(x) (and will be defined below). The SVM decision hyperplane \weigectorw and bias are computed as follows:

minimize: 3 |jw||? + % Yoees, fot ﬁ > xex, §x (1)
subject to: wo(x)+b< —14+&, Vrel,
(X 2-|X
wid 4> 2 —ey, vx e,
£ 20,6x >0,

whereC' is a capacity control parameten.X) = > ¢(x) is a (possibly implicit) feature space representation of Ka

| X | counts the number of instances it contains, which togetiedd $he normalized sum of a positive bag’s featu?r%%.

This optimization is similar to that used in traditional suygised (single-instance) classification; however theoséc
constraint explicitly enforces that at least one instaifrem a positive bag should be positive. Ideally we would ¢ais the
labels assigned to the instances to reflect precisely théeuat true positive instances: w% > D ex 71(7:”‘) —&x,
wherey(x) = —1forallz € X \ {#}, andy(Z) = +1. The actual number of items ifi:} is unknown; however, there must
be at least one, meaning that the spim_ , y(x) is at least — | X|. Therefore, instead of tacitly treating all instances as

positive (which would yield the constraim% +b>+1—¢x asin[L4]), the linear term in the objective requires that the
optimal hyperplane treat at least one positive instanc¥ ias positive (modulo the slack varialdg). That the righthand
side of this inequality constraint is larger for smaller ®agtuitively reflects that small positive bags are more rinfative
than large ones.

This sparse MIL problem is still convex], and reduces to supervised SIL when positive bags are eflksizZWhile
alternative MIL techniques would also be applicalié, [, 14], sMIL is conceptually most appropriate given that we expec

to obtain some fairly low-quality and sparse image retfieftmm the keyword search.



3.4. Iterative Improvement of Positive Bags

One limitation inherent to the sparse MIL objective abovihat the constraints, while accurately reflecting the amabyg
of the positive instances’ labels, also result in a rathers® representation of each positive bag. Specificallys¢icend
constraint of Eqn. 1 maps each bag to the mean of its compamsances’ representations,X ) = ﬁ Y wex ¢(x). This
“squashing” can be viewed as an unwanted side effect of mgthie instance-level constraints to the level of grantylari
required by the problem. We would prefer that a positive bagapresented as much as possible by the true positivesiwithi
it. Of course, if we knew which images were true examplesgdtta would no longer be ambiguous!

To handle this circular problem, we propose an iterativaegfient scheme that bootstraps an estimate of the bag gparsit
from the image data alone. We first introduce a set of weights . . ,w) x|] associated with each instance in a bagand

X1 @) g . .
represent a positive bag as the weighted sum of its membentes: ¢(X) = % wherewl(t) is the weight
assigned to instance in bag X at iterationt, and| X | denotes the size of the bag. Initial&yﬁo) = ﬁ i.e., all instances in

a bag are weighted uniformly. (Note that standard sMIL iigli always uses these initial weights.)

Then, we repeatedly update the amount of weight each pesitstance contributes to its bag’s representation. After
learning an initial classifier from the bags of examples, wae that function to label all trainingstanceswithin the positive
bags, by treating each instance as a singleton bag. The wasgiyned to every instaneg in positive bagX is updated

according to its relative distance from the current optitmgberplane. The weight at iteratignis computed aswgt) =

wf’”ewi%ﬁn, wherey; = wo(x;) + b, andy,, = argmax , .y y;. The ideais that at the end of each iteration, the bag
representation used to solve for the optimal hyperplanar{db) is brought closer to the instance that is considered most
confidently to be positive. At the subsequent iteration, & okassifier is learned with the re-weighted bag represiemtat
which yields a refined estimate of the decision boundary,sanah.

The number of iterations and the value ®f are parameters of the method. Followingl]} we set the number of
iterations based on a small cross-validation set obtaimeah iunsupervised manner from the top hits from a single keywo
search return. For each bag we 8&t= c(y,,, — y»), wherey,, andy,, are the bag’s maximal and minimal classifier outputs,
andc is a constant. This constant is similarly cross-validated] fixed at = 5 for all experiments.

3.5. Bags of Bags: Features and Classification

In our current implementation, we represent each image ag afd‘'visual words” f], that is, a histogram counting how
many times each of a given number of prototypical local fezgtwccurs in the image. Given a corpus of unrelated training
images, features are extracted within local regions ofé@stadentified by a set of interest operators, and then tieggens are
described individually in a scale- and rotation-invariargnner (e.g., using the SIFT descriptor b]). A random selection
of the collected feature vectors are clustered to estahlikst of quantized visual words, thecluster centers. Any new
imagex is then mapped to &-dimensional vector that gives the frequency of occurrei@ach wordp(x) = [f1,. .., fx],
wheref; denotes the frequency of tlie¢h word in imager.?

We have chosen this representation in part due to its sugt®asious recognition algorithms] 11, 25], and to enable
direct comparisons with existing techniques (see belowpur experiments, we compare the bags of words using a simple
Gaussian RBF kernel. However, given that we have a kerrsdebanethod, it can accommodate any representation for
which there is a suitable kernel comparis@riz;), ¢(z;)), including descriptions that might encode local or glohmitsal
relationships between features, or kernels that measutialpaatches to handle multiple objects.

After solving Eqgn. 1 for a given category name, we iteraieiprove the classifier and positive bag representations as
outlined above. The classifier can then be used to predigirdsence or absence of that object in novel images. Opiypnal
it can be applied to re-rank the original image search reshi#it formed the positive training bags: the classifiett¢reach
image as a singleton bag, and then ranks them accordingitaist@ance from the hyperplane.

4. Results

In this section we present results to demonstrate our mdibtidfor learning various common object categories without
manual supervision, as well as re-ranking the images retlfnom a keyword search. We provide comparisons with sthte-
the-art methods (both supervised or unsupervised) on bearthtest data, throughout using the same error metricsechos
in previous work. We use the following datasets, which we hater refer to by acronyms:

2Note the unfortunate double usage of the wioag; here the term bag refers to a single image’s representativereas a positive bag of exampl&s
will contain multiple bags of word§é(z1), . . ., ¢(zx|)}-
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Figure 2.Left: Error comparison for our sMIL approach and an SIL baselinenathined with search engine images (CB) and tested on thedbalt
(CT). sMIL is noticeably more accurat®ight: Errors for the same methods for increasingly sparse positigs.bThe two are equivalent for noise-free
training examples. However, SIL's error quickly increaseseofalse positives appear in the training set, whereas $8/dlesigned to handle sparse bags,
and its error grows much more gradually.

Caltech-7 test data (CT):a benchmark dataset containing 2148 images total from ssutegories: Wristwatches, Gui-
tars, Cars, Faces, Airplanes, Motorbikes, and Leopards.dataset also contains 900 “background” images, whichagont
random objects and scenes unrelated to the seven categdhiestest is binary, with the goal of predicting the presence
or absence of a given category. Testing with these imagewallis to compare with results reported for several existing
methods.

Caltech-7 train data (CTT): the training images from the Caltech-7, otherwise the sa&Taabove.

Google downloads [ 1] (G): To compare against previous work, we train with the raw Gealyiwnloaded images used
in [11] and provided by the authors. This set contains on averafeeg@mples each for the same seven categories that
are in CT. Since the images are from a keyword search, thentronder of training examples for each class are sparse: on
average 30% contain a “good” view of the class of interes 20e of “ok” quality (extensive occlusions, image noise,
cartoons, etc.), and 50% are completely unrelated “jun&’judged in [1]. To form positive bags from these images, we
must artificially group them into multiple sets. Given thegantage of true positives, random selections of bags efZiz
are almost certain to contain at least one.

Search engine bags for Caltech categories (CBIn order to train our method with naturally occurring bagéasnded,
we also download our own collection of images from the Weltlierseven CT classes. For each class name, we download
the topn=50 images from each of three search engines (Google, YM®N) in five languages (English, French, German,
Spanish, Italian), yielding 15 positive bags for each catggThe choice of: was arbitrary and meant to take the first few
pages of search results; after later trying a few smallenesawe found our method’s results varied insignificantly.e Th
sparsity in these images appear to be similar to those of @GatNe instances for CB are taken from the CT background
images or from the search returns of the other categoriesp@sfied below).

Animal test data [4] (AT): a benchmark test set containing about 10,000 images total I0 different types of animals.
The images originated from a Google Image Search, and asajthite noisy. The data and ground truth labels are provided
from [4].

Search engine bags for Animals categories (AB)his set is just as CB above, except the searches are peddomthe
10 classes in AT.

To represent the images from CT and G, we use local featuosgded by the authors ofi[l], which were taken from four
interest operators; for the CB images we generated a sibalak of local features, and for AT and AB we use Harris-Affine
and DoG interest operators for local features, plus globkirchistograms as described ifi].[ Each region surrounding
a detected interest point is described with ad78HT descriptor [8]. To form a visual vocabulary, we cluster a random
sample of descriptors from 100 training images ugingeans, withk = 500. Features from all detectors are merged into a
single vocabulary. In all cases we use a Gaussian RBF kereehpare images. The RBF and SVM parametgsndC)
are selected in an unsupervised manner via cross-valasing one held-out bag, as described above.

4.1. MIL versus SIL

First we evaluate our MIL approach on the Caltech test se) (@ien it is trained with the CB bags. In some cases
SIL—where all instances in positive bags are simply labegeldedng positive—can achieve competitive results to Mi¥][
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Method /
Category [12] [20] [16] SIL-SVM [25] SMIL [11] SMIL SMIL
Airplane 7.0 111 - 4.9 34 5.0 15.5 10.7 22.9
Car (rear) 9.7 8.9 6.1 10.7 21.4 54 16.0 11.8 12.0
Face 3.6 6.5 - 21.8 53 115 20.7 23.1 13.6
Leopard 10.0 - - 111 - - 13.0 12.4 12.0
Motorbike 6.7 7.8 6.0 4.0 154 38 6.2 38 38
Guitar - - - 6.9 - - 31.8 8.2 111
Wrist watch - - - 7.3 - - 19.9 8.9 9.6
[ Average error T - 1T - 1] - i 95 [ - [ - [ 1759 [ 1127 [ 1214 ]

Figure 3.Comparison of the error rates and supervision requirementbdgproposed approach and existing techniques (whetpergsed or unsuper-
vised) on the Caltech-7 image data. Error rates are measutteglfaint of equal-error on an ROC curve. Boxes with ’-’ dentbtat no result is available for
that method and class. The best result for each category eadbrcomparable setting is in bold, and the best result riegardf supervision requirements
or training data is in italics (see text). Our approach isralenore accurate than prior unsupervised methods, and aamd@od models both with highly
noisy Caltech training data (sMlLand raw images from a Google search (sMIL). Methods learrc#itegories either from Caltech-7 images (CTT) or
from web images (G, CB). All methods are tested with the Caltétdst set (CT).

Therefore, we also evaluate an SIL baseline, a binary SVNh Bwethods are given one noisy positive bag to cross-validat
and select theiC' parameters, though we found through more exhaustive ealgkation that SIL's accuracy remained
similar whetherC' was chosen with noisy or noise-free examples. Figu(eft) compares the error rates on the CT test
examples when both methods are trained with CB positivedbankiground negatives. MIL is more accurate than SIL for all
but one category, and on average its error is lower by 5 points

To better understand the gains of our MIL approach in thifnggtwe next systematically analyze the effect of the
sparseness of positive bags on categorization resultofor®iL and sMIL. Positive examples from the CT are mixed with
background images in different ratios to obtain positivgdaf varying degrees of sparsity. The percentage of negativ
examples in the positive bags is varied from 10% to 90% (ipssté 10). Negative bags are constructed from the background
images into bags of size 10. To measure error based on whelagsifier has actually learned about the instance space, we
consider the labels assigned to the instances composinathing bags when they are treated as singleton bags. Nate t
the error rate on the trainingstanceds different from the training error, as the bags are theningi examples. Figurg
(right) shows the result: by design, sMIL is better equipfzedandle sparse positive bags.

Both these results indicate the advantage of encoding thecgxd label ambiguity into the learning machine. While it
is feasible to apply traditional SIL and hope the slack J@dga can cope, these results serve as evidence that MILtesr bet
suited for discriminative learning from very ambiguousnnag data.

4.2. Caltech-7 benchmark

The CT dataset is a benchmark that has been used for sevaral gthough primarily in supervised settings. Next we
compare the errors of our approach with those reported ter ailithors using both supervised and unsupervised reagnit
techniques]2, 20, 16, 25] (see Figured). Note that while every single method has been tested oratine slata, they vary in
terms of their training supply (note the table row named ‘18ewof training data”). In addition, the discriminative hets
(sMIL,SIL, and 0)) learn from both positive and negative examples, wherea®thers (minus’5]) do not encounter the
random “background” images until test time. However, tBisin advantage of discriminative methods in general, which
focus specifically on distinguishing the classes rathar tearesenting them.

The three rightmost columns correspond to the TSI-pLSAng&pke of Fergus et all[l] and our sMIL approach, when
trained with either the G or CB downloads. In this comparisantechnique improves accuracy for every category. Of all
seven categories, the G data for Airplanes happened to tfieldparsest positive bags—over 70% of the Airplane training
examples do not contain a plane. For this class, the sMILr &14.8 points better than TSI-pLSA, which again illusteate
the advantage of specifically accounting for sparsity ind&i used to build the category model. Note that resultsuite q
similar whether our method learns from the G or CB images {¥&s columns).

Presumably, being able to train with images from the samegpesl dataset as the test examples is advantageous—whether
or not those training examples are labeled—since the tedraimddistributions will be quite similar. Indeed, whenitiag
with the Web images, sMIL falls short of Sivic et al.'s pLSAustering approach?f] for half of the classes. In order to
make a comparison where sMIL also has access to unlabeléec@@inages, we generated an MIL training set as follows:
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Figure 4.Re-ranking results.Left: Refining positive bags: Precision at 15% recall over multipdeations when re-ranking the Google (G) dataset.
Middle: Comparison of sMIL and44] when re-ranking the G images, with accuracy measured by tbege precision at 15% recall. Both methods
perform fairly similarly, although sMIL re-ranks the imagessked on image content alone, while the approach4hdlso leverages textual features. (Note,
results are not provided for the last two categories?if])] Right: Comparison of sMIL, Google’s Image Search{], and [}] when re-ranking the AT
images. The plot shows the precision at 100-image recall Bfthanimal classes. Our method improves upon Google’s predsiall categories and
outperforms all methods in three categories. (Best viewedlorg

starting from pure CTT training sets for each class, we thdhtemckground images to each, to form a 50-50 mixture for
each category’s training set. Each such polluted train@tgsssplit into positive bags, and given to our method. Wetbéd
variant sMIL in Figure 3. In this setting, our approach is overall more accurate {aa} by about five points on average.
Note however that this pLSA technique is not defined for Wets@dedata, and identifies the categories from one big pool of
unlabeled images; our method may have some benefit fronviegehe noisy images carved into groups.

Finally, in comparison to the three fully supervised tequeis L2, 20, 16], our method does reasonably well. While
it does not outperform the very best supervised numberséds épproach them for several classes. Given that our sMIL
approach learns categories with absolutely no manual gigpm, it offers a significant complexity advantage, andaso
find this to be a very encouraging result.

4.3. Re-ranking Keyword-Search Images

In these experiments, we use our frameworketoankthe Web search images by their estimated relevance.

Google Images of the Caltech-7 Categories.irst we consider re-ranking the G dataset. Here we can cangpe results
against the SIL approach developed by Schroff et’l. [Their approach uses a supervised classifier to filter alycs or
drawings, followed by a Bayes estimator that uses the sodiog text and meta-data to re-rank the images; the top danke
images passing those filters are then used as noisily-thbala to train an SVM. Our sMIL model is trained with positive
bags sampled from G, while the method ®f] trains from G images and their associated text/tags. Bl hegatives from
the G images of all other categories.

Figure4 (middle) compares the results. Overall, sMIL fares faithmparably to the Schroff et al. approach, in spite
of being limited to visual features only and using a compjeteitomated training process. sMIL obtains 100% precision
for the Airplane class because a particular airplane imagg nepeated with small changes in pose across the dataget, an
our method ranked this particular set in the top. Our preni$dr Guitars is relatively low, however; examining sMltsp
ranked images and the positive training bags revealed a euofbmages of music scores. The unusual regularity of the
images suggests that the scores were more visually colthaivéhe various images of guitars (and people with guitdcs),
and thus were learned by our method as the positive clasd. Mot tuned to distinguish “ok” from “good” images of a
class, so this accuracy measure treats the “ok” images @ass-examples, as doesT. Similar to observations in2], if
we instead treat the “ok” images as negatives, sMIL's aagudclines fron¥5.7 to 58.9 average precision. In comparison,
Fergus et al.T1] achieve69.3% average precision if “ok” images are treated as negatiessilis are not given for the other
setting.

Figure 4 (left) shows the precision at 15% recall for different numsbef iterations. Since sMIL gets 100% precision
on Airplanes without refinement, we manually removed the-deplicate examples for this experiment. As we re-weight
the contributions of the positive instances to their bags see a notable increase in the precision for Airplanes,, @acs
Faces. For the rest of the classes, there is negligible eh@rigpoint). Figure5 shows both the Face images our algorithm
automatically down-weighted and subsequently removed tiee top ranked positives, and the images that were refi¢assi
as in-class once their weights increased. Examples witr allisses are similar, but not included due to space liimntsit

Google Images of the Animal Categorie§inally, we performed the re-ranking experiment on the ASt teages. Here
we use both local features and the color histograms sugbesfe]. We simply add the kernel values obtained from both



=3

¥

e,
"/

Figure 5.0utlier images (Top) are down-weighted by our refinement élgor, while weights on better category exemplars increasét@By and thereby
improve the classifier. The rows show all images from the G FAgplanes and Cars set that move in and out of the 15% recadl leefore and after
refinement, respectively.

feature types in order to combine them into a single kerngjure 4 (right) compares the precision at 100-image recall
level for our method, the original Google Image Search, &ednethods of Berg et ald] and Schroff et al. 74]. For all

ten categories, sMIL improves significantly over the oriGoogle ranking, with up to a 200% increase in precision (fo
dolphin). Even though4] and [24] employ both textual and visual features to rank the imagesmethod performs similarly
using image cues alone. In fact, for categodae$ dolphinandleopard our method outperforms both previous approaches
by a good margin.

Conclusions.We have developed an MIL technique that leverages textehiasgge search to learn visual object categories
without manual supervision. When learning categories aaniing keyword-based searches, our approach perforrgs ver
well relative to both state-of-the-art unsupervised apphes and traditional fully supervised techniques. In tieré we
are interested in exploring complementary text featuresiwthis framework, and considering how prior knowledgewb
a category’s expected sparsity might be captured in ordeoost accuracy.
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