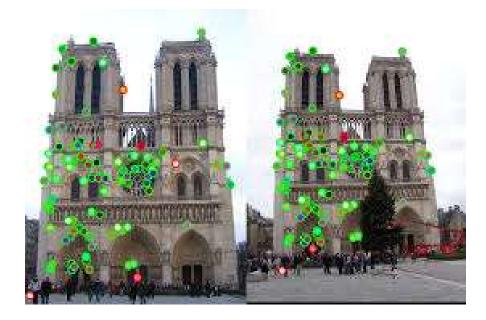
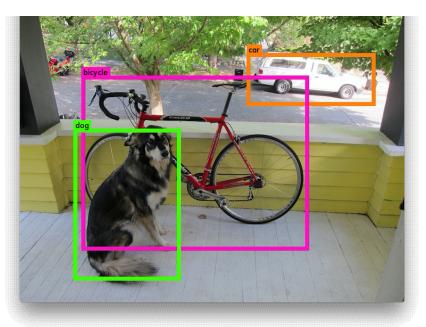
Learning visual styles

Kristen Grauman Department of Computer Science University of Texas at Austin

Recognizing instances



Recognizing categories



Recognizing instances

Recognizing categories

But fashion also introduces new challenges for high-level vision:

Requires computational models for style

Many applications for learning to model style

2016 FALL

VAGABOND YOUTH X CHICTOPIA

FASHION

TRENDS

polyvore"

This talk

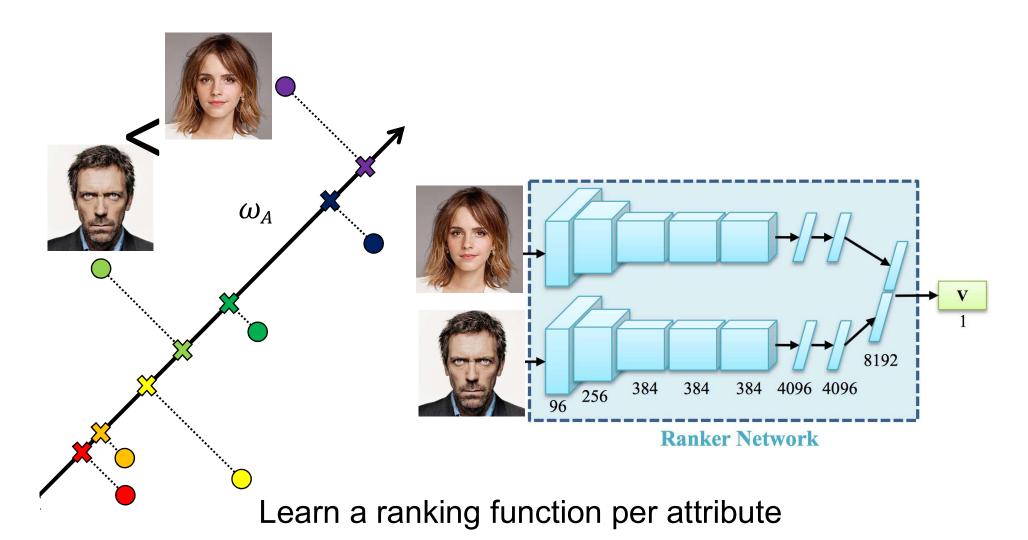
- Subtle visual attributes
- Style discovery and forecasting
- Creating capsule wardrobes

Relative attributes

- High-level semantic properties shared by objects
- Human-understandable and machine-detectable

[Oliva et al. 2001, Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009, Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2000, Berger al. 2010, Brandson et al. 2010, Parikh & Grauman 2011, ...] Singh & Lee, ECCV 2016

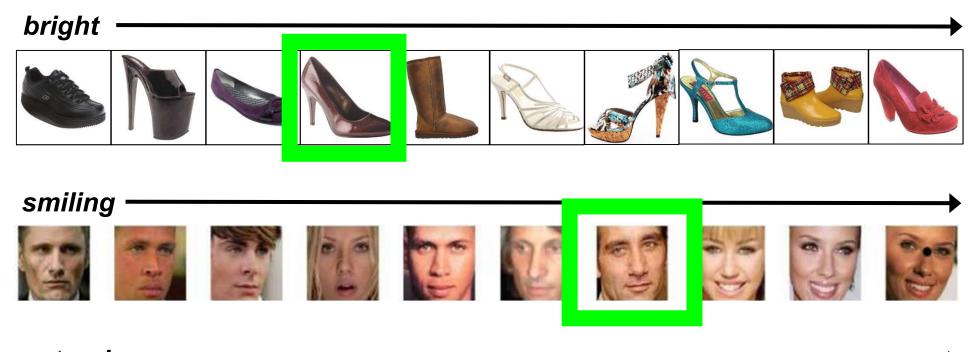
Relative attributes



Parikh & Grauman, ICCV 2011 Singh & Lee, ECCV 2016

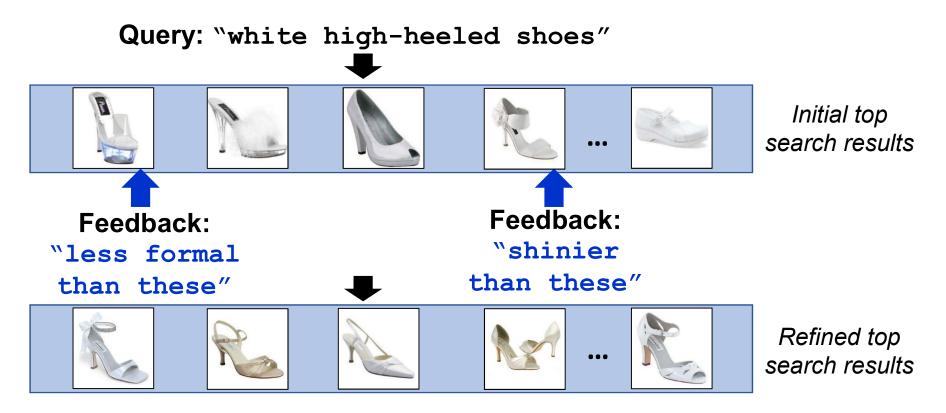
Relative attributes

Now we can compare images by attribute's "strength"



[Parikh & Grauman, ICCV 2011]

WhittleSearch: Relative attribute feedback



Whittle away irrelevant images via precise semantic feedback

[Kovashka, Parikh, and Grauman, CVPR 2012, IJCV 2015]

Challenge: fine-grained comparisons

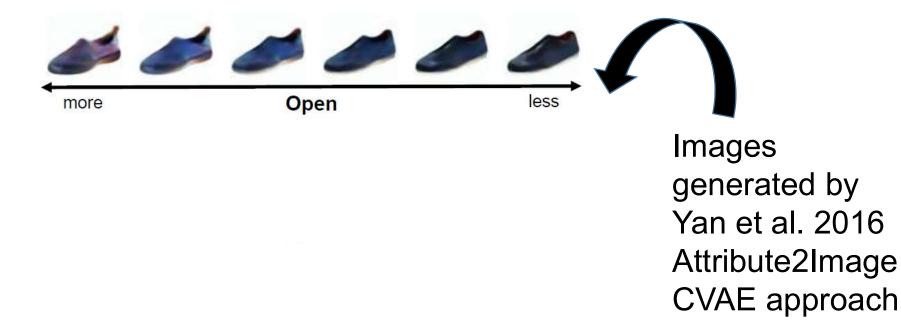
Which is more sporty?

Sparsity of supervision problem:

- 1. Label availability: lots of possible pairs.
- 2. Image availability: subtleties hard to curate.

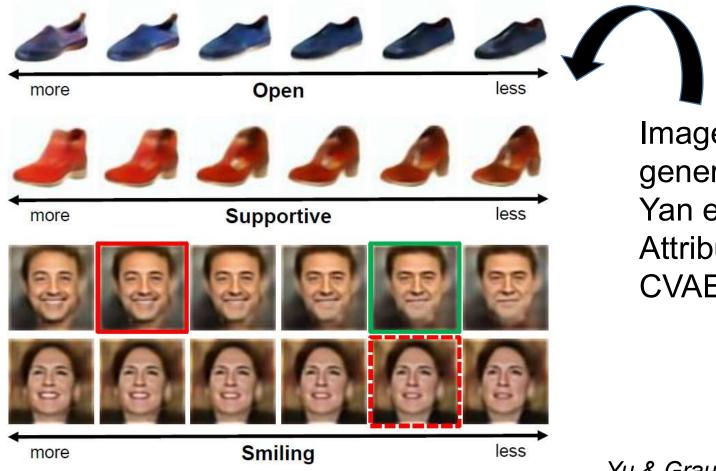
Idea: Semantic jitter

Overcome sparsity of available fine-grained image pairs with attribute-conditioned image generation



Idea: Semantic jitter

Overcome sparsity of available fine-grained image pairs with attribute-conditioned image generation



Images generated by Yan et al. 2016 Attribute2Image CVAE approach

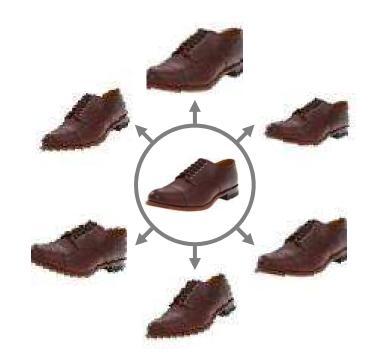
Yu & Grauman, ICCV 2017

Idea: Semantic jitter

Overcome sparsity of available fine-grained image pairs with attribute-conditioned image generation

VS.

Our idea: Semantic jitter

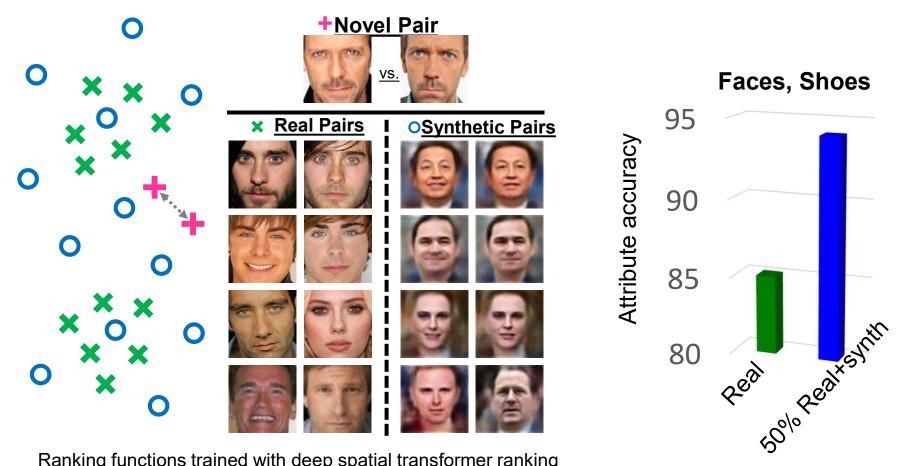


Status quo: Low-level jitter

Yu & Grauman, ICCV 2017

Semantic jitter for attribute learning

Train rankers with both real and synthetic image pairs, test on real fine-grained pairs.



Ranking functions trained with deep spatial transformer ranking networks [Singh & Lee 2016] or Local RankSVM [Yu & Grauman 2014]

Yu & Grauman, ICCV 2017

Semantic jitter for attribute learning

		Open	Sporty	Comfort
Zap50K-1	RelAttr [Parikh 2011]	88.33	<mark>89.33</mark>	91.33
	FG-LP [Yu 2014]	90.67	91.33	93.67
	DeepSTN [Singh 2016]	93.00	93.67	94.33
	DSynth-Auto (Ours)	95.00	96.33	95.00
Zap50K-2	RelAttr [Parikh 2011]	60.36	65.65	62.82
	FG-LP [Yu 2014]	69.36	66.39	63.84
	DeepSTN [Singh 2016]	70.73	67.49	66.09
	DSynth-Auto (Ours)	72.18	68.70	67.72

- State-of-the-art fine-grained comparisons
- All models trained on 64x64 images

UT Zappos-50K dataset

Challenge: Which attributes matter?

Left shoe is _____ than right shoe:

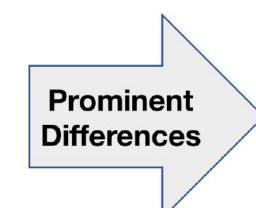
Less colorful Less comfortable More rugged More shiny Less feminine More stylish More formal

Idea: Prominent relative attributes

Infer which comparisons are perceptually salient

Left shoe is _____ than right shoe:

Less colorful Less comfortable More rugged More shiny Less feminine More stylish More formal



More formal More shiny Less comfortable Less feminine Less colorful More rugged More stylish

Approach: What causes prominence?

- Large difference in attribute strength:
- Unusual and uncommon attribute occurrences:
- Absence of other noticeable differences:

Colorful

Prominent Difference:

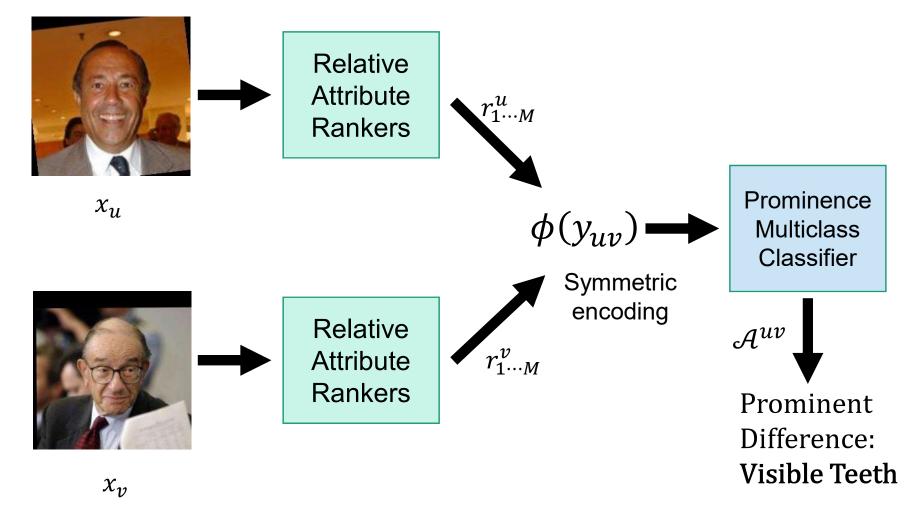
Visible Forehead

Dark Hair

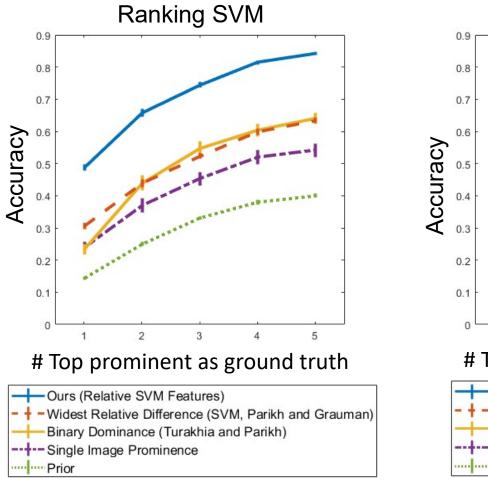
In general: Interactions between all the relative attributes in an image pair cause prominent differences.

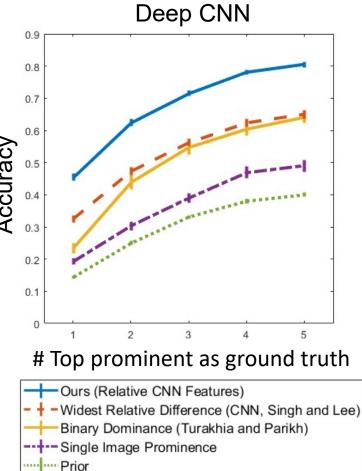
Approach: Predicting prominent differences

input:
$$y_{uv} = (x_u, x_v)$$



Results: Prominent differences





Results: Prominent differences

(a) **colorful** (>), sporty, comfortable

(d) shiny (>), feminine, colorful

(b) **sporty** (>), colorful, comfortable

(e) **rugged** (<), tall, feminine

(c) **tall (<)**, colorful, sporty

(f) feminine (>), comfortable, shiny

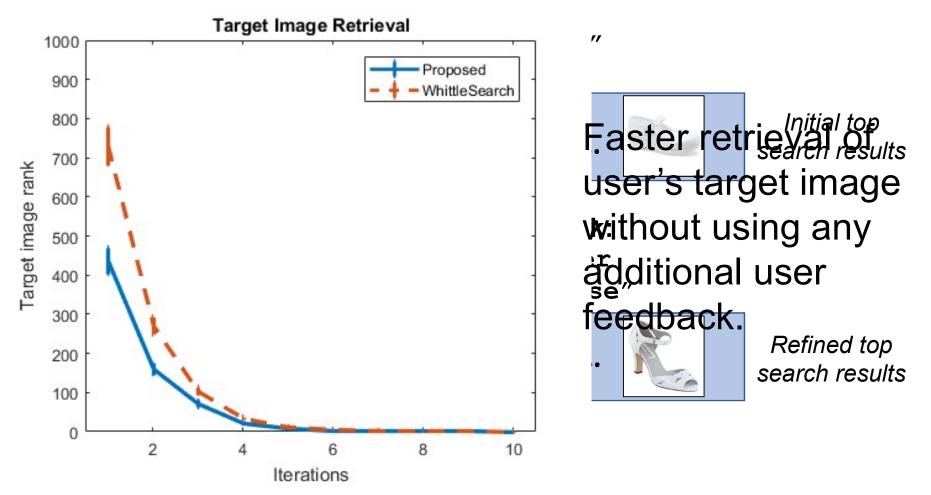
(j) masculine (>), smiling, visible teeth

(k) **bald head (<)**, dark hair, visible teeth

(l) dark hair (<), mouth open, smiling

(Top 3 prominent differences for each pair) Chen & Grauman, CVPR 2018

Prominent differences: impact on visual search

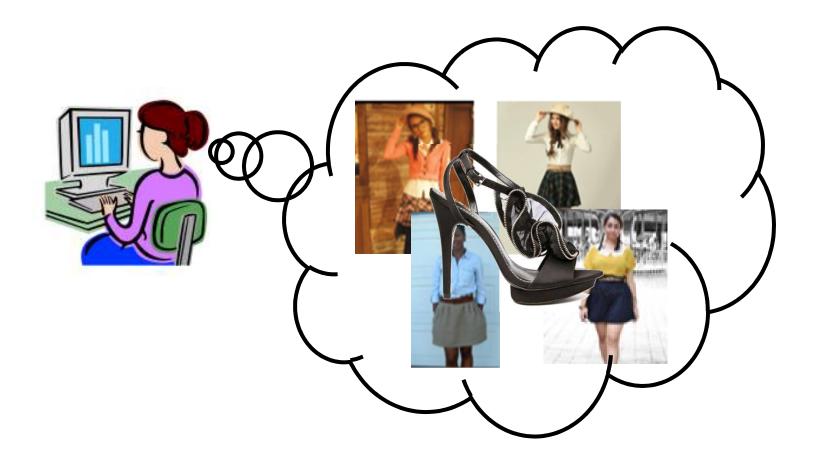


Leverage prominence to better focus search results

This talk

- Subtle visual attributes
- Style discovery and forecasting
- Creating capsule wardrobes

From items to styles



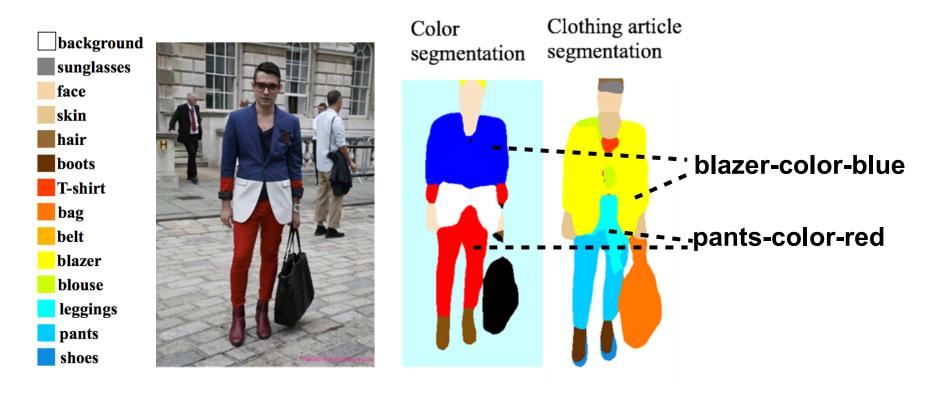
From items to styles

Requires a representation of visual style

Challenges:

- Same "look" manifests in different garments
- Emerges organically and evolves over time
- Soft boundaries

Detect localized attributes



- Material, cut, pattern
 - Fine-tune classification on ResNet50
- Color, clothing article:
 - Segmentation on DeepLab-DenseCRF

Topic models: Inspiration from text

Topics

genetic 0.01

organism 0.01

0.04

0.02

0.02

0.01

0.04

0.02

0.01

0.02

0.02

gene

dna

...

life

brain

nerve

. . .

data

...

number

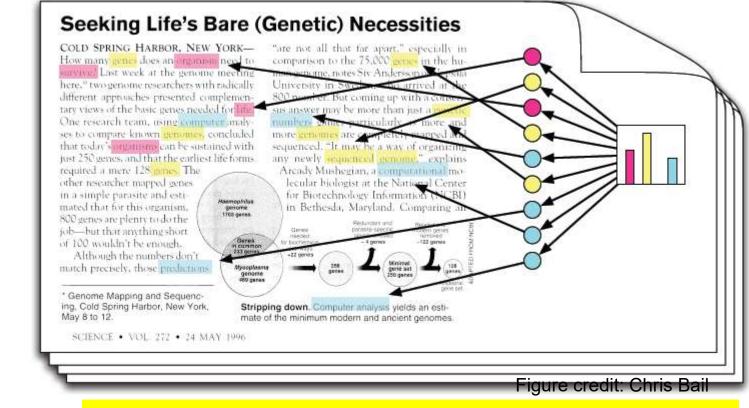
computer 0.01

neuron

evolve

Documents

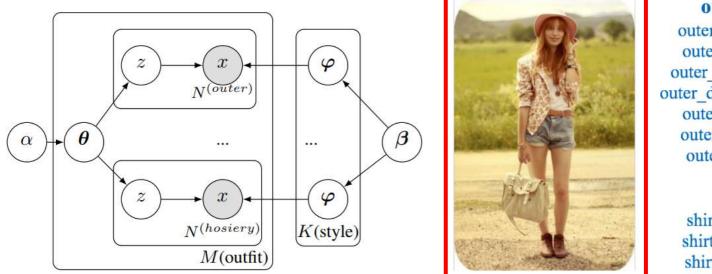
Topic proportions and assignments



Topic models, e.g., Latent Dirichlet Allocation (LDA)

Idea: Discovering visual styles

Unsupervised learning of a style-coherent embedding with a **polylingual topic model**



outer layer outer_color_orange outer_color_white outer_pattern_printed outer_decoration_button outer_sleeve_long outer_length_short outer_front_open

upper shirt_color_white shirt_pattern_plain shirt_sleeve_short

An **outfit** is a mixture of (latent) **styles**. A **style** is a distribution over **attributes**.

Mimno et al. "Polylingual topic models." EMNLP 2009.

Hsiao & Grauman, ICCV 2017

Example discovered styles (dresses)



Styles we automatically discover in the Amazon dataset [McAuley et al. 2015]

Example discovered styles (dresses)

Styles we automatically discover in the Amazon dataset [McAuley et al. 2015]

Example discovered styles (full outfit)

Styles we automatically discover in the HipsterWars dataset [Kiapour et al]

Style discovery accuracy

How well do our discovered styles align with human-perceived styles?

	HipsterWars		DeepFashion		
	Avg. max AP	NMI	Avg. max AP	NMI	
StyleNet [33]	0.39	0.20	0.0501	0.0011	
ResNet [12]	0.30	0.16	0.0524	0.0004	
Attributes	0.28 / 0.32	0.19/0.28	0.0560 / 0.1294	0.0017 / 0.0082	
PolyLDA	0.50 / 0.53	0.21 / 0.31	0.0407 / 0.1762	0.0006 / 0.0227	

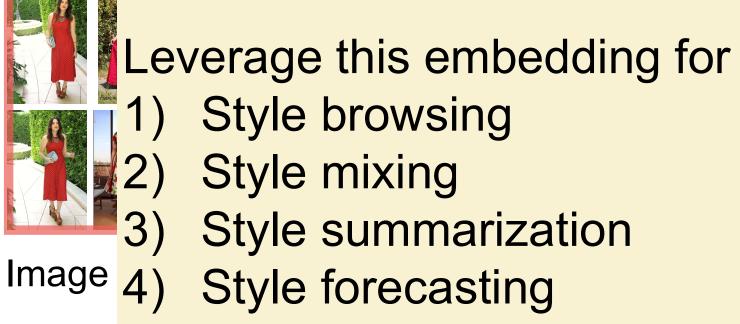
Attributes and PolyLDA show result if using either predicted attributes (first) or ground truth attributes (second).

Style-coherent embedding

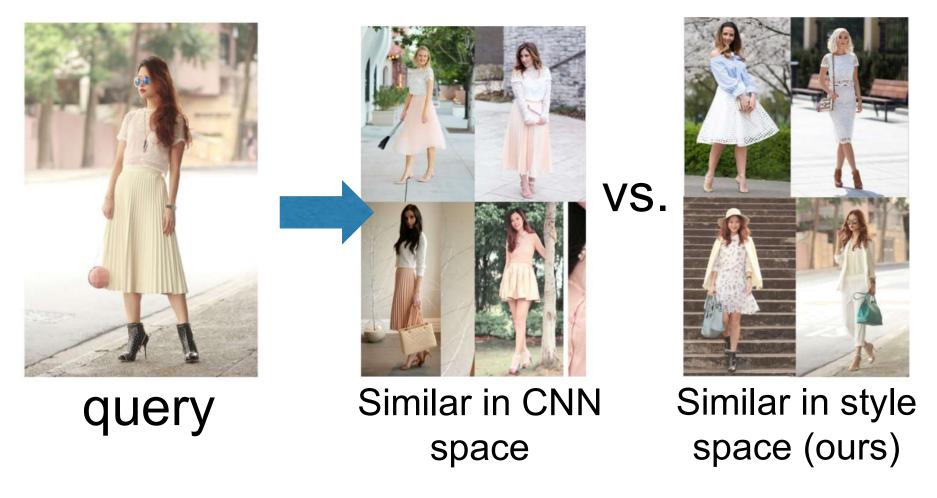
Discovered latent styles (topics)

Style-coherent embedding

Discovered latent styles (topics)

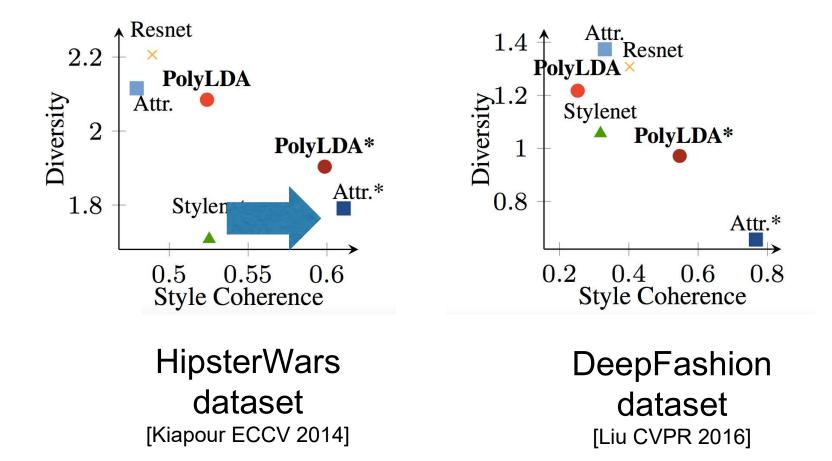


Style browsing results



Maintain style coherence while also permitting diversity

Style browsing results



Maintain style coherence while also permitting diversity

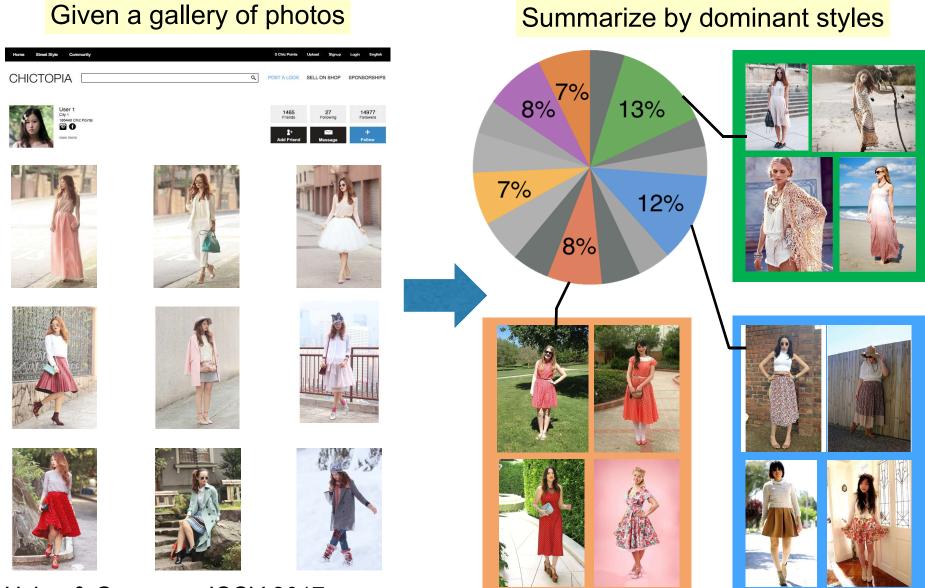
Mixing styles

Our embedding naturally facilitates browsing for mixes of user-selected styles

Mixing styles

Our embedding naturally facilitates browsing for mixes of user-selected styles

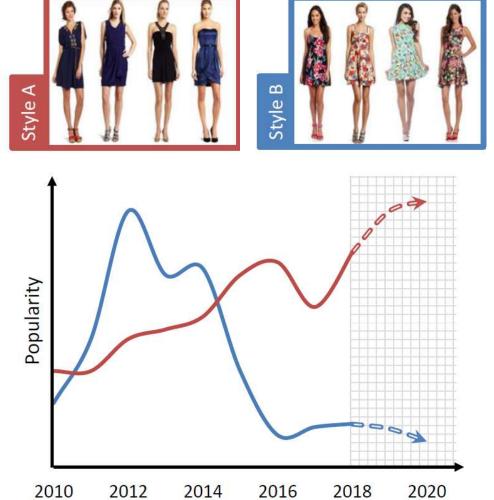
Style summarization



Style forecasting

Can we predict the future popularity of styles?

- 1. Visual style discovery
- 2. Construct style temporal trajectory
- 3. Forecast future trend
- 4. Style description via signature attributes



Amazon dataset

[McAuley et al. SIGIR 2015]

- Dresses, Tops & Tees and Shirts -- over 6 years
- 80,000 items and 210,000 transactions

Text

Women's Stripe Scoop Tunic Tank, Coral, Large

Tags

- Women
- Clothing
- Tops & Tees
- Tanks & Camis

Text

The Big Bang Theory DC Comics Slim-Fit T-Shirt

Tags

- Men
- Clothing
- T-Shirts

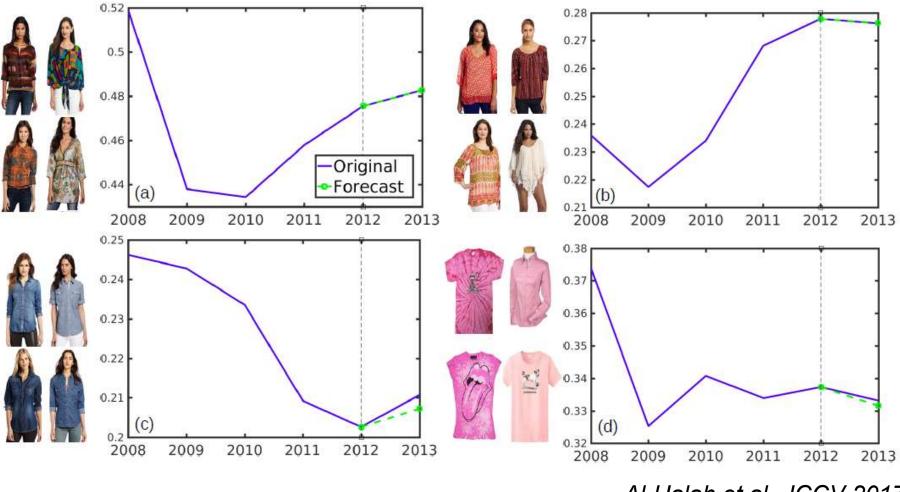
Text Amanda Uprichard Women's Kiana Dress, Royal, Small

Tags

- Women
- Clothing
- Dresses
- Night Out & Cocktail
- Women's Luxury Brands

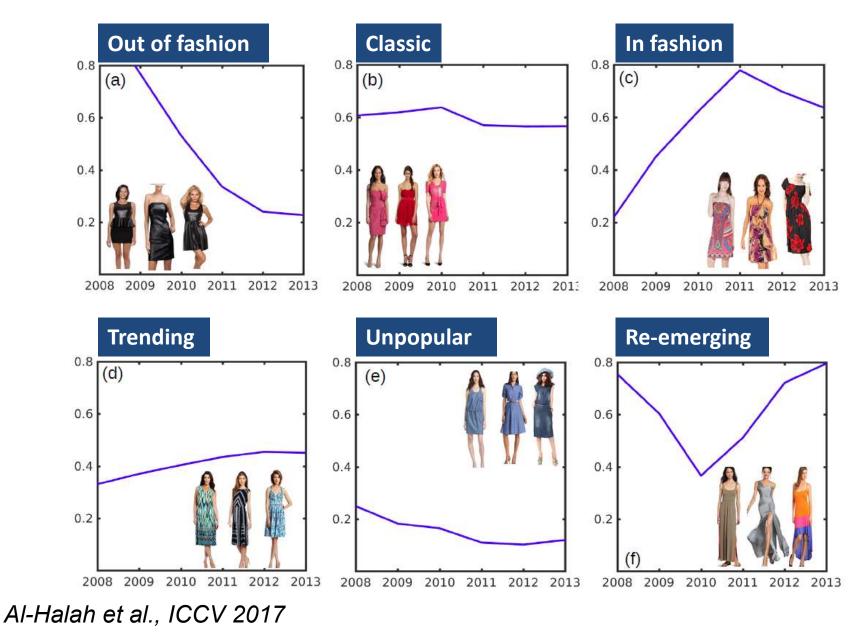
Visual trend forecasting

We predict the future popularity of each style Amazon dataset [McAuley et al. SIGIR 2015]



Al-Halah et al., ICCV 2017

Lifecycle of a visual style



Interpretable forecasts

What kind of fabric, texture, color will be popular next year?

(a) Texture

(b) Shape

This talk

- Subtle visual attributes
- Style discovery and forecasting
- Creating capsule wardrobes

Goal: Select minimal set of pieces that mix and match well to create many viable outfits

Capsule pieces

Outfit #1

Outfit #2

Incompatible outfits!

Capsule pieces

Capsule pieces

Outfit #1

Outfit #2

Outfit #3

All compatible and diverse.

Q1: How to learn visual compatibility?

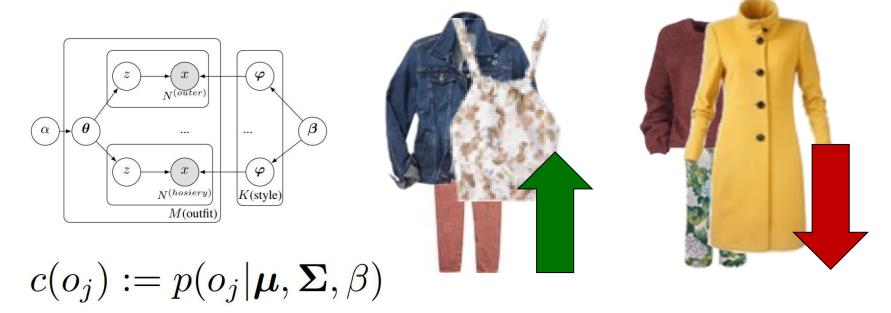
Co-purchase data [McAuley 2015, Veit 2015, He 2016] Manual curation [Li 2017, Song 2017, Han 2017]

Unlabeled in the wild photos?

Supervised

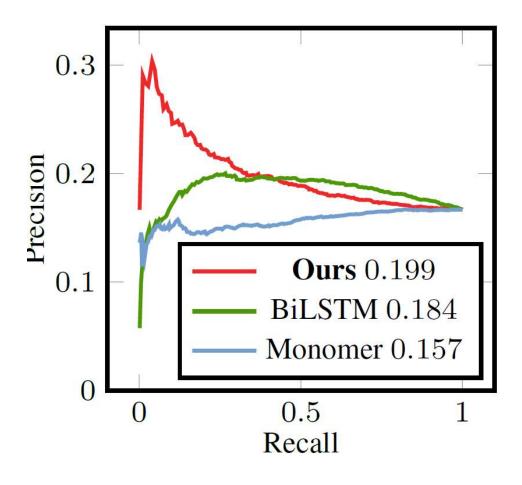
Style model → Visual compatibility

Gauge mutual compatibility of garments via likelihood under topic model



Recall: an **outfit** is a mixture of (latent) **styles**. A **style** is a distribution over **attributes**.

Visual compatibility results



BiLSTM ^[Han et al. 17]: unsupervised sequential model trained on Polyvore sets.

Monomer ^[He et al. 16]: supervised embedding trained on Amazon products co-purchase info.

Encouraging results for learning compatibility from unlabeled, full-body images

Visual compatibility results

Most compatible

Visual compatibility results

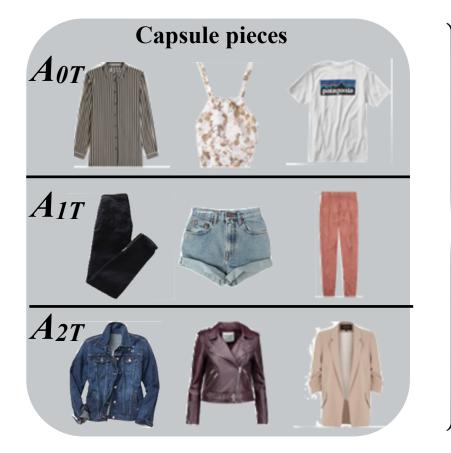
Least compatible

Q2: How to optimize a capsule?

Pose as *subset selection* problem set of garments = argmax **compatibility** + **versatility**

У

optimal set of composed e as subset selection problem outfits garments = argmax **compatibility** + **versatility**

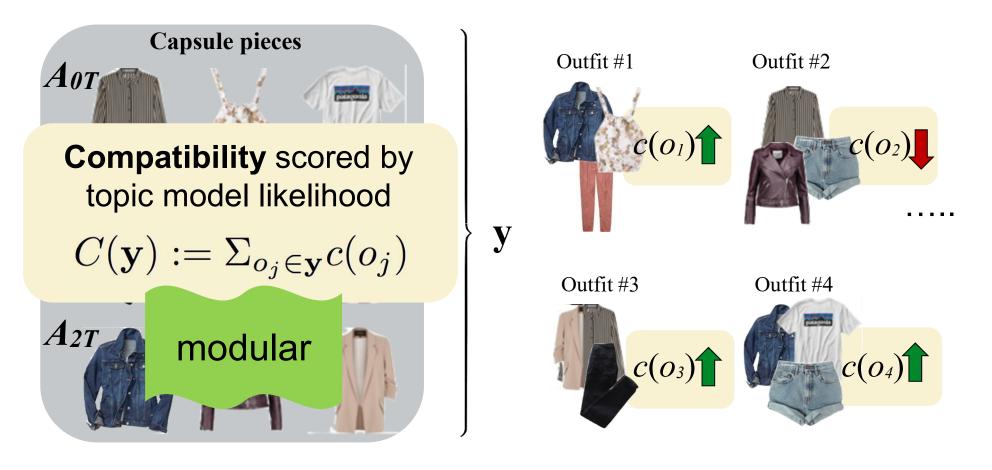


Outfit #2

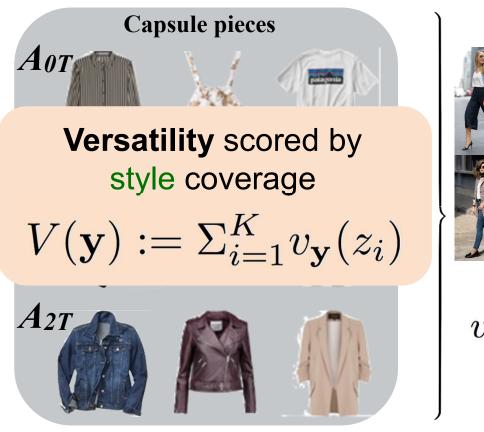
Outfit #4

$$\mathbf{y}^* = \underset{\mathbf{y} \subseteq \mathcal{Y}}{\operatorname{argmax}} \frac{C(\mathbf{y})}{C(\mathbf{y})} + V(\mathbf{y}),$$

s.t. $\mathbf{y} = A_{0T} \times A_{1T} \times \ldots \times A_{(m-1)T}$



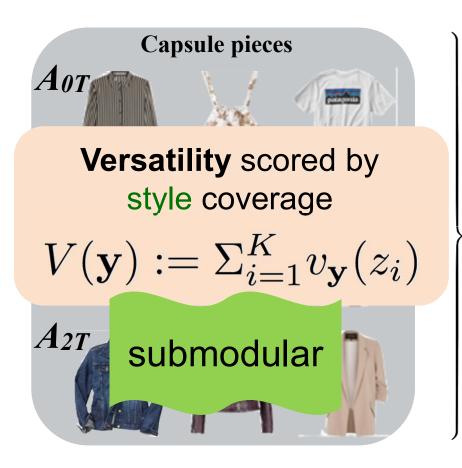
$$\mathbf{y}^* = \operatorname*{argmax}_{\mathbf{y} \subseteq \mathcal{Y}} C(\mathbf{y}) + V(\mathbf{y}),$$
$$s.t. \ \mathbf{y} = A_{0T} \times A_{1T} \times \ldots \times A_{(m-1)T}$$



 $v_{\mathbf{y}}(z_i) = 1 - \prod \left(1 - P(z_i|o_j)\right)$ $o_j \in \mathbf{y}$ outfit style

$$\mathbf{y}^* = \operatorname*{argmax}_{\mathbf{y} \subseteq \mathcal{Y}} C(\mathbf{y}) + \frac{V(\mathbf{y})}{V(\mathbf{y})},$$

s.t.
$$\mathbf{y} = A_{0T} \times A_{1T} \times \ldots \times A_{(m-1)T}$$

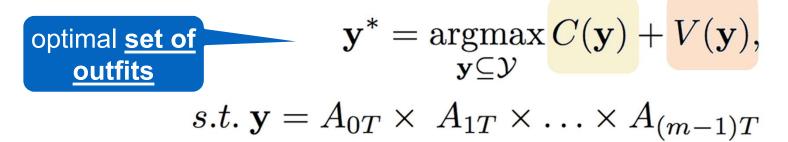


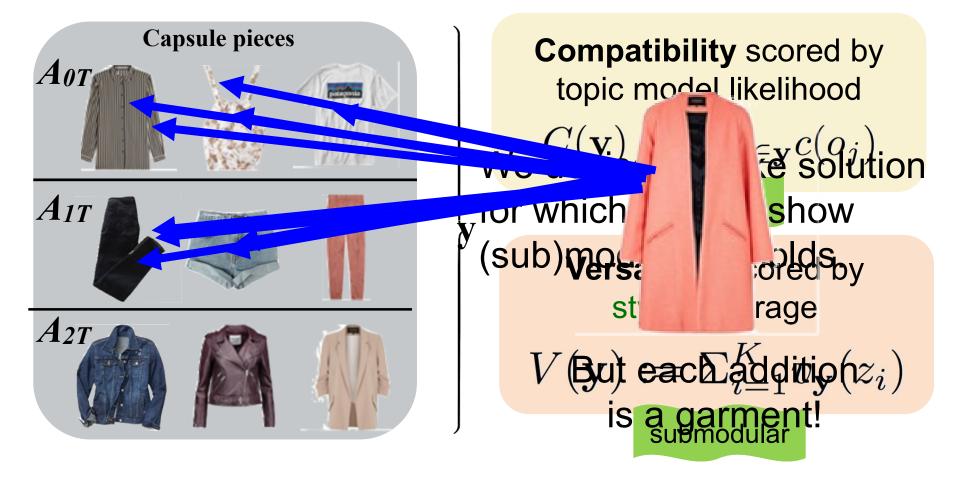
shop Z3

Covers Z_2 Covers Z_3

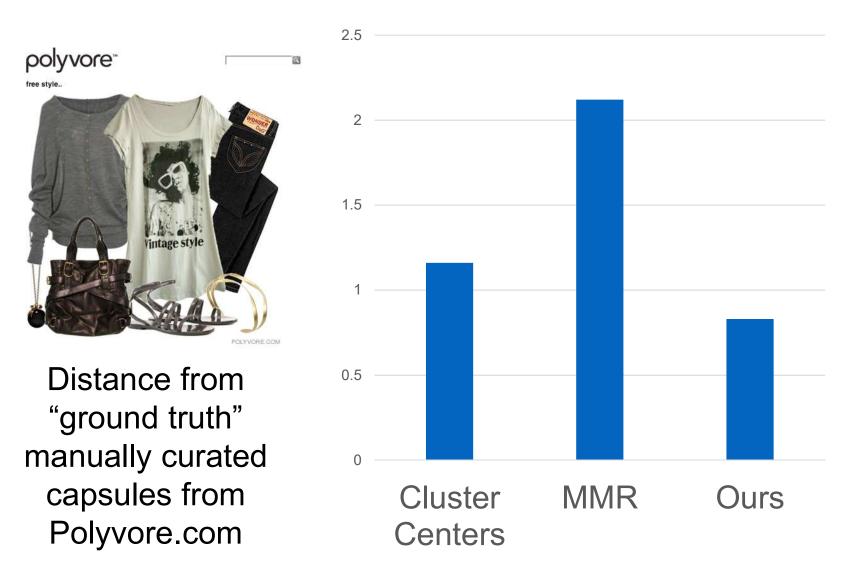
covers Z₁ c

covers 73





Quantifying capsule error



Human subject study

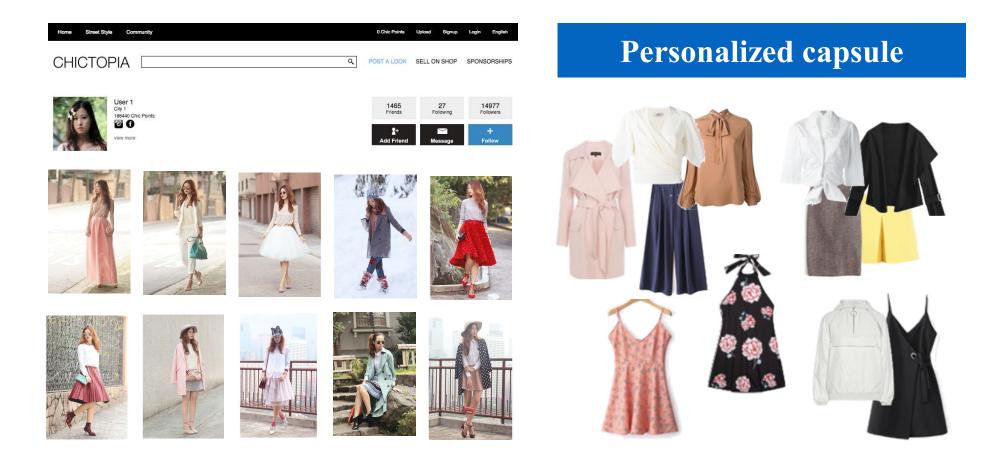
14 subjects, female, ages 20's-60's

2) Which is better *

Iterative preferred **59%** of the time vs. naïve greedy

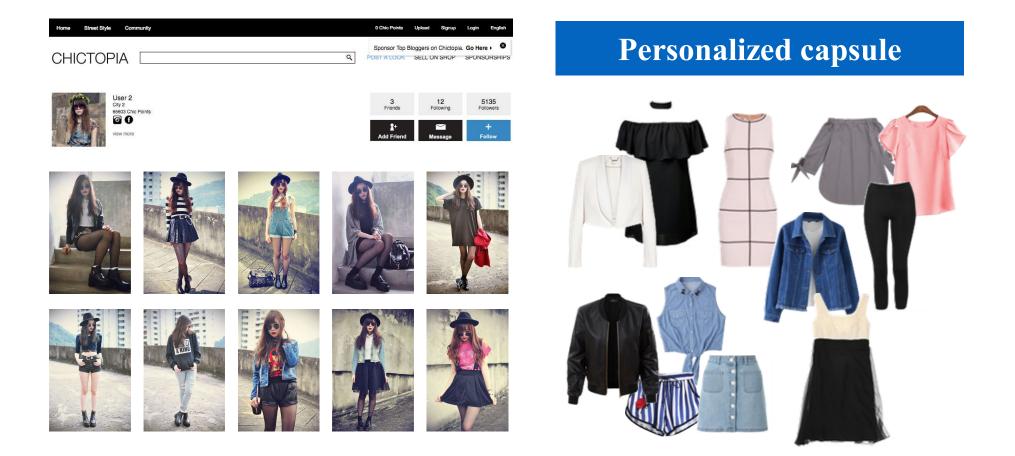
Example personalized capsule

Discover user's style preferences from album



Example personalized capsule

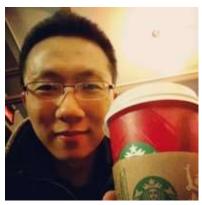
Discover user's style preferences from album



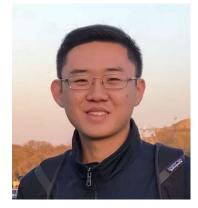
Summary

- Visual style introduces new problems for computer vision beyond traditional recognition
- New ideas and methods for:
 - Subtle visual comparisons
 - Style discovery and forecasting
 - Capsule wardrobe creation

Aron Yu



Kimberly Hsiao Ziad Al-Halah Steven Chen



Papers

- Learning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images. W-L. Hsiao and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017.
- **Creating Capsule Wardrobes from Fashion Images**. W-L. Hsiao and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018.
- **Compare and Contrast: Learning Prominent Visual Differences**. S. Chen and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018.
- Fashion Forward: Forecasting Visual Style in Fashion. Z. Al-Halah, R. Stiefelhagen, and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017.
- Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images. A. Yu and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017.

Code and data:

http://www.cs.utexas.edu/~grauman/research/pubs.html