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Abstract

We propose a framework for learning through draw-

ing. Our goal is to learn the correspondence between spo-

ken words and abstract visual attributes, from a dataset of

spoken descriptions of images. Building upon recent find-

ings that GAN representations can be manipulated to edit

semantic concepts in the generated output, we propose a

new method to use such GAN-generated images to train a

model using a triplet loss. To apply the method, we develop

Audio CLEVRGAN, a new dataset of audio descriptions of

GAN-generated CLEVR images, and we describe a train-

ing procedure that creates a curriculum of GAN-generated

images that focuses training on image pairs that differ in

a specific, informative way. Training is done without ad-

ditional supervision beyond the spoken captions and the

GAN. We find that training that takes advantage of GAN-

generated edited examples results in improvements in the

model’s ability to learn attributes compared to previous

results. Our proposed learning framework also results in

models that can associate spoken words with some abstract

visual concepts such as color and size.

1. Introduction

Creation is an essential human learning process: sim-

ply drawing an object requires learning how to compose its

parts, attributes, and relationships. Drawing helps children

learn about details that would not otherwise be noticed [12].

In contrast, machine learning systems have not yet demon-

strated an ability to learn through drawing. While Gen-

erative Adversarial Networks (GANs) have demonstrated

dramatic success in learning to synthesize realistic images

[32, 43], methods have not been developed for extracting

other types of knowledge from a GAN.

In this work, our goal is to discover the correspondence

between visual attributes and audio words from descriptions

of images. Because we work with unannotated raw audio

speech instead of text captions, our model must learn not

only what a word means, but what a word is — our setting

a) Original example Edited examples

b) Learned concepts
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Figure 1: In this paper we propose a framework for learning

through generated images. In a) two edited examples are

compared to an original generated image at the left. In b)

we show the concepts learned by our system when trained

with edited examples.

omits the structured supervision that would be provided by

transcribed text. Previous work on this problem [24] has

shown that a triplet loss can be used to learn a visually-

grounded model of speech that can attend to relevant vi-

sual objects, but learning words for abstract visual attributes

such as colors and shapes has been out of reach. In contrast,

recent results suggest that GANs learn compositional visual

concepts by learning to draw [9]. Yet a connection between

language and the knowledge learned by GANs is missing.

We propose a training method that uses the knowledge

learned by a GAN to generate a curriculum for training a

visually-grounded model of spoken language [24]. Starting

from a set of images with audio descriptions, we teach the

model to learn about attributes by using the GAN to synthe-

size many realistic but meaningfully distinct training im-

ages (Figure 1a). The generation is done without any super-

vision beyond the original audio captions. These generated

examples help the model focus on specific abstract visual

attributes that correspond to audio words (Figure 1b).
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We make the following contributions. First, we show

how to use interventions to learn from a GAN. The key idea

is to apply new results that show that a GAN can learn an

internal disentangled representation where it is possible to

control specific semantic aspects of the generated image [9].

This allows our system to generate artificial training exam-

ples which contain targeted differences that affect a small

and controlled part of the image. Second, we apply this

idea to multimodal training of an audio-image description

model. To enable this, we introduce a new GAN-based

dataset that includes both human and synthetic audio cap-

tions of GAN-generated CLEVR images.

2. Related work

Concept learning: There is an increasing interest in cre-

ating models that generalize by learning compositional con-

cepts. It has been observed that deep networks that learn to

classify scenes also learn to decompose those scenes into

constituent object classes [11, 8, 45]. However, if appro-

priate concepts are not learned, it is easy for a model to be

right for the wrong reasons: for example, answers to ques-

tions about images can be guessed without observing the

order of the words in the question [46, 27]. It is argued in

[39] that by monitoring and shaping input gradients, models

can be trained to focus their attention on the right concepts.

A core challenge is to teach networks to extrapolate by

applying learned rules to new situations, rather than only

interpolating between similar inputs. To induce deep net-

works to learn to abstract reasoning, [7] trains models a

dataset of compositional problems similar to human IQ

tests. In [34], abstract attributes such as color, shape, or

function are learned by modeling attributes as operators that

relate objects to one another. In [3], an explicitly composi-

tional architecture of re-usable neural modules was used for

question answering.

Curriculum learning: The proposal that a training cur-

riculum should be tailored to the evolving needs of the

learner is foundational in machine learning [16, 10]. Cur-

riculum learning remains an active area of current research,

with both recent theoretical advances [21, 28] and practi-

cal applications [26, 19]. Our current work reformulates the

curriculum problem by proposing that the training data can

by synthesized by an expert teacher represented by a GAN.

CLEVR dataset: Our dataset is derived from the

CLEVR dataset [29], a sythesized visual dataset consisting

of scenes of simple objects with composable color, shape,

and material attributes. CLEVR has been used to study ab-

stract visual reasoning, question answering, and model in-

terpretability [30, 41, 33]. We use CLEVR as a highly con-

trolled visual domain in which compositional attributes are

clear, and that a GAN can learn to draw well.

Generative Adversarial Networks: The quality and

diversity of image generation results from GANs [20]

has improved rapidly, from generating simple digits and

faces [20], to synthesizing natural scene images [38, 14].

We use recent Progressive GAN [32] methods to generate

high-resolution photorealistic images for creating training

data. Furthermore, it has recently been found that GANs

can add, remove, and modify objects in a scene by inter-

vening in their internal representations directly [9]; we use

that method to modify training examples.

Audio and Image: Real world objects are indicated not

only by how they look, but how they sound. Recently

proposed models that learn these correspondences can be

used to perform tasks such as visually-guided audio source

separation, or localizing source of a sound within an im-

age or video [35, 44, 42, 17, 1, 18, 5]. Other works have

also demonstrated the utility of audio-visual features for su-

pervised classification tasks [4, 6], or predicting the sound

made by an object [36, 37]. Another body of work has fo-

cused on learning words and other aspects of human lan-

guage from spoken descriptions of visual images. This idea

goes back to seminal work by [40], who introduced models

that learned to associate images of everyday objects with

phoneme sequences. More recently, [25, 22, 24] showed

that models trained to associate visual images with spo-

ken captions at the waveform level can implicitly discover

a “dictionary” mapping between visual objects and spoken

words, and [31] showed that the output of a visual object

classifier could be used to train a keyword spotting system.

Other works have investigated the emergence of different

kinds of linguistic phenomena, such as sub-word units and

phonemes, within similar models [13, 2, 15, 23].

3. Audio CLEVRGAN dataset

In this paper, we introduce a method to learn spoken

words using GAN-generated images. To apply our method,

we build a new dataset with spoken audio captions of GAN-

generated images. Since our goal is to learn attributes, we

train the generative system to synthesize the simple ren-

dered images in the CLEVR dataset, in which the attributes

and objects that appear in the images can be controlled. Al-

though our method can be applied to natural images, the

simplicity of the synthetic controlled environment helps hu-

man annotators provide detailed descriptions of attributes in

the images, and it also makes it possible to obtain reliable

attribute segmentation for evaluation.

To generate the images, we train a Progressive GAN [32]

with the images in CLEVR dataset. We randomly sam-

ple the generative model to produce 20,000 images that are

annotated by humans in Amazon Mechanical Turk using a

similar interface as [25], where humans provide verbal de-

scriptions of each image. We specifically ask annotators to

mention the attributes and relations of different objects in

the images. Examples of transcribed annotations are shown

in Figure 2. We also generate a dataset of synthetic audio
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There's a blue ball on the center. There's a smaller gold ball to

the right of it, a small red cylinder behind the blue ball, and to

the left of the blue ball is a brown cylinder, also small.

In the very back middle there is a gray cube that is shiny, in

front of it is a tiny purple cylinder that's matte. To the right of

that cylinder is a shiny teal cube, and then all the way to the

left of everything is a small red cube.

Most frequent wordsCaption length distribution

A (38854) And (10467)

Is (22575) Cube (8594) 

The (22402) There (7930)

Cylinder (16103) Right (7890)

To (12596) Ball (7712)

Of (11434) Blue (7662)

Small (10891) Left (7024)

In (10794) Green (6492)

Large (10768) Purple (6418)

Figure 2: Examples of generated images and human annotated audios. In this figure, the transcriptions of the audio are shown

instead of the audio, but no text transcriptions are used at any point during training or evaluation. We also provide some basic

statistics of the Audio CLEVRGAN dataset.

captions, using the information from a previously trained

attribute segmentation network. Each caption describes all

attributes of all the objects in its associated image; we do

this for 50,000 randomly sampled images from the GAN,

including the 20,000 images annotated by humans.

4. Editing training examples

Learning attributes through spoken descriptions is a

challenging task. Attribute words in a description are not

observed in isolation and are usually tied to other attributes

or nouns, which makes it difficult for a system to discover

individual attribute words and isolate their meaning. To

overcome this problem, we introduce the technique of gen-

erating targeted negatives by editing single visual attributes

within images. Beginning with an image paired with a de-

tailed description, we alter a single visual attribute in the

image, after which the image will no longer match the orig-

inal audio description. Such edited training examples will

be used to guide the system to learn the correspondence be-

tween individual visual attributes and relevant audio words.

To edit visual attributes, we benefit from the rich internal

representation learned by GANs [9]. These representations

enable us to create edited versions of the original images

where a single attribute is modified, as shown in Figure 3. In

this section we describe how such edited training examples

are generated. Then in Section 5 we use this method to learn

a model that can isolate abstract attributes and match audio

words with specific visual attributes.

4.1. Generating image edits

A trained GAN generator synthesizes images by process-

ing a randomly sampled vector through a sequence of con-

volutions to produce a realistic image. It has been found that

a GAN generator contains different sets of convolutional fil-

ters that specialize in generating different attributes and ob-

jects [9]. The activations of these convolutional filters can

be modified to change, add, and remove objects in the out-

put image. In this paper, we use this technique to modify

certain attributes in particular objects.

Let g : R100 −→ I denote a trained Progressive GAN

generator for our dataset, where I is the image domain. Ev-

ery noise vector z ∈ R
100 produces an image Iz = g(z).

As in [9], we edit the image by manipulating the hidden

representation in the fourth convolutional layer of the gen-

erator. We can write g(z) as composition of two functions,

g(z) = gD ◦ gE(z), where h4 = gE(z) corresponds to the

output of the four initial convolutional layers and gD to the

remaining layers. The representation at the fourth layer is

a tensor h4 ∈ R512×8×8 in which some of the 512 dimen-

sions correspond to the generation of certain objects or at-

tributes. We can randomly ablate these values to randomly

change attributes of objects.

Figure 3 shows the results of randomly ablating partic-

ular dimensions and locations of the representation h4. To

ablate the featuremap pixel (x, y) in dimension d, we set

h4[d, x, y] = 0. As expected, some attributes for the objects

corresponding to the ablated location change. The new im-

ages can serve as mismatched examples as long as the object

in the super pixel (x, y) is mentioned in the audio captions.

4.2. Editing a specific attribute

To further improve training, we wish to change specific

attributes relevant to the audio description rather than arbi-

trary attributes. We do this by choosing the filters to ablate

rather than ablating random filters.

Let s : I → {0, 1}c×w×h be a segmentation function that

outputs a per-pixel binary classification predicting whether

a image pixel contains an attribute of interest. By collecting

statistics on a sample, we rank the filters of h4 according

to their correlation with s. Following the method in [9],

we then ablate the specific filters of h4 that are most highly

correlated with s in order to remove the specific attribute

identified by s from the generated image.

In [9], the segmentation functions s are pretrained to
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Original Random Yellow Cluster

Figure 3: Examples of edited samples created using random

editing and targeted interventions. In the left column, the

original images with the target object in red. In the second

column, randomly ablated units, applied to the same feature

maps. Results range from distortions or complete change

of the object (first and third rows), through useful semantic

changes (fourth row), to barely noticeable changes (second

row). In the last column, images generated by ablating the

units corresponding to the yellow cluster. Ablating these

units makes the yellow color change, as the cluster is repre-

senting this attribute.

identify ground-truth classes, but in our setting no ground

truth segmentations are available. Instead, in Section 5.5 we

shall derive guessed attribute segmentation functions from

our model during training and use those guessed segmenta-

tion functions to select filters to ablate.

5. Learning words by drawing images

We now describe how we use edited training examples

to improve the ability of an multimodal network to distin-

guish very similar concepts. We build upon previous work

that learns concepts from spoken captions by using negative

examples drawn from the training set [24]. We add training

using edited GAN images to improve the model’s ability to

distinguish and isolate particular attributes. This is done in

a multi-step training process that uses edited images that are

successively more targeted as training proceeds.

The training process has the following steps. First, we

train the basic system without any edited examples. Sec-

ond, we use edited examples in which neurons are ran-

domly ablated. This improves the internal representations

of objects and attributes. Finally, we partition the space of

audio-visual representation by clustering units according to

co-occurrences. Each of these clusters correspond to differ-

ent concepts present in the captions, such as colors, sizes,

shapes, etc. We use these clusters to generate edited exam-

ples that are tailored to the mentioned concepts. The system

is illustrated in Figure 4.

5.1. Architecture and triplet loss

We train the DaveNet model introduced in [24]. A

schematic of the architecture is shown in Figure 4. DaveNet

consists of two main networks: the audio network fA and

the visual network fI . The audio network computes a 512
dimensional feature representation per each audio sample in

a given window. Likewise, the image network generates a

512 dimensional representation per superpixel in the image.

To obtain a score, the two representations are combined

through a dot product operation m(fI(I), fA(A)) which

produces a map of scalar matching values for each point

in space and time; we call this map a matchmap. Matchmap

activations reveal the location and time of visual objects and

spoken words that are related to each other in the model. We

will later use the correspondence learned by the matchmap

to guide the generation of edited examples by focusing edits

on the most salient attributes and objects.

The final similarity score f(I, A) between an image I

and an audio description A is computed by aggregating

matchmap activations, taking a max over image spatial di-

mensions and average over the audio temporal dimension.

The objective of f is to maximize the score of related

pairs (I, A) given by the training set while minimizing the

similarity of unrelated pairs (In, A). Following the method

of [24], we train f using the triplet loss:

L(I, A, In) = max(f(In, A)− f(I, A) + β, 0) (1)

where β is an offset parameter. Analogously, we also mini-

mize L(I, A,An). Both losses are combined in training.

5.2. Using edited images as negative examples

The selection of negative examples In has long been an

important topic in computer vision. Previous work [24] pro-

posed using random samples or mismatched samples that

the network classifies closest to the threshold. These meth-

ods assume a closed set of images from which to choose,

but none entertain the possibility of creating mismatched
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Figure 4: Intervention schematic: a) Basic model, where the original image and audio features are computed, as well as

their matchmap. b) Clustering: highly activated image features are classified into a cluster, and an intervention is computed

to generate an edited example. c) Generation of the edited example. The noise vector z is the same as in a). d) Triplet loss.

samples to aid learning. We use interventions in the GAN

to generate ideal counterexamples to pair with each positive

image. The edited negative examples will improve perfor-

mance on the most confusing cases.

We will use gn to denote our negative sample generation

algorithm. Given an image I and an audio A, it will cre-

ate an edited negative sample In = gn(I, A), that will only

differ from I in a small set of characteristics. Using the

technique of Section 4.1, the generator gn will generate In
using the same representation h4 that was used to generate

I , but modified by ablating some of the neurons in the loca-

tion of the edited content. One key question remains: how

do we select which neurons to ablate to generate the best

possible edited example? The following section describes

a multi-step training process that determines these units to

get increasingly more targeted edits as training proceeds.

5.3. Model initialization

In the first step of the process, the model is pretrained

using randomly sampled negatives as in [24]. The origi-

nal triplet loss is used, and edited examples are not synthe-

sized. This initialization bootstraps the model so that the

matchmap can detect regions of the image that are salient to

the description. This pretrained model can locate objects,

but it cannot fully disentangle specific object attributes.

5.4. Randomly edited examples

The next step is to train the network with randomly

edited examples. Each edited image is generated by using

the matchmap m(fI(I), fA(A)) to identify the most salient

location in a positive image-caption pair, and then randomly

ablating GAN feature channels at that location in the image.

Each channel is ablated with probability p = 0.2, which is

increased until the edited In differs from the original I .

This random ablation strategy generates a wide variety

of edited examples as seen in Figure 3. While some of the

modified images are informative negatives that falsify a sin-

gle word in the caption, others may be too similar to the

positive image to correspond to any caption change; and

others may be different enough to correspond to differences

in many words. While this mix of edited examples is more

informative than random negative images chosen from the

input batch, we perform yet another training phase to gen-

erate higher-quality negatives.

5.5. Clustering

The ideal edited example would differ from an original

image by just one attribute of one object; a minimal change

would match the original caption in all words except for

one. However, as we are dealing with a continuous audio
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Figure 5: We show three examples of clusters learned by

our model, represented by the images that mostly activate

each cluster. We represent the audio-cluster with text for

clarity, but all the learning is done in the audio domain. As

shown, the system is able to learn color, shape and size.

signal, word boundaries are unknown, and such minimal

concepts must be learned. In this stage, we create a set of

word-like concepts by clustering the learned features of f .

This grouping enables us to choose how to intervene the

GAN in order to change a single descriptive word.

To build the concept clusters, we process the full training

set through our audio-visual model and observe the audio-

visual features that activate in each training pair. We bi-

narize these by considering only activations in the top 1%

percentile. Finally, we compute a co-occurrence matrix of

the binarized features to measure how much every pair of

neurons co-activate. This enables us to partition the neu-

ron space using a dendrogram, grouping units with high

co-occurrence. This clustering in the unit space induces a

semantic clustering in the shared embedding space of the

matchmap. Figure 5 shows some examples of clusters. The

image clusters are coherent and usually represent a concept

in the image space, while the audio usually represents one

or a few spoken words with the same meaning. We refer to

a unit cluster as wk.

Learning how remove a concept from an image: As

described in Section 4.2, a segmentation function s(I) that

locates a concept in an image can be used to identify GAN

units that generate that concept in an image [9]. Although

we do not have ground truth segmentation for abstract vi-

sual attributes, we can use a cluster-inferred segmentation

to achieve the same effect. We define a binary segmenta-

tion function s(I|wk) to select pixel locations that activate

wk units of the matchmap representation fI(I). We then

apply the procedure described in 4.2 to identify the units of

the generator that are responsible for generating the visual

concept corresponding to the cluster wk.

Finally, we generate targeted edited examples that make

changes that affect cluster wk by ablating the GAN units

associated with wk. This modifies the image by changing

aspects of the image that are guessed to correspond to one

concept: this avoids random edited examples that are too

similar or too different. Note that for this method to be ef-

fective, we must cluster units that already carry some in-

formation about disentangled concepts. Such units can be

initially learned by training with random edited examples.

5.6. Training with targeted edited examples

To create the edited mismatched example, we use the fol-

lowing procedure as presented in Figure 4:

1. Given a pair of image and audio (Ii, Ai), we compute

fI(Ii) and fA(Ai).

2. We identify the feature embedding of the most salient

visual concept wi = fI(I, i)
(x,y) where x, y, t =

argmaxx,y,t
(

fI(Ii)
(x,y) · fA(Ai)

(t)
)

.

3. We compute the similarity between wi and each cluster

wk. We randomly draw a cluster wk with probability

in proportion to this score.

4. Using the intervention procedure, we ablate the GAN

neurons associated with wk to generate an edited ex-

ample for that particular attribute: Ini = gn(Ii).

5. Then we use fI(I
n
i ) as a negative and train the model

using backpropagation.

6. Experiments

In this section, we evaluate the proposed learning frame-

work in various experimental settings. For all our exper-

iments, we use the DaveNet network with the same con-

figuration as in [24]. It consists of an image and an audio

branch, the two of them fully convolutional. For human

annotated data, we increase the depth of the audio model

adding three extra convolutional layers at the end. For the

synthetic dataset we maintain the original size. To train the

Progressive GAN, we used the same parameters as in [32].

6.1. Synthetic dataset creation

To provide a better picture of the different possibilities of

our model, we created synthetic descriptions for the GAN

generated images. To do so, we trained a segmenter in the

original CLEVR dataset, which contains ground truth infor-

mation about attributes and objects. Using these segmenta-

tions, we created one description per image, in a similar

style as human captions. The description includes all the

objects with their corresponding attributes, as well as the

spatial relation between them.
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Figure 6: In this figure we show multiple examples of edited images using our targeted algorithm. Note that the system is

able to modify particular attributes of the object.

Caption Selected	Image Ground	Truth

There is a gold

metallic cube. To

the left hand side

and behind it there

is a gold metallic

sphere

A yellow square

next to a large

golden ball.

Caption Selected	Image Ground	Truth

In this picture I have

two cubes in the

back yellow and teal

and in the front aid

till cylinder they are

all large objects.

There is a small blue

mat ball in front of a

large green mat

ball.

Figure 7: Examples of our system selecting images given a caption. Note that the retrieved image usually is closely related

with the given description.

6.2. Evaluation setting

To understand if a concept has been learned by the sys-

tem, it is necessary to test it in isolation from other concepts.

Neural networks can learn to create global representations,

but fail at representing specific attributes. In this section

we propose a semantic test, in which we test the models

to recognize isolated attributes. For each attribute, we pro-

duce pairs of images, one containing the attribute and an-

other without the attribute. We then create an input for the

audio network containing the isolated attribute to be eval-

uated in the form of a spoken word. We can compute the

accuracy of the system on selecting the image with the at-

tribute against the image without the attribute. In addition to

the semantic test, we also show the recall on random nega-

tives, where 500 image-audio pairs of a held-out test set are

passed through the network, and the retrieval recalls from

audio to image and from image to audio are computed.

6.3. Methods

For evaluation, we compare many different training

methods. DaveNet: The training procedure in [24], where

random negatives are used. Hard Negatives: The negative

image and audio are selected as the sample in the minibach

with highest loss. Random Edited Examples: The exam-

ples produced by random ablation in of the hidden repre-

sentation in the GAN. Targeted Edited Examples: The

examples produced according to the semantics of the ob-

ject intervened. Hard Negatives + Random Edits: We

combine the random edited examples with the hard nega-

tive loss. In training, we use the hardest negative of both

methods. Hard Negatives + Targeted Edits: We combine

the targeted edited examples with the hard negative loss.
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t DaveNet 50.3 60.8 86.8 72.2 67.6

Random Edits 52.0 48.9 87.8 91.3 70.0

Target Edits 54.1 63.0 86.2 91.3 73.7

Hard Neg 53.6 60.8 88.4 87.8 72.7

HN+Random Edits 54.8 63.0 87.9 87.8 73.4

HN+Target Edits 56.2 67.4 87.9 88.7 75.1

S
y

n
th

et
ic

d
a

ta
se

t

DaveNet 72.6 63.3 51.1 98.0 71.2

Random Edits 70.9 97.8 54.0 96.9 79.9

Target Edits 69.3 97.5 57.9 95.4 80.1

Hard Neg 75.6 91.3 62.2 97.6 81.7

HN+Random Edits 73.3 94.5 70.5 95.1 83.3

HN+Target Edits 77.7 96.9 66.6 97.1 84.6

Table 1: Semantic accuracy: We evaluate the ability of

the different models to detect particular attributes in image.

Given an audio with only the attribute, we ask the system to

discriminate between images with and without the attribute.

Human Dataset Synthetic Dataset

R@1 R@5 R@10 R@1 R@5 R@10

DaveNet 8.4 26.3 38.5 14.9 43.7 62.2

Random Edits 12.5 33.8 49.8 60.6 89.0 95.1

Targeted Edits 14.1 37.2 52.2 75.1 95.5 98.5

Hard Neg 20.5 45.1 60.7 73.4 94.6 97.6

HN+Random 19.3 48.3 63.0 94.8 99.7 99.9

HN+Targeted 20.3 49.3 61.9 93.4 99.6 99.9

Table 2: Results in the Audio CLEVRGAN dataset: Re-

call results (in %) for the two datasets, for the different

methods, showing that more refined interventions get bet-

ter results. Recall in the random test is over 500 samples.

In training, we select the hardest negative of both methods.

Note that the Random Edit model has been trained initial-

izing with DaveNet, and the Targeted Edit model has been

trained initializing with the Random Edit model. The same

procedure is used for the models with Hard Negatives.

6.4. Results

In Table 1, we report the accuracy of our method and

the baselines for the semantic test, both in the human cap-

tioned dataset and the synthetic generated dataset. We break

down the results in the different attributes in our dataset. As

expected, the basic DaveNet model performs poorly in this

test, suggesting that the system is not able to learn particular

isolated concepts. Furthermore, the models using targeted

edits have a better ability on predicting particular attributes,

which reinforces the idea that using edited examples for

training increases the model understanding of isolated at-

tributes. Finally, human models focus more its attention on

discriminating color as they are more mentioned in the au-

dio captions. However, when using the synthetic captions,

where attributes are evenly distributed, performance drops

on discriminating color but increases for the other attributes.

In Table 2 we report the average of the caption to image

and image to caption recall for all the models in 500 images

of the held out test set. First, the usage of edited images

already improves performance over the DaveNet baseline,

suggesting the edited examples positively contribute to the

learning process. Furthermore, when mixed with the hard

negative loss, the models increase significantly its recall

ability. Note that performances in the synthetic dataset are

consistently higher, as descriptions are more informative.

In Figure 6, we show our system’s ability to edit images.

It is able to modify different attributes of the objects such

as shape or color. We found that our system successfully

changes the caption content in 88% of the edits. Finally,

in Figure 7, we show some examples of retrieved images

using our method on the held out test set. Our system does

retrieve images which largely match the caption, sometimes

only missing one particular object or attribute.

6.5. Generalizing to real images

Discriminating concepts and attributes is useful when it

can be applied to the original images, not just in the GAN-

generated domain. To test how well the knowledge trans-

fers to the original non-GAN-generated CLEVR images, we

created a test dataset consisting of 1000 original CLEVR

images with their corresponding edited examples (changing

only one attribute of one object). Given a synthetic cap-

tion, the system must choose between the positive and the

negative (chance being 50%). A model trained on origi-

nal CLEVR images, with a regular DaveNet without edited

examples, has an accuracy of 54%, showing that a regular

model struggles to learn specific attributes. A model trained

on GAN-generated images with edited examples also gen-

erated by the GAN has an accuracy of 59%, even when not

trained on original images. This suggests that our method

can be transferred to the original images domain. We ex-

pect these gains to improve as GAN algorithms improve.

Having access to the CLEVR renderer, we can synthesize

edited examples programmatically. Training a system with

these edited images we get an upper bound accuracy of 89%

on this test.

7. Conclusions

We presented a learning framework that learns words by

drawing images. We take advantage of the fact that gener-

ative models have already learned many concepts about the

visual word in order to edit images. These edited images

are used to train an audio-visual system that can localize

words in an image. We showed how the model itself can

be used to improve the edited images. Finally, we evaluated

the proposed methods in the Audio CLEVRGAN dataset.
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