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ABSTRACT
This paper presents a method of augmenting shifted-delta
cepstral coefficients (SDCCs) with the classification outputs
of an array of support vector machines (SVMs) trained to de-
tect a set of manner and place features on telephone speech.
The SVM array allows for broad phoneme classification,
and when this information is concatenated with SDCCs to
form a hybrid feature vector for each acoustic frame, a set of
Gaussian mixture models (GMMs) may be trained to perform
automatic language identification (LID). The NTIMIT tele-
phone band speech corpus was used to train the SVM-based
distinctive feature recognizers, while the NIST callfriend
telephone corpus was used for training and testing the rest of
the system.

Index Terms— Support Vector Machines, Gaussian Mix-
ture Models, Distinctive Features, Language Identification

1. INTRODUCTION

The task of language identification (LID) is to determine what
language a speaker is speaking given a recorded utterance.
What makes this problem interesting is the number of lev-
els at which languages differ, giving rise to a large number
of algorithmic approaches to LID. Navratil distinguishes be-
tween four basic classes of LID systems: acoustic, phono-
tactic, prosodic, and LVCSR. Of these, acoustic and phono-
tactic are the most common approaches. Acoustic systems
rely solely on features extracted from the input waveform,
while phonotactic systems typically perform n-gram model-
ing to capitalize on linguistic differences between languages
such as phoneme inventories and the frequencies of various
phoneme sequences [1].

In this paper, we attempt to improve the classification ac-
curacy of an acoustic baseline LID system with phonotactic
information in the form of distinctive features. Distinctive
features are a linguistic abstraction representing the building
blocks of phonemes and are always binary, taking on a (+) or
(-) value [2]. What makes distinctive features useful for our
purposes is the fact that they have canonical acoustic prop-
erties, allowing systems to be trained to automatically detect
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the presence of a feature in a particular frame of speech. For
any given speech frame, a vector of distinctive feature values
can be estimated by means of SVMs and treated as a discrim-
inant feature vector for a second level recognizer. This tech-
nique has been shown to perform well in phone recognizers
[3]. For our purposes, the discriminant vector is concatenated
with a separate vector of SDCCs (often used alone as the base-
line in many state-of-the-art systems) and fed into a set of
GMMs. The log-likelihood ratio outputs of each language-
specific model versus a universal background model (UBM)
are then used as a means of classifying an unknown input ut-
terance.

2. FEATURES

2.1. DISTINCTIVE FEATURES

Linguistic distinctive features can be thought of as the build-
ing blocks of phones in the sense that any phone can be de-
fined by its distinctive features. Distinctive features are al-
ways binary valued, taking on a (+) value when the feature is
present, and a (-) value when it is not. They can be divided
into two categories, manner and place. In our system, we are
concerned with one manner feature and ten place features [2].

The manner feature we work with is the [sonorant] fea-
ture. Sonorance is essentially a measure of resonance in the
vocal tract. Examples of [+sonorant] phones would be vow-
els, glides, and nasals.

Unlike manner features, place features are articulatory
bound, meaning that they depend upon the location of the
physical articulators in the vocal tract. We utilize the follow-
ing features and describe their articulation:

Alveolar fricative: Sounds made by air flowing around
the tounge when the tounge tip is pressed against the alveolar
ridge. Example: /s/

Alveolar nasal: Sounds made by opening the velopharyn-
geal port when the tounge tip is pressed against the alveolar
ridge. Example: /n/

Alveolar stop: Sounds made by the release of a closure
in the vocal tract when the tounge tip is pressed against the
alveolar ridge. Example: /d/

Interdental fricative: Sounds made by air flowing around



the tounge when the tounge body is between the teeth. Exam-
ple: /th/

Labial nasal: Sounds made by opening the velopharyn-
geal port when the lips are pressed together. Example: /m/

Labial stop: Sounds made by the release of a closure in
the vocal tract when the lips are pressed together. Example:
/b/

Labiodental fricative: Sounds made by air flowing around
the top teeth when they are pressed against the lips. Example:
/f/

Postalveolar: Sounds made by pressing the tounge body
against the palate behind the alveolar ridge. Example: /ch/

Retroflex: Sounds made by creating a resonant cavity in
the mouth below the tounge. Example: /r/

Velar Stop: Sounds made by the closure and release of the
glottis. Example: /k/

2.2. CEPSTRAL FEATURES

Mel-frequency cepstral coefficients (MFCCs) are a standard
feature set in many speech recognition systems. They are
computed by taking the Discrete Cosine Transform of the log
magnitude spectrum of a signal, scaled logarithmically along
the frequency axis into ”Mel” banks, which attempt to more
closely match the human perception of pitch.

MFCCs are often used in phoneme recognizers, and have
also been used in distinctive feature landmark detection [3]
with high accuracy. In our system, we utilize MFCC features
for the SVM distinctive feature detectors.

In single level GMM-based LID systems, Shifted Delta
Cepstral Coefficients (SDCCs) have proved to be far more
useful than MFCCs, as shown by [4]. SDCCs are computed
by performing short-term differencing of MFCCs across
many frames. In this way, SDCCs give a detailed representa-
tion of how MFCCs change over a period of time.

If we denote the MFCC vector at time t by m(t), then the
corresponding SDCCs, s(t), are given by concatenating each
∆s(t) for i = 0, 1, ...(k − 1):

∆s(t) = m(t+ iP + d)−m(t+ iP − d) (1)

Where d is the shift corresponding to the delta computa-
tion delay, k is the number of consecutive block-deltas com-
puted, and P is the time shift between each block. The shifted
delta cepstrum is also defined by a parameter N , equal to the
number of MFCCs used in the computation. For our system,
we use the configuration N = 7, d = 1, P = 3, and k = 7.

3. SYSTEM BUILDING BLOCKS

3.1. SUPPORT VECTOR MACHINES

Given a set of l observations, each consisting of a binary la-
bel yiε{−1, 1} and a feature vector xi, we wish to find a suit-

able mapping function f(xi, α) from x onto y with adjustable
model parameters α.

A hyperplane can be defined in the feature space to sep-
arate the +1 and -1 distributions. We wish to maximize
the ”margin” between the hyperplane and each distribution,
where the margin is defined to be 2

||w|| . In this case, w is a

vector normal to the hyperplane, and |b|
||w|| is the perpendicular

distance from the hyperplane to the origin.
The classification decision for a feature vector is then de-

fined to be:
yi(xiw + b)− 1 ≥ 0,∀i (2)

We define the empirical error as

R(α) =
1

2N

l∑
i=1

|yi − f(xi, α)| (3)

In order to minimize the error, Burges shows that we can
find an optimal Lagrangian of the form:

L =
∑

i

αi −
1
2

∑
i,j

αiαjyiyjxixj (4)

A detailed derivation can be found in [5].
For our problem, support vector machines offer a conve-

nient means of classifying a frame of speech as either belong-
ing to or not belonging to a particular distinctive feature. We
trained a set of 11 distinctive feature recognizing SVMs for
1 manner feature, sonorant, and 10 place features: alveolar
fricative, alveolar stop, alveolar nasal, interdental fricative,
labial nasal, labial stop, labiodental fricative, postalveolar,
retroflex, and velar stop.

3.2. GAUSSIAN MIXTURE MODELS

Gaussian mixture models (GMMs) enjoy widespread use in
many speech recognition related applications. They provide
a convenient means of modeling complex probability distri-
butions by representing the probability density function of a
random variable with a sum of weighted Gaussians. We give
here a brief outline of the equations used to form our models;
a more detailed explanation can be found in [6].

For the purposes of LID, we have a set of models of the
form g(x,Θa). Each language is separately modeled by its
parameters Θa, which correspond to the means, variances,
and mixture weights of each Gaussian in the mixture. The
general form of the PDF of each model is then given by:

g(x,Θa) =
n∑

i=1

wiN (xi;µi, σ
2
i ) (5)

Bilmes shows that the parameters µ, σ2, and w can be
iteratively re-estimated using the Expectation-Maximization
(EM) algorithm:



wj =
1
N

N∑
i=1

(p(j|xi,Θg) (6)

µj =
∑N

i=1 xip(j|xi,Θg)∑N
i=1 p(j|xi,Θg)

(7)

Σj =
∑N

i p(j|xi,Θg)(xi − µj)(xi − µj)T∑N
i=1 p(j|xi,Θg)

(8)

Where wj , µj , and Σj in Eq. 8 are the newly estimated
weights, means, and variances of the jth mixture component,
Θg are the old parameters, x is the observation vector and N
is the number of observations.

4. CORPUS

The SVM array was trained on the NTIMIT speech cor-
pus. NTIMIT was created by re-recording the TIMIT cor-
pus across telephone channels, effectively lowpass filtering
TIMIT down to the telephone band. TIMIT was originally
developed by Texas Instruments and MIT in order to pro-
vide a phoneme-rich corpus for training English language
phoneme recognizers [7].

Training data for the GMM came from the CallFriend
corpus provided by the Linguistic Data Consortium [8]. It
contains three sets of 20 telephone conversations for each
of 15 languages and dialects: Arabic (Egyptian), Mandarin
(Mainland China), Mandarin (Taiwanese), English (American
non-Southern), English (Southern), Farsi, French (Canadian),
German, Hindi, Japanese, Korean, Spanish (Caribbean),
Spanish (Non-Caribbean), Tamil, and Vietnamese. Each
conversation lasts between 5 and 30 minutes and takes place
between two speakers, one per stereo channel. Each conver-
sation was split into two mono channels, and then silences
were removed from each recording, resulting in 120 utter-
ances per language. The corpus was then split into training
and testing sets - the first 2.5 minutes of 80 utterances per
language were used as training data, while the first 30 sec-
onds of the remaining 40 utterances per language were used
for testing.

5. EXPERIMENTS

Our system was comprised of two levels, with the first be-
ing an array of 11 radial basis function SVMs and the second
a set of 15 language-specific GMMs, adapted from a Uni-
versal Background Model (UBM). At each timestep, we per-
form two feature extraction steps: a length 56 SDC vector,
and a length 39 MFCC vector. Each of the 11 distinctive fea-
ture detection SVMs produces a classification output from the
MFCC vector, resulting in a length 11 discriminitive feature

Fig. 1. System block diagram

vector where each element in the vector is the probability es-
timate for one SVM. This vector is then concatenated with the
SDC vector to produce a length 67 hybrid vector. The hybrid
vector is fed into the set of GMMs, each of which contains
1024 mixture components. The resulting output of the GMM
set is a vector of log likelihoods for each language, and the
test input is labelled with whichever language produced the
greatest score. A UBM was first trained using data from all 15
languages, and then language-specific GMMs were obtained
from the UBM by Maximum-a-Posteriori (MAP) adaptation,
each using only training data from one language. This ap-
proach has previously been shown to work in speaker identi-
fication systems [9]. A system block diagram can be seen in
figure 1.

6. RESULTS

The results of our experiment are given in table 1. Our hybrid
system outperformed the baseline system with an increase in
accuracy of 8.5% absolute and a decrease in the equal error
rate of 5.5% absolute. The error rates can be seen in figure 2.

Table 1. Classification accuracies and equal error rates of
baseline and GMM-SVM hybrid systems

7. DISCUSSION AND CONCLUSION

In this paper, we have shown that phonetic information in the
form of linguistic distinctive features can be used to provide



Fig. 2. Error rates for baseline and GMM-SVM hybrid system

an accuracy boost to an HMM-based LID system. In our fu-
ture work, we propose to include additional distinctive fea-
tures, and possibly expand the system to include prosodic fea-
tures as well. Lastly, all of the distinctive feature SVMs were
trained using the NTIMIT corpus of English speech, but it is
possible that better accuracy would result if data from multi-
ple languages was pooled together to train the SVMs.
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