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ABSTRACT

We propose a trilingual semantic embedding model that asso-
ciates visual objects in images with segments of speech sig-
nals corresponding to spoken words in an unsupervised man-
ner. Unlike the existing models, our model incorporates three
different languages, namely, English, Hindi, and Japanese.
To build the model, we used the existing English and Hindi
datasets and collected a new corpus of Japanese speech cap-
tions. These spoken captions are spontaneous descriptions by
individual speakers, rather than readings based on prepared
transcripts. Therefore, we introduce a self-attention mecha-
nism into the model to better map the spoken captions asso-
ciated with the same image into the embedding space. We
hope that the self-attention mechanism efficiently captures
relationships between widely separated word-like segments.
Experimental results show that the introduction of a third lan-
guage improves the average performance in terms of cross-
modal and cross-lingual retrieval accuracy, and that the self-
attention mechanism added to the model works effectively.

Index Terms— Vision and spoken language, semantic
embedding space, self-attention, and cross-lingual retrieval

1. INTRODUCTION

As the accuracy of visual object recognition improves, its
application expands to more fields. However, recognition
systems depend heavily on the learning datasets, and objects
whose class labels are not included in the dataset are not
correctly recognized. This increases the cost of dataset con-
struction and calls for a complete definition of the classes to
be recognized.

To cope with this problem, various unsupervised learning
methods have been studied [1–7]. Among them, we focus
on knowledge acquisition using co-occurrences between the
visual information and spoken-language information, without
human labeling. Harwath et al. [8–11] proposed a crossmodal
information embedding model to associate visual objects with
spoken words. The model comprises image and speech en-
coders that map corresponding signals, image or speech au-
dio signals, to vectors in a shared embedding space. To train

Fig. 1. Spoken audio captions associated with the same image

the encoders, many pairs comprising a picture and its spo-
ken audio caption were used. They showed the model’s ef-
fectiveness through crossmodal information retrieval and co-
localization tasks. They also demonstrated that training bilin-
gual, namely, English and Hindi encoders for a common im-
age dataset allows to obtain some kind of translation knowl-
edge [12, 13].

In this paper, we extend their models to incorporate three
different languages: English, Hindi, and a new corpus of
Japanese-spoken captions. A natural question in this exten-
sion is whether the additional information provided by the
third language improves the performance in terms of cross-
modal information retrieval accuracy.

The problem arising with this extension is that the audio
captions associated with the same image are not necessarily
parallel data. In our setup, a pair comprising an image and
an audio caption is intended to be an artificial co-occurrence
of that information, so the audio caption is a spontaneous de-
scription by an individual speaker, rather than a reading from
a prepared transcript. As shown in Fig. 1, considerable vari-
ation exists in content and duration due to differences in the
culture and vocabulary behind languages. If such non-parallel
data is directly mapped into the shared embedding space, the
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Table 1. Average duration and number of words per caption
for each language

Average duration Average word count
English [11] 9.5 seconds 19.3 words
Hindi [12] 11.4 seconds 20.4 words
Japanese 19.7 seconds 44.6 words

appropriate semantics would not be represented in the em-
bedding space. Against this background, we introduce a self-
attention mechanism into the speech encoders. Our hope is
that the self-attention mechanism efficiently captures relation-
ships between widely separated word-like segments, and that
the spoken captions associated with the same image are bet-
ter mapped into the embedding space. Our experiments show
that incorporating the third language improves the accuracy
of the retrieval task, and that the self-attention mechanism
works effectively. We also show that the proposed model
acquires more accurate word translation knowledge than the
model without the self-attention mechanism does.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 explains our dataset. Sec-
tion 4 describes our model, and Section 5 shows experimental
results. Finally, Section 6 concludes the paper.

2. RELATED WORK

Datasets for multiple modalities are being actively con-
structed. For spoken audio captions, Harwath et al. [11, 12]
collected 400,000 English captions and 100,000 Hindi cap-
tions for a common image dataset. Chrupała et al. [14],
Havard et al. [15], and Ilharco et al. [16] synthesized En-
glish and Japanese spoken captions from the text captions of
the MS-COCO [17], STAIR [18], and Conceptual Captions
datasets [19] and used them for training. In this paper, we
investigate the effectiveness of a trilingual semantic embed-
ding space using a dataset comprising spoken captions in
three different languages.

Regarding model architectures, the dual encoder model
has been used to train embeddings for images and audio
captions. A pre-trained R-CNN [20], VGG16 [21], and
Inception-ResNet-v2 [22] have been used as image encoders,
and CNN-based DAVEnet [9] and ResNet-based ResDAV-
Enet [11] were proposed as speech encoders. The attention
mechanism has been effectively utilized to model the tempo-
ral nature of spoken captions within a multi-layer recurrent
highway network and a gated recurrent unit [14, 15].

Triplet loss has been introduced to learn the audio-visual
embedding space [9, 14, 15]. Harwath et al. [11] also demon-
strated that combining semi-hard negative training with the
standard triplet loss worked well. More recently, Ilharco et
al. [16] reported that a masked margin softmax loss has better
characteristics than the standard triplet loss.

Other related works include studies of the association of

Fig. 2. Architecture of our neural networks

hand-written digits and spoken numbers [23, 24], visually
grounded keyword spotting [25, 26], generation of audio de-
scriptions of images [27, 28], an application to speech recog-
nition [29], and audio-visual representation learning [30, 31].

3. JAPANESE SPOKEN CAPTIONS DATASET

We collected a new corpus of Japanese spoken captions for
the Places205 dataset [32]. We used a subset of 100,000
images from the Places data that have both English [11]
and Hindi [12] captions. To collect the Japanese corpus, we
recorded a spontaneous, free-form spoken caption for each
image using a crowdsourcing service in Japan.

To collect high-quality audio captions, all the recorded
signals were checked by human listeners. If a signal con-
tained too much noise or distortions, or was too short, it was
excluded from the dataset, and the speaker was asked to re-
record. Through this process, we collected 98,555 captions
from 303 unique speakers (182 females and 121 males) in
about three months. Table 1 shows the average duration and
the number of words per caption for each language. The num-
ber of words was counted from the speech recognition results.
As shown in the table, the listening verification process re-
sulted in longer and richer spoken captions. We plan to make
our dataset publicly available for academic purposes only.

4. MODELS

Our data takes the form of a collection of N quadruples
(Ii, A

E
i , A

H
i , AJ

i ), where Ii is the ith image, and AE
i , A

H
i ,

and AJ
i are the speech audio signals of the English, Hindi,
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and Japanese captions describing the same image. Our model
is based on the architecture proposed by Harwath et al. [12],
in which a pair of convolutional neural networks (CNNs) are
used to encode an image and a spoken caption to vectors in
a shared embedding space. As shown in Fig. 2, we utilize
four networks: one for the image, one for the English caption,
one for the Hindi caption, and one for the Japanese caption.
We hope this model can learn the visual-linguistic semantics
from the co-occurrences across the different modalities.

We use an image encoder that takes all layers up through
conv5 from a pre-trained VGG16 network [21]. To map the
VGG16 output into the embedding space, we apply a linear
3×3 convolution with d filters, followed by spatial mean pool-
ing. For a 224× 224 pixel RGB input image, the encoder
outputs a vector vI of dimension d.

Our speech encoder is based on DAVEnet [11], but we
added a self-attention layer [33] in the latter half of the net-
work. The inputs are 40 log Mel filterbank energies per 25-
ms frame of the caption at 10-ms shifts, and each speech en-
coder outputs an embedding vector of dimension d obtained
by temporal mean pooling. We utilize truncation and zero-
padding of each spectrogram to a fixed length of T frames
(T = 3072, or approximately 30 seconds in our experiments),
and then truncate the output features of each caption to re-
move the frames corresponding to zero-padding. Our data
pre-processing follows the one in [12].

In the self-attention layer, the audio features from the third
max pooling layer x ∈ RC×K are first transformed into two
feature spaces, where f(x) = W fx, g(x) = W gx. Here,
C is the number of channels, and K is the number of the
audio feature locations. W f ∈ RC̄×C , W g ∈ RC̄×C are
the learned weight matrices, which are implemented as 1×1
pointwise convolutions. For memory efficiency, we choose
C = 512 and C̄ = C/8 in all our experiments. The xk is the
kth audio feature, and the attention map β is then given by

βk,l =
exp(sk,l)∑K
k=1 exp(sk,l)

, where sk,l = f(xk)
Tg(xl), (1)

where βk,l indicates the extent to which this layer attends to
the kth location when synthesizing the lth location. The out-
put of the attention layer is o = xβT ∈ RC×K . The final
output is given by y=x+γo, where γ is a trainable parame-
ter. Our hope is that the attention layer enables the DAVEnet
to efficiently model relationships between widely separated
word-like segments in an audio caption.

Most previous studies employed triplet loss [34] to train
the dual encoder models [12,15,31]. The triplet loss function
is normally trained on a series of triplets (a,p, i), where a
is the anchor vector, p is a vector paired with a, and i is an
imposter vector. This function is designed to keep a closer
to p than to i, and it is widely used in many areas. On the
other hand, inspired by [35, 36], Ilharco et al. [16] proposed
masked margin softmax loss. In contrast to triplet loss, which
chooses a negative sample randomly, masked margin softmax

Table 2. Audio-visual retrieval recall scores for monolingual
and trilingual models. “English caption” is abbreviated as E,
“Hindi caption” as H, and “Japanese caption” as J.

Monolingual models
w/o self-attention layer

Audio to Image Image to Audio
R@1 R@5 R@10 R@1 R@5 R@10

E .105 .313 .437 .075 .261 .403
H .090 .258 .365 .083 .252 .335
J .190 .488 .626 .164 .431 .582

avg. .128 .353 .476 .107 .315 .440

w/ self-attention layer
E .145 .355 .477 .119 .317 .452
H .094 .274 .390 .089 .249 .373
J .204 .515 .651 .214 .489 .635

avg. .148 .381 .506 .141 .352 .487

w/ self-attention layer and masked margin softmax loss
E .141 .364 .481 .118 .322 .457
H .098 .280 .401 .099 .247 .380
J .200 .510 .642 .218 .475 .637

avg. .146 .385 .508 .145 .348 .490

Trilingual models
w/o self-attention layer

E .143 .382 .518 .103 .342 .484
H .103 .299 .429 .110 .295 .399
J .210 .515 .667 .158 .435 .604

avg. .152 .399 .538 .124 .357 .496

w/ self-attention layer and masked margin softmax loss
E .139 .395 .529 .116 .358 .508
H .112 .315 .445 .108 .313 .419
J .203 .520 .667 .200 .468 .623

avg. .151 .410 .547 .141 .380 .517

loss takes advantage of all negative pairs in the batch and thus
improves the sample efficiency. More recently, Harwath et
al. [11] found that semi-hard negative training worked much
better when combined with the sampling-based triplet loss.
Therefore, we compare these loss functions in our experi-
ments. Given the quadruples, we apply these loss functions
to neural embedding vectors vI

i ,v
E
i ,v

H
i , and vJ

i in 12 dif-
ferent ways, so that images and captions that belong to the
quadruples are more similar in the embedding space than the
mismatched image/caption or caption/caption pairs.

5. EXPERIMENTS

We evaluated the proposed model in terms of crossmodal and
cross-lingual retrieval. We divided the dataset into a training
set of 97,555 image/captions quadruples and a validation set
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Table 3. Cross-lingual retrieval for trilingual models

w/o self-attention layer
Audio to Audio (→) Audio to Audio (←)
R@1 R@5 R@10 R@1 R@5 R@10

E↔H .055 .188 .278 .055 .176 .261
H↔J .051 .193 .294 .063 .210 .286
J↔E .072 .234 .328 .069 .221 .328

w/ self-attention layer and masked margin softmax loss
E↔H .076 .225 .313 .076 .225 .313
H↔J .085 .248 .334 .104 .246 .350
J↔E .106 .317 .441 .105 .312 .437

Fig. 3. Self-attention maps and speech recognition results

of 1,000 quadruples. We set the mini-batch size B and di-
mension d to 100 and 1024, respectively, and used a constant
momentum of 0.9 and an initial learning rate of 0.001 which
was decreased by a factor of 40 every ten epochs. Our model
generally converged in less than 100 epochs.

The upper half of Table 2 lists the recall scores for the
monolingual models trained from images and monolingual
spoken captions. With the monolingual model, it was shown
that the audio-visual retrieval accuracy for the Japanese-
spoken captions exceeded that of other languages. This is
probably because the Japanese captions were recorded longer
and with more words, on average, than those of English
and Hindi captions. It was also shown that the performance
in these three languages was further improved by the self-
attention layer inserted into the speech encoder. We found
that the masked margin softmax loss function works slightly
better than the combination of the sampling-based triplet loss
and semi-hard negative training. We use the masked margin
softmax loss function in all subsequent experiments.

The lower half of Table 2 shows the recall scores for the
trilingual models. Comparing them with monolingual mod-
els, one can see that the retrieval performance is improved
by learning three languages simultaneously. We believe that
the shared embedding space is better learned by adding rich
Japanese-spoken captions. Table 3 shows the cross-lingual
retrieval results which indicate that incorporating the self-
attention mechanism was also effective.

Figure 3 demonstrates examples of the self-attention map
and speech recognition results. These results indicate that

Fig. 4. Similarity matrices between unpooled embeddings of
English and Hindi captions

the characteristic words describing the image and the co-
occurrences between the words are emphasized, and that the
self-attention layers work well. We confirmed that attention
in our model mainly focuses on nouns, as shown in [15].
Figure 4 compares similarity matrices between English and
Hindi captions associated with the same image. Regions
of high similarity correspond to translations of the underly-
ing words. It can be seen that the use of the self-attention
mechanism in the trilingual model results in less noise in the
similarity matrix and clearer alignment. As future work, we
are planning to learn an audio-visual picture dictionary, as
shown in [13], from our trilingual models.

6. CONCLUSION

We proposed a trilingual semantic embedding model for vi-
sually grounded speech. In addition to the existing English
and Hindi captions, we used a new corpus of Japanese-spoken
captions. The experiments showed that the third language
improves the performance in terms of crossmodal and cross-
lingual information retrieval accuracy in most cases. Intro-
ducing the self-attention mechanism was also shown to be
effective. Future work includes investigating ways to avoid
combinatorial increases in the number of terms in the loss
function and analyzing the model’s performance when the
quality or quantity of the spoken captions is not balanced
among the languages. One of our challenges is to find audio-
visual associations regarding not only still objects but also
events, actions, or situations that would correspond to verbs,
adverbs, or adjectives as well as nouns.
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