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Abstract

Robust Storage Systems for Persistent Memory

Hayley LeBlanc, PhD
The University of Texas at Austin, 2025

SUPERVISOR: Vijay Chidambaram

Protecting the integrity of stored data is the main responsibility of storage

systems. However, it is challenging to ensure that data is always kept safe in the event

of crashes or data corruption, and there is no one-size-fits-all approach to building

robust systems. The developers of different systems have different goals, requirements,

and resources, and thus have different priorities when it comes to how they gain

confidence in the correctness and robustness of their systems. In this dissertation, we

present a set of new techniques for building crash-consistent and corruption-resistant

systems. Each technique occupies a different point in the trade-off space between

complexity and the level of confidence it offers, providing developers with a toolbox

of approaches that are useful in a variety of settings.

The techniques presented in this dissertation focus on the problem of ensuring

robustness in storage systems built for persistent memory (PM). Persistent memory

(PM) technologies, such as Intel Optane DC Persistent Memory and battery-backed

DRAM, promise low-latency, byte-addressable access to dense storage media. These

characteristics present an opportunity to build new file and storage systems that

provide both high performance and strong crash-consistency guarantees, but also in-

troduce new challenges when it comes to building robust systems. Developers of

PM storage systems must contend with a complex low-level interface and the need

x



to develop new designs to take advantage of new performance characteristics. Fur-

thermore, PM systems differ in many fundamental ways from traditional systems, so

many previously-developed tools and techniques are not compatible.

In this dissertation, we present three new techniques for ensuring that PM

storage systems are robust in the face of crashes and corruption. We first present

Chipmunk, a testing tool for PM file systems for crash consistency bugs. We analyze

23 bugs in five PM file systems found byChipmunk and learn important lessons about

how to design these systems and prevent such bugs. We next present SquirrelFS,

a PM file system that utilizes the Rust compiler to statically check ordering-related

crash-consistency properties. SquirrelFS checks these properties in a new crash-

consistency mechanism we call Synchronous Soft Updates using an API design pattern

called the typestate pattern. Finally, we present PoWER (Preconditions on Writes

Enforcing Recoverability), a new approach to formally verifying crash-consistency,

and use it to build CapybaraKV, a verified PM key-value store. Unlike prior work

on verifying crash consistency, PoWER relies only on standard verifier features and

requires minimal additional libraries and infrastructure. We also introduce several

new techniques that make building verified PM storage systems easier, including a

new primitive for atomic checksum updates and a Rust crate to help developers

implement fast, provably-safe durable updates.

This dissertation advances the state of the art by presenting new results that

inform how we should build robust storage systems and new techniques to help de-

velopers achieve this goal. While the tools and techniques we discuss were developed

with PM in mind, many are applicable to traditional storage systems as well. All the

work presented in this dissertation is open-source.
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Chapter 1: Introduction

Massive amounts of data are generated every day [86], and much of this data

is entrusted to cloud storage services. It is estimated that, as of 2025, cloud providers

store hundreds of zettabytes of data [70, 202, 253]. These providers are responsible

for a wide range of data, from personal files of individual users [68,92,196] to critical

financial [76,91,195,235,242] and government records [7,26,93,193]. All of these users

depend on storage services to keep their data safe. Most providers promise at least

11 nines of annual durability [6,90,194], meaning that in a given year, they expect to

lose at most approximately one gigabyte out of every 100 exabytes stored (although

most services quantify durability in terms of objects).

Achieving this level of durability is challenging, in large part because system

crashes or power loss events can interrupt operations on stored data at any time.

Power outages can take entire datacenters offline [57, 218, 246], and bugs in kernel

or device driver code can cause system crashes that require system reboots. Such

interruptions to storage system operations can cause data loss or corruption [42,

97]. Furthermore, data can become also corrupted during regular execution due to

software bugs, media errors, hardware defects or cosmic rays [14, 15, 71]. Modern

storage systems use crash-consistency techniques such as journaling [217] to handle

unexpected power cycles and checksums [14] to detect corruption. However, these

approaches are challenging to implement correctly in practice. They are complicated

to build and difficult to test, but bugs in their design or implementation can cause

severe data loss in the event of a crash or corruption [201,270,271].

In this dissertation, we attempt to answer the question: how can developers

gain confidence in the robustness of their storage systems using different approaches

like testing, lightweight static checking, and verification? Although developers would

generally agree that they want their systems to tolerate rare events like crashes and

corruption, they do not all share the same priorities or resources that can be put
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Figure 1.1: Spectrum of techniques. The figure shows a spectrum of crash-
consistency approaches, labeled with the three techniques (testing, lightweight static
checking, and verification) discussed in this dissertation.

towards achieving this goal. There is no one-size-fits-all approach to building good

storage systems. Each system differs in terms of its durability and performance SLOs,

the crash-consistency guarantees it should provide, the frequency and kind of data

corruption it is expected to experience, the amount of developer time available, among

many other factors. In this dissertation, we focus on the trade-off between the level

of developer effort and expertise and the amount of confidence that a developer gains

in the robustness of their system.

Figure 1.1 shows a simple spectrum representing this trade-off, labeled with

three points for which we provide new techniques. The most common approach is

testing for bugs, but no amount of testing can guarantee that a system is resilient

to failures and/or corruption. A system that requires extremely high assurance of

correctness may instead be formally verified, but this requires specialized developer

expertise and significant additional development time. A system may also fall some-

where in the middle, if, e.g., its developers want stronger guarantees than testing can

provide but cannot commit to verification.

In this dissertation, we focus on these problems in the context of persis-

tent memory (PM), a type of storage-class memory that provides low-latency, byte-

addressable access to durable storage. Using PM for durable data storage, either in

place of or alongside slower devices like SSDs or HDDs, has been a topic of research for
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decades [48,199,260,261] but has recently become more viable with the introduction

of Intel’s Optane DC Persistent Memory Module [51] and improving battery technol-

ogy for battery-backed DRAM [140]. The PM programming model has also solidified

in recent years with the introduction of PM-specific instructions and features into

Intel’s x86 ISA [229]. This has made the development of realistic PM storage systems

more feasible, resulting in a flurry of research on this topic over the past 10 years

or so [8, 66, 67, 132, 133, 155, 266, 267]. Although Optane has since been discontin-

ued, other companies including Samsung [251] and a variety of startups [72,145] have

continued to develop new PM technologies. Battery-backed DRAM can also be used

to support fast, byte-addressable access to durable storage, and has been adopted

by cloud services like Azure Storage [153]. Microsoft recently proposed Managed-

Retention Memory [169], which obtains improved bandwidth, write endurance, and

density in exchange for shorter retention times (e.g., days instead of years), which we

expect would have many of the same considerations as longer-term PM systems.

Developers have to tackle new challenges to build robust PM storage systems

because PM differs from traditional storage devices in a number of ways. PM is

accessed directly via memory loads and stores, rather than block-level requests that

are passed down to hardware through several layers of software. Taking advantage

of PM’s unique performance characteristics requires novel system designs, including

hybrid user-space/kernel-space architectures and new crash-consistency mechanisms.

Even the PM systems that are most similar to traditional storage systems do not

use previously ubiquitous techniques, such as in-memory page caches. PM storage

systems also face a very different set of trade-offs when it comes to providing crash-

consistency guarantees thanks to the hardware’s low access latency. These differences

mean that we need new ways to help developers build correct and resilient storage

systems for PM.

In this dissertation, we present three different techniques for ensuring that

PM storage systems are robust. Although these techniques were developed for PM,

many of the ideas presented here are also useful for traditional storage systems, as the
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fundamental challenges of building crash consistent systems remain largely the same.

We also discuss insights and lessons learned by working on both systems testing and

verification, which are generally studied by two separate research communities.

All the works presented in this dissertation is open source. See Appendix A

for links to each codebase.

1.1 Chipmunk: Testing crash consistency

In order to develop effective tools to help developers gain confidence in the

correctness and reliability of their PM systems, we first need to understand how bugs

arise in these systems. Although recent research has produced many new PM storage

systems, prior work on crash-consistency testing for PM has focused primarily only

on bugs with specific root causes in certain libraries and database applications [63,

82, 96, 121, 181–183, 210]. Most PM file systems had not undergone any systematic

crash-consistency testing, as they are incompatible with existing testing tools for

block-based file systems [143,201,271].

We present Chipmunk [166], a crash-consistency testing tool for PM file

systems, and use it to investigate bugs in these systems. Chipmunk is based on

CrashMonkey [201], a record-and-replay tool for systematically testing traditional

file systems, but introduces new techniques tailored to PM systems. For example,

CrashMonkey’s recording step uses the Linux kernel block layer to intercept and log

I/O, but PM file systems do not use this layer and access storage via memory loads

and stores. To record durable updates, Chipmunk instead leverages the observation

that PM file systems all use a small set of centralized persistence functions to perform

durable updates, and automatically instruments these functions to record I/O.

PM file systems also differ from traditional systems in terms of the crash-

consistency guarantees they provide. Traditional systems buffer updates in volatile

memory and require users to invoke system calls like fsync to ensure durability.

In contrast, PM systems write updates directly to storage and provide synchronous
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system calls in which updates are all durable by the time the call returns. Finding

crash-consistency bugs in PM file systems thus requires checking stronger properties

about additional crash states. To do this, Chipmunk records ordering points (i.e.,

sfence instructions), which ensure that all previous updates become durable before

subsequent updates, and injects a crash before each one. For each simulated crash,

it then replays subsets of in-flight (i.e., made between the prior ordering point and

the crash point) updates and checks each resulting state for consistency. Chipmunk

replays updates at cache-line granularity; in practice, we find that the number of such

updates between any two ordering points is small, making brute-force checking of all

states feasible.

We tested seven PM file systems with Chipmunk and found 23 unique bugs

in five of them. Most bugs have been acknowledged by maintainers, and many have

been fixed. By analyzing this corpus of bugs, we found several surprising patterns

about how bugs arise in these systems. For example, although prior work on testing

PM storage systems has primarily focused on finding what we call PM programming

errors (low-level issues missing cache line flushes or store fences), most bugs were logic

bugs in the design or implementation of the system and were often tied to certain

PM-specific design patterns. This observation suggests that more holistic techniques

will be required to build robust PM storage systems and motivates the rest of this

dissertation.

1.2 SquirrelFS: Statically checking crash consistency

Although Chipmunk successfully found many bugs, it cannot make strong

guarantees about the absence of crash-consistency bugs. We next explore the middle

of the spectrum in Figure 1.1, to obtain stronger confidence in our systems without

requiring proofs or specialized verification tools. To do so, we present SquirrelFS,

a new PM file system with statically-checked ordering-related crash-consistency guar-

antees using the Rust programming language.
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In this chapter, we focus on the idea that crash consistency relies upon the

order in which updates become durable and that many bugs are caused by unexpected

reorderings [42,81]. A development methodology that checks that updates are ordered

correctly at compile time can thus rule out a large class of bugs. Using SquirrelFS,

we present such a methodology by exploiting several recent developments in storage

and programming languages.

First, the Rust programming language has a strong type system that supports

strong compile-time safety checks; for example, ensuring that there are no memory

leaks or race conditions. Rust is growing rapidly in popularity has already been shown

to be useful as a tool for development of realistic and crash-safe storage systems [24,

113]. Rust’s type system can statically check that certain operations are carried out in

a given partial order using a design pattern called the typestate pattern. In this work,

we observe that this can be used to statically check ordering-related crash-consistency

guarantees by encoding ordering-based update invariants in Rust types.

Although ordering is a crucial aspect of nearly all crash-consistency mecha-

nisms, static ordering checks will be most valuable in a system that derives crash

consistency entirely from ordering. Soft updates [187], a technique used in BSD FFS,

fits this mold but is notoriously complicated and rarely used [12,81]. We observe that

much of soft updates’ complexity stems from asynchrony ; it is difficult to determine

the correct order of multiple asynchronous updates issued by different system calls. A

synchronous implementation, in which the effects of a system call are durable by the

time it returns, would eliminate a significant amount of this complexity. The second

development we leverage is persistent memory’s support for fast, synchronous storage

systems, which makes such an implementation feasible. We call this new variant of

soft updates Synchronous Soft Updates (SSU).

SquirrelFS is implemented in Rust and uses typestate-checked SSU to ob-

tain ordering-related crash-consistency guarantees. Ordering rules are encoded in

typestates such that an implementation that allows incorrectly-ordered updates will
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fail typechecking during compilation. The dependencies that form these ordering

rules are encoded in the signatures of methods on persistent objects and provide the

only interface to modify durable state. To gain confidence that these rules are correct,

we checked the design of SquirrelFS in the model checker Alloy [4]. Although the

model and implementation are separate, a system written with the typestate pattern

encodes a state machine and is straightforward to represent as a transition system

model in Alloy.

In SquirrelFS, all system calls are synchronously durable, and metadata-

related system calls are crash-atomic. We develop a new technique to make the

rename system call fully atomic, which prior soft updates implementations have not

supported. SquirrelFS is written in unmodified Rust and requires no proofs or

additional verification infrastructure. We evaluate SquirrelFS on Intel Optane DC

PMM and find that it achieves competitive performance with other PM file systems

on many common research benchmarks. We also test SquirrelFS with Chipmunk

and find no ordering-related crash-consistency bugs, indicating that the typestate

pattern is effective at preventing them.

1.3 CapybaraKV and PoWER: Verifying crash consistency
and corruption detection

Chipmunk and SquirrelFS present powerful and effective techniques for

finding and preventing crash-consistency bugs, but some developers may want even

stronger assurances. On the far end of the spectrum in Figure 1.1, they prove that

their system is correct and robust to failures and corruption using formal verification.

We explore using verification to guarantee the crash consistency and corruption de-

tection capabilities of PM storage systems in this chapter. We present several new

techniques and systems, including PoWER (Preconditions on Writes Enforcing Re-

coverability), a new approach to crash-consistency verification, and CapybaraKV,

a verified PM key-value store.
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Crash consistency is a particularly difficult property to verify because Hoare

logic [77,111], which is widely used as the basis for automated verification tools, does

not provide a straightforward way to reason about possible crash states. To verify a

program using Hoare logic, a developer annotates each function with preconditions,

which must hold when the function is called, and postconditions that must hold

when it returns. The system verifies if it can be proven that these conditions always

hold. As long as the postcondtion is always established when the function finishes,

its internal behavior is unconstrained. This makes it challenging to reason about

crashes, which may occur at any time, including while a function is executing. Prior

work has introduced extensions to Hoare logic to tackle this challenge [30, 40, 104],

but these extensions increase the complexity of verification and tie techniques to the

specific tools that support them.

We introduce a new crash-consistency verification technique, PoWER (Pre-

conditions on Writes Enforcing Recoverability), which only requires basic verifier

features. PoWER is based on the observation that all crash states that may result

from a durable update can be exhaustively described without new forms of reasoning.

We can add a precondition to write methods stating that all such states must be legal

according to a specification of consistency using standard Hoare logic and quantifiers,

which are widely supported. In order to update durable state, developers must satisfy

this precondition, thereby proving that the update does not introduce any potential

crash consistency issues. PoWER only relies on a few common verification constructs

and is thus not tied to any specific verification tool or framework.

We use PoWER to build several systems in different verification languages.

In this dissertation, we focus on CapybaraKV, a verified PM KV store written

in the Rust verification framework Verus [164] using PoWER. In addition to crash

consistency, CapybaraKV has verified corruption-detection capabilities based on a

new model of bit corruption that, unlike prior work, is applicable to any data layout

and storage device. We also introduce several novel techniques to solve PM-specific

verification challenges we encountered building CapybaraKV. First, we observe that
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it is difficult to maintain checksums for corruption detection in a crash-safe way (and

even more difficult to verify this). We introduce the corruption-detecting Boolean

(CDB), a new primitive for crash-consistent checksum management, and verify its use

in CapybaraKV. Second, we find that a common pattern in PM storage systems —

copying bytes directly between DRAM and PM — is potentially unsafe but cannot

be handled by the verification tools we use. To tackle this, we build a new Rust crate

that helps developers combine the power of the Rust compiler and the Verus verifier

to prove that these operations are safe.

We evaluate CapybaraKV on Intel Optane PM and find that it achieves

competitive performance with two other PM KV stores, pmem-RocksDB [120] and

pmem-Redis [119]. We also run several experiments on battery-backed DRAM, where

it also obtains good performance. CapybaraKV is currently single-threaded, but

we show that it can be effectively parallelized using sharding.

1.4 Contributions

This dissertation makes the following contributions:

• We design Chipmunk, a record-and-replay testing tool for PM file systems that

presents novel techniques to locate crash-consistency bugs in these systems.

• We present a corpus of 27 new crash-consistency bugs across six PM file systems

and an analysis of their root cause. We present a set of observations about these

bugs and distill them into a set of lessons for future developers of storage systems

and testing tools for PM.

• We design SquirrelFS, a PM file system with statically-checked ordering-

related crash-consistency properties.

• We introduce Synchronous Soft Updates, a new mechanism based on the tradi-

tional soft updates approach, together with a way to obtain ordering guarantees
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about a Rust implementation of SSU at compile time.

• We design CapybaraKV, a PM key-value store with verified crash-consistency

and corruption-detection properties.

• We introduce PoWER, a new, tool-agnostic approach to verifying crash consis-

tency in storage systems.

• We introduce several PM-specific techniques for writing verified storage systems

in the presence of data corruption.

• We present a discussion of new insights and lessons from studying both storage

system testing and verification.

1.5 Overview

The rest of this dissertation is structured as follows. Chapter 2 provides back-

ground information required to understand the following chapters. We describe per-

sistent memory, crash consistency, data corruption, the Rust programming language,

and several techniques from formal methods literature used in this dissertation. Chap-

ters 3, 4, and 5 introduce Chipmunk, SquirrelFS, and PoWER/CapybaraKV,

respectively. Each of these chapters motivates the development of the new system,

describes the techniques we developed to build it, and presents a performance eval-

uation of the system on Intel Optane PM. Chapter 6 discusses related work on

testing storage systems, lightweight language-based static checking, and formal ver-

ification. Chapter 7 provides additional discussion about the systems presented in

the prior chapters. We compare the guarantees and assumptions made in each of

the systems in detail, discuss the applicability of our proposed techniques to non-

PM storage systems, and describe our experiences learning systems verification when

building CapybaraKV. Chapter 9 describes ideas for future work on storage system

correctness and persistent memory and concludes the dissertation.
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Chapter 2: Background

This chapter provides background information about various aspects of this

dissertation. In §2.1, we introduce persistent memory (PM) and discuss its per-

formance and reliability characteristics. In §2.2, we discuss the problem of crash

consistency more broadly and describe existing crash consistency mechanisms. In

§2.3, we cover the issue of bit corruption in stored data and describe techniques for

detecting corrupted data. In §2.4, we discuss the Rust programming language and

describe the aspects of the language that are relevant to this dissertation. In §2.5, we

provide an overview of formal methods techniques used to this dissertation, such as

program verification and model checking.

2.1 Persistent memory

Persistent memory (PM), also known as non-volatile main memory (NVMM),

is a type of storage-class memory that provides byte-addressable durable storage

with low access latency. Technologies such as Phase-Change Memory (PCM) [168],

Spin-Torque Transfer RAM (STT-RAM) [156], resistive RAM (ReRAM) [64], 3D

XPoint [2], battery-backed DRAM [58,114,115,239], and memory-semantic SSDs [236]

have been explored for potential use in PM hardware, but few have been made com-

mercially available. Only battery-backed DRAM and 3D XPoint, available as Intel

Optane DC Persistent Memory Module devices from 2019 through 2022, have been

available for purchase.

In this dissertation, we assume a PM programming model, failure model, and

performance profile based on Intel Optane PM, which we discuss in more detail next.

Most recent systems for PM have been tested on Optane PM and are designed based

on its performance characteristics. We expect that future PM offerings will have

different performance characteristics from Optane PM, but retain a similar program-
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ming and failure model. Since the techniques presented in this dissertation primarily

focus on reliability and data integrity in PM storage systems, they are not restricted

to Optane PM and could be used with other types of PM hardware.

2.1.1 Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory Module is a type of non-volatile DIMM

(NVDIMM) that provides access to PM over the memory bus [51]. We now provide

an overview of its performance and how it is used by PM-aware applications and

storage systems.

2.1.1.1 Performance characteristics

Optane PM provides much lower latency access to durable data than tradi-

tional (i.e., solid state drive and hard disk drive) devices, but is slower than DRAM.

Optane PM read latency is 2–3× higher than DRAM [124]. Sequential reads are

faster than random reads, which experimental data has shown is most likely due to

internal 256-byte batching [124, 216]. Writes to Optane PM have similar latency to

DRAM [124].

The maximum write bandwidth of a single Optane PM NVDIMM (2.3 GB/s)

is approximately 1/3 that of DRAM; maximum read bandwidth (6.6GB/s) is 1/6

that of DRAM [124]. Real bandwidth utilization depends on factors like whether

the PM is interleaved, access sizes and patterns, and the number of readers and

writers accessing PM. A common setup is to interleave multiple NVDIMMs on one

NUMA node, exposing them as a single device to software and accessing 4KB blocks

of individual DIMMs in a round-robin pattern [216].

Optane PM’s 3D XPoint is denser than DRAM, but less dense than SSDs [46].

When on the market, it was cheaper per gigabyte than DRAM [105]. Recent research

has thus investigated it as a way to increase the memory capacity of individual servers

and as a durable storage device, either instead of or alongside traditional block-based
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media.

2.1.1.2 Accessing PM

Optane PM can be operated in either Memory Mode or App Direct Mode. In

Memory Mode, the PM is used to increase memory capacity and does not guarantee

durability of data [116]. DRAM is used as an L4 cache, and PM is used as main

memory. In App Direct Mode, a PM device is presented as a storage device to

software and guarantees durability [116]. Devices in App Direct Mode are supported

in Linux by DAX (Direct Access), a feature that gives software access to PM via

memory mapping. The systems discussed in this paper all use PM in App Direct

Mode.

There are two DAX modes: fsdax, which supports accessing PM via an in-

kernel file system; and devdax, which exposes the device as a character device that

can be accessed without a PM-aware file system. All systems discussed in this paper,

and most related work, use the fsdax mode. Some user-space PM file systems (e.g.

Strata [155] and Assise [8]) use devdax to manage a full PM device without an

in-kernel file system. Both modes allow an application to map PM into its address

space and directly access the underlying storage via memory loads and stores without

interference from a file system. This differs significantly from memory-mapped access

to files in traditional file systems, which stage updates in DRAM and do not give

applications direct access to the underlying storage device.

2.1.1.3 Programming model

Under the current x86 PM programming model, there are two primary ways

to write data to PM. First, standard memory store instructions (e.g., mov) can be

used to store data at persistent addresses. Data stored in this way is first cached in

CPU caches before it is written to PM. Second, non-temporal (NT) store instruc-

tions (e.g., movnti) may be used to bypass the CPU caches. Data written with NT
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Figure 2.1: PM power-fail protected domains.. The figure shows the power-fail
protected domains for ADR and eADR systems.

stores is still temporarily stored in volatile CPU buffers separate from the main cache

hierarchy [214].

In both cases, additional instructions are required to ensure that writes become

durable in the correct order. Data must reach the device’s power-fail protected domain

in order to be guaranteed persistent in the event of a crash or power loss [229].

Figure 2.1 shows an overview of current and proposed power-fail protected domains

on Intel hardware. In current systems, the power-fail protected domain contains

the device’s write-pending queue (WPQ) but does not contain CPU caches or store

buffers, so data that is not flushed from these locations before a crash will be lost.

To support this model, PM systems require a hardware feature called asynchronous
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DRAM refresh (ADR), which ensures data in the memory’s WPQ will be flushed on

power loss [122,229].

To guarantee persistence of cache-resident data, one of several cache line flush

and writeback instructions (clflush, clflushopt, or clwb) must be used [229].

clflush is supported by legacy CPU versions and serializes flushes. clflushopt

is an optimized version of clflush that does not serialize flushes to achieve better

performance. clwb is also not serialized and performs a cache write-back, which unlike

a flush does not invalidate the target cache line, potentially improving performance.

Since clflushopt and clwb may be reordered, developers must use memory or store

fences (mfence or sfence) to ensure that durable updates are ordered correctly [229].

In this dissertation, we refer to data that has been written but not ordered with

respect to subsequent writes as in-flight or outstanding interchangeably.

Intel proposed extended asynchronous DRAM refresh (eADR) in 2021 [122],

which extended the power-fail protected domain to include the CPU caches. eADR

removes the need for explicit CPU flushes or write-backs for crash consistency, but

developers still need to use store fences for ordering [117,205]. eADR was supported

by one generation of Optane PM-compatible processors [122], but it has not been

supported by subsequent generations [205,206]. ADR, however, continues to be sup-

ported.

2.1.2 Battery-backed DRAM

Battery-backed DRAM has been available for years and is currently deployed in

production cloud services such as Azure Storage [153]. To use battery-backed DRAM,

standard DRAM is connected to an additional power sources such as a lithium-ion

battery [140] or a supercapacitor [192]. In the event of power loss, the DRAM is

powered for long enough to flush its data to a hard drive or SSD [140].

Although battery-backed DRAM is currently somewhat more accessible than

other PM technologies, there are still obstacles to its widespread deployment. First,
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DRAM capacity has improved much more quickly than battery capacity [140], mak-

ing it difficult to provide sufficient battery power. Second, batteries heat up during

use, introducing additional thermal management considerations that will grow with

increased battery capacity and density [140]. Third, battery capacity fluctuates over

time due to factors like humidity, temperature, and age, so batteries must be overpro-

visioned to ensure sufficient power is available when needed [140]. Fourth, batteries

are expensive throughout their life cycle: acquisition and maintenance introduce ad-

ditional operating costs [140], and they are generally considered hazardous waste and

require special facilities for safe disposal when removed from use [255]. Finally, bat-

tery manufacturing has significant environmental costs, both from mining materials

and manufacturing [53], which is likely to become increasingly important to cloud

providers.

2.1.3 Compute Express Link (CXL)

CXL is an open standard defining a set of interconnect protocols over PCIe [56].

It supports a wide range of devices, including GPUs and DDR memory devices tra-

ditionally accessible over the memory bus. CXL supports persistent memory over its

CXL.io and CXL.mem protocols as a Type 3 device [56,230].

PM over CXL will adhere to the current PM programming model [230] and

existing applications will continue to work properly on CXL-attached PM. The CXL

specification includes a feature called global persistent flush (GPF), which is analo-

gous to ADR [230] and defines the power-fail persistence domain for CXL-attached

persistent memory.

This dissertation does not directly focus on systems built for CXL-attached

PM, but the techniques we present are compatible with such systems due to their

shared programming model and crash behavior. CXL-attached memory is expected

to have different performance and capacity characteristics, which may result in new

design patterns for PM storage systems.
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2.1.4 PM applications

A variety of storage systems, applications, and libraries have been built to take

advantage of PM. We briefly describe several types of these PM-aware offerings, and

discuss specific systems relevant to this dissertation later. The applications discussed

in this section use PM in App Direct mode for durability.

PM libraries and packages. Intel and various research groups have built libraries

to help developers build PM-based systems [118,259]. These libraries include durabil-

ity primitives to manage cache lines and ordering, persistent allocators, and variants

of other common data structures designed for compatibility with PM. PMDK [118]

is one of the most widely-used PM libraries.

PM file systems. Recent research has led to the development of many PM-aware

file systems with a diverse set of architectures and designs [8, 48, 66, 69, 132, 133, 155,

167, 266, 267, 277]. We discuss these designs in more detail in §2.1.5 and Chapter 3.

These systems are mostly compliant with POSIX [250] and implement the same file

system operations as traditional file systems. Most PM file systems are thus drop-

in compatible with legacy applications and can be used to speed up their access to

storage.

PM databases and key-value stores. PM’s low-latency and byte-addressable

interface has made it an interesting target for both the development of new databases

and key-value stores as well as ports of existing systems. Both in-memory systems

like Redis [221] and memcached [191] and durable databases like RocksDB [224] have

been ported to PM [119,120,172,278], and recent research has looked at building new

systems [18, 41, 274]. Most of these applications memory-map PM into their address

spaces using a PM-aware file system, then access durable structures directly. These

systems must be ported or designed for PM to ensure that they manage durable data

structures in PM in a crash-consistent way.
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2.1.5 Differences from traditional storage systems

Storage systems for PM have several key differences from systems designed for

slower, block-based storage media, which we outline here.

No page cache. Traditional file systems keep recently-accessed durable data in

DRAM in a structured called the page cache to hide the high access latency of the

storage device. Updates to files and file metadata are first reflected in the cache

and later flushed to storage, either explicitly by a user via a system call like fsync

or internally by the file system after a delay. Due to the low access latency of PM,

caching data and staging updates in DRAM is unnecessary and can hurt performance.

PM file systems thus write updates directly to the durable media without maintaining

an intermediate volatile cache in DRAM.

DRAM-resident data structures. It is difficult to correctly maintain complex,

frequently updated data structures, so many PM storage systems move components

like allocators and indexes into DRAM. These data structures are reconstructed when

the system is mounted, either from a checkpoint made during a clean unmount or

during a crash recovery process. Traditional storage systems generally keep these

structures on disk, as it is easier to keep them consistent with a larger atomic write

size and rebuilding these data structures from a slow disk could be prohibitively

expensive.

Direct access to storage media. There are several layers of software between a

disk-based file system and the storage device itself [201]. For example, the Linux

kernel’s block layer provides a common interface between file systems and devices

and can reorder or batch requests to underlying device drivers [27]. Although each

layer adds additional software overhead, this is eclipsed by the latency of the storage

device itself, and optimizations like batching writes to consecutive blocks can improve

performance. PM storage systems do not use these intermediate layers; instead, they

map the device into their address space and update it directly via memory loads and
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stores. The additional layers of software are unnecessary and, as PM is so much faster

than traditional storage, would negatively impact performance. Some PM file systems

go further to eliminate software overheads introduced by the kernel by moving part

or all of the file system into user space [8, 133,155].

Strong crash-consistency guarantees. Because traditional storage systems tem-

porarily keep updates in volatile storage, these systems cannot promise much about

the state of the system after a crash. A user must invoke fsync or a similar system

call to guarantee that updates to a file become durable at a specific time. Prior

work [215] and real-world incidents [254] have shown that it is difficult to build crash-

safe applications based on these weak guarantees. This is exacerbated by the fact

that different file systems provide slightly different guarantees [201]. PM storage sys-

tems can, in contrast, support synchronous operations that provide much stronger

guarantees that tend to be more consistent across systems. Since updates are written

directly to the media and not staged in DRAM, much less data is at risk of being lost

in a crash. In many PM file systems, fsync is a no-op and all effects of a system call

are durable by the time the call returns.

2.2 Crash consistency

A storage system is crash consistent if it can recover to a valid, internally

consistent, and functional state after a system crash or power loss event. Specific

crash-consistency guarantees vary from system to system, and there is an inherent

trade-off between performance and consistency. In this section, we define the crash

failure model assumed in this dissertation, describe mechanisms systems use to achieve

crash consistency, and discuss the trade-offs between performance and correctness.

While this dissertation primarily focuses on crash consistency for PM systems, the

techniques and concepts described here are generally applicable to all storage media.
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2.2.1 Failure model

In this dissertation, we assume a fail-stop model for crashes. We assume that

the system has a defined power-fail protected domain, and that updates that are not

in that domain will be lost in the event of a crash. For example, in a PM system with

ADR, updates that have not been pushed to the write-pending queue prior to a crash

will be lost. However, depending on the guarantees and semantics of the underlying

storage device, partial updates may be nondeterministically written to storage and

potentially reordered by software or hardware. For example, cache eviction policies

may result in partial writes appearing on a PM device after a crash.

Our crash-consistency failure model does not include partial disk failures or

data corruption. We discuss corruption of stored data due to causes other than crashes

in §2.3.

2.2.2 Crash-consistency mechanisms

Storage systems need mechanisms to ensure that the integrity of data and

metadata is maintained in the event of an unexpected power cycle. This is challenging

for several reasons. First, storage systems all use some amount of caching in volatile

memory (DRAM, CPU caches, and/or store buffers) to hide the high latency of the

underlying storage device and to coalesce updates to improve bandwidth and reduce

write amplification. Thus, individual updates issued to the storage device by software

are generally asynchronous, even in PM-based systems. Updates may be evicted or

flushed from such caches in an unexpected order, which can lead to inconsistencies if

a crash between reordered updates causes the system to end up in an incorrect state.

Second, even if full synchrony were feasible, most operations require multiple durable

updates that cannot be performed atomically by the storage device, so a crash could

still leave the system in an inconsistent state.

These systems need software mechanisms to ensure that they stay consistent

in the event of crashes. We now outline mechanisms used by both research and
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production storage systems. Note that these approaches are not mutually exclusive,

and many systems combine elements of multiple mechanisms.

File-system check. A file-system checker, more commonly known as fsck, scans

the contents of a storage device to detect and potentially repair inconsistencies such

as orphaned inodes or dangling directory entries [188]. In some cases, fsck can fix

some inconsistencies; e.g., many tools can handle orphaned inodes by moving them

to a lost-and-found directory, but a user must manually move or delete the recovered

inodes afterward. Each fsck implementation is specific to the system it is built for

and is not compatible with other systems. Furthermore, since fsck must scan the

entire system after each crash, it is slower than other techniques and incurs prohibitive

post-crash overhead for many real world production systems.

Logging. Logging is a general technique in which data is organized in an append-only

data structure [101,141]. This can be used for crash consistency if appends are crash-

atomic. Sprite LFS [227] introduced the idea of a fully log-structured file system,

in which all data and metadata updates are appended to a single log. Managing

entirely log-structured data and metadata requires additional indexing structures to

keep track of the location of each file. For example, Sprite LFS uses a checkpoint

region with a fixed location to keep track of the location of structures like inodes.

Over time, old data in the log must be garbage-collected and live data compacted to

ensure the system does not run out of space for new appends.

Journaling. Journaling is a technique based on write-ahead logs [200] in which

records about pending updates are appended to a log and later copied elsewhere

on the storage device. There are two main variants: a redo journal stores pending

operations to be applied later, and an undo journal records the current state of the

target data so that an interrupted operation can be rolled back. Journaling is widely

used by file systems like ext4 [74] and XFS [263]. Most modern systems do not journal

all updates, as this can impact performance and incur significant write amplification.
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A common approach is to journal metadata updates but write data updates in place,

which provides metadata but not data atomicity in the event of a crash.

Copy-on-write. Copy-on-write (COW) uses shadow paging [37,38] to obtain crash

consistency. Rather than updating data or metadata structures in place, updates are

always written to unused regions, which can require copying unmodified bytes on the

same block along with the update. Once the updated region is durable, the pointer

to the old version will be updated to point to the new version to atomically change

the view of the system from the old state to the new one. COW has been used in

systems including ZFS [80] and btrfs [28]. COW can be used to obtain strong crash-

consistency guarantees, but can also cause significant write amplification. It can also

introduce complexity, as one update to the file system tree may result in cascading

COW updates to other parts of the tree.

Soft updates. Soft updates is a technique in which dependencies between durable

updates are tracked and enforced when the in-place updates are flushed to storage. By

adhering to the ordering rules established by these dependencies, the system ensures

all potential crash states are consistent. Soft updates systems generally use some

variation on following invariants from [187]:

• Never point to a structure before it is initialized;

• Never reuse a resource before all existing pointers to it have been cleared;

• Never reset the current pointer to a resource before setting the new one.

Soft updates incurs significantly less write amplification and other storage overheads

than other mechanisms, since it does not use any external durable data structures and

does not make any copies of data. It has been used in the BSD FFS file system [187],

but has not been widely adopted due to its complexity. A soft updates system must

have a way to track update dependencies and enforce them, which is complicated by

the presence of cyclic dependencies between blocks. Soft updates systems are also
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limited in the consistency guarantees they provide without an additional post-crash

recovery mechanism, as dependency tracking cannot work around the fact that most

operations require multiple non-atomic updates to different parts of the system. Most

systems allow for resource and space leaks in the event of a crash, which can be fixed

using an fsck tool or a recovery procedure, since the system will continue to function

properly even if the leaks are not fixed unless it runs out of space.

Other techniques. Many systems use a combination of these mechanisms to ensure

consistency. For example, many Linux-based file systems use the jbd2 journaling

layer [62] to journal metadata and/or data, while also providing an fsck tool to fix the

system if inconsistencies occur due to software bugs or media errors. Researchers have

also proposed other crash-consistency techniques, although these have not seen wide

adoption. For example, backpointer-based consistency [44] is a technique that avoids

the need for ordering primitives (which are required by most other approaches) by

storing both forward and reverse pointers for each file system object. For example, a

directory will contain pointers to its files, each of which also includes a pointer back to

that same directory. A consistent view of the system is built by examining all of these

pointers. Optimistic crash consistency [43] builds on journaling and removes some

ordering points to improve performance by using checksums to detect inconsistencies

and proposing that disks notify software when an update has become durable.

2.2.3 Crash-consistency trade-offs

There are crucial trade-offs between crash consistency, performance, and com-

plexity in storage systems. At one end, a fully-synchronous storage system, in which

every update is immediately written to durable storage in program order, provides

strong, clearly-defined crash-consistency guarantees but is prohibitively slow. On the

other, an asynchronous system with no crash consistency mechanism at all incurs no

crash-consistency related overheads, but also cannot provide any guarantees about

the state of the system in the event of a crash.
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Note that these trade-offs are not tied to specific crash-consistency mecha-

nisms. The general mechanisms can be modified and customized to meet a system or

application’s specific needs. For example, many systems do not journal data updates

by default for performance, but the user often has the ability to enable data journal-

ing for stronger consistency. The techniques listed here were all originally developed

for asynchronous systems running on slow disks, but most have also been used in

synchronous systems for faster storage that obtain stronger crash-consistency guar-

antees. The high-level ideas behind each technique can be implemented and applied

in different ways depending on the requirements of the system.

Strong consistency incurs additional overheads. Most crash-consistency tech-

niques incur additional storage overhead and write amplification, which increase with

stronger crash-consistency guarantees. For example, a system can obtain very strong

consistency by journaling every durable update, but doing so causes significant write

amplification (since every update is written twice) and requires additional ordering

points. As a result, many file systems do not journal data updates by default, since

the system can maintain internal consistency by only journaling metadata.

Weaker consistency complicate guarantees. Storage systems are complicated,

with many interconnected operations and durable data structures. When disk opera-

tions can be reordered to a greater degree, it becomes more difficult to clearly capture

the exact legal states that may occur in the event of a crash. For example, it can

be difficult to determine the exact effect of fsync after operations involving multiple

files in POSIX systems, and different systems may provide different guarantees, which

may not be officially documented [50,201].

Peformant mechanisms with good consistency guarantees give up simplic-

ity. Mechanisms like soft updates and backpointer-based consistency achieve good

performance with crash-consistency guarantees only slightly weaker than those pro-

vided by techniques like journaling and COW. However, in doing so, they introduce

additional complexity that makes using these mechanisms difficult to use in practice.
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Developers generally find this complexity to not be worth the performance benefits,

especially since they do not strengthen crash-consistency guarantees [12].

2.3 Data corruption

The contents of a storage system become corrupted over time, which can result

in loss of system functionality or user data. Storage and memory devices use built-in

error correcting codes (ECC) to detect such corruption, but these do not guarantee

that all instance of corruption will be caught and/or fixed before returning data to

the user [14,83,238]. As a result, many software systems provide built-in or optional

corruption detection and recovery mechanisms.

The causes and effects of data corruption on traditional block-based storage

media are relatively well studied. There are two primary types of data corruption

that impact users: latent sector errors and silent corruption [14]. Latent sector errors

occur when a sector is read and its ECC indicates an issue that cannot be corrected

(e.g., a manufacturing defect or physical damage to that sector) [15]. These errors

are communicated to device drivers, which typically pass them up the software stack.

Silent corruption is corruption that internal device ECCs do not detect [14]. This

may happen, for example, due to a checksum collision or a bug somewhere in device

firmware or storage software stack.

Data corruption on persistent memory is less well studied, as PM is not widely

deployed and has not been the subject of publicly-available large scale corruption

studies. Different types of PM hardware may experience different levels and patterns

of data corruption. Prior work on detecting corruption on PM assumes the presence

of the same ECC-based checks as DRAM [267] and that an uncorrectable media error

will be returned to the user as a machine check exception. PM is also susceptible to

silent data corruption [267]. For example, since each device is generally mapped into

either the kernel’s address space or that of a user-level application and is thus easily

accessible to software, “scribbles” due to software bugs may unexpectedly modify the
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contents of the device.

Software systems generally address silent data corruption by storing check-

sums, often cyclic redundancy checks (CRCs), for key data structures and/or user

data [20, 74, 152, 262, 267]. CRCs are not guaranteed to find every instance of data

corruption. Depending on the amount of data being stored and size of the checksum,

two distinct sequences of bytes may have identical checksums due to the pigeonhole

principle. Most CRC algorithms are designed to guarantee detection of a certain

number of flipped bits, but cannot provide provable guarantees beyond this [152].

The chance of a CRC collision in practice, however, is very low. CRCs are not cryp-

tographic hashes and can be reverse engineered [73].

2.4 Rust

Rust is a systems programming language focused on safety. A key goal of Rust

is to prevent critical bugs like segmentation faults and data races that are common

in memory-unsafe languages like C and C++ while providing similar performance

to these languages. This section provides an overview of Rust features relevant to

this dissertation: its ownership-based type system (§2.4.1), generics (§2.4.2), traits

(§2.4.3), and macros (§2.4.4). This section draws on the official Rust documenta-

tion [146] and “Rust for Rustaceans” by Jon Gjengset [88].

2.4.1 Ownership in Rust

Rust has a unique type system based on ownership that enables it to provide

strong compile-time guarantees. Ownership is similar to linear type systems, in which

each value may only be used once, but is better suited to low-level systems program-

ming in which frequently copying values in order to mutate them is undesirable.

In Rust, each value in memory has one owner. Generally, a value is owned

by the variable bound to it. The value’s owner is responsible for managing access to

it, including deallocating the value when it goes out of scope. Values can be moved
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(i.e., change owners) by reassigning them to a new variable. The old variable no

longer owns the value, and the value cannot be accessed via this variable, although

the location of the value in memory has not changed.

For example, on line 1 of the following listing, we create a Rust String on the

heap and bind it to variable x. On line 2, we bind the same string to variable y. If

this were a C string, this would create a new alias for the string data, and the same

string would be accessible via both x and y. In Rust, however, this moves ownership

of the string to y, so an attempt to access it via x (line 4) will result in the compiler

error shown in red.

1 let x = String::from("hello, world!");

2 let y = x;

3 - value moved here

4 println!("{}", x);

5 ^ value borrowed here after move

Accessing every value through only a single owner is overly restrictive for most

use cases, so Rust allows values to be borrowed without moving them via references.

There are restrictions on how borrowed values can be used to ensure Rust’s safety

properties always hold, which are also enforced by the compiler. Each value has a

lifetime that defines when it may be borrowed, and attempting to borrow a value

after its lifetime ends will result in a compiler error. There may be any number of

shared references to a value, but while any of those references are live, the value may

not be changed (either by the owner or a borrower). Alternatively, there may be one

mutable reference to a value, via which the value can be modified. When a mutable

reference is taken, the owner temporarily gives up its ability to mutate the value until

the reference’s lifetime ends. These rules ensure that there are never multiple mutable

aliases to the same value.

For example, in the following listing, we create a String on line 1 and take a

mutable reference to it on line 2. x still owns the string, but y temporarily has the

ability to mutate it. On line 4, we attempt to mutate the string via x, but because it
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has been borrowed, this results in the compiler error shown in red.

1 let mut x = String::from("hello, world!");

2 let y = &mut x;

3 ------ first mutable borrow occurs here

4 x.push(’!’);

5 ^ second mutable borrow occurs here

6 y.push(’!’);

7 - first borrow later used here

Although ownership imposes restrictions on developers and is a large part of

why Rust is thought of as having a steep learning curve, it brings significant benefits

as well. For example, it helps prevent data races, since each value can only be owned

and modified by one thread at a time. Since Rust can track the lifetime of each value

via its ownership and borrowing, it can automatically insert calls to free values into

compiled binaries. Rust’s type system also allows for forms of static program analysis

that are difficult in other languages, which we discuss further in §2.5 and Chapter 4.

2.4.2 Generics

Rust generics are similar to C++ templates and Java generics in that they

allow for definitions to be used with different concrete data types. Functions, methods,

struct and enum definitions, and traits can all be generic.

For instance, a linked list storing values of type T can be defined as follows.

In this example, each node owns the next node in the list, and LinkedList instance

owns its own head node. The Option type defines an optional value (since the tail

node will not have a next value), and is itself generic over the type of that value.

1 struct Node<T> {

2 value: T,

3 next: Option<Node<T>>,

4 }

5 struct LinkedList<T> {

6 head: Option<Node<T>>,

7 len: usize,

8 }
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Generic items in Rust are monomorphized during compilation. During mono-

morphization, an instance of the generic item is generated for each concrete type it is

used with. When, e.g., a generic function is called on a concrete type, the compiler

fills in the monomorphized version of the function for that type. The version of the

function to be called in each location is known statically and does not have to be

looked up at runtime. While this increases the size of the compiled binary, it ensures

that Rust generics introduce no runtime performance overhead.

2.4.3 Rust traits

Rust traits are used to define shared behavior between different types. They

are similar to interfaces in Java and abstract classes in C++. Traits can define

required and optional associated functions and methods, as well as associated types

and constants. A type can provide an implementation of a trait to support the

behavior it defines. Many common operations provided by Rust types — for example,

explicitly copying or hashing a value — are implemented as methods of traits that

user-defined types can implement. Trait implementations for user-defined types can

often be generated automatically using macros (§2.4.4). Rust does not have a formal

notion of inheritance, but a trait can be specified as a subtrait of another, which

requires any type implementing the subtrait to also implement the supertrait.

For example, we use a trait similar to the one in the following listing in our

specification of PM in CapybaraKV to describe the key methods, read and write,

we want a region of PM to support. This makesCapybaraKV portable; for example,

it can run on both Linux and Windows, using different backends that both implement

this trait. Note that the trait shown here, while not pseudocode, is significantly

simplified from the version used in CapybaraKV, and we have removed Verus-

specific syntax from the definition.

1 pub trait PersistentMemory {

2 fn read(&self, addr: u64, len: u64) -> Result<Vec<u8>, PmError>;
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3 fn write(&mut self, addr: u64, bytes: &[u8]) -> Result<(),

PmError>;

4 }

Trait bounds. Generic can be restricted via trait bounds, which specify a set of traits

that the given type must implement. This can be used to ensure the type has certain

properties or supports certain methods that will be called on instances of the type.

For example, types used as the keys in a standard library HashMap must implement a

Hash trait that defines how to hash them. (This is a slight oversimplification; the trait

bound specifies that references to keys must be hashable, not the keys themselves,

but the distinction is usually unimportant).

Marker traits. Although the primary function of Rust traits is to define shared

behavior between types, they are also frequently used to specify whether a certain

property holds for a given type without defining any associated functions or types.

Such traits are called marker traits and are defined with an empty body. Marker

traits are frequently used as trait bounds and are often unsafe to implement directly,

to ensure that developers do not erroneously implement them for types they do not

hold for. For example, the standard library Send and Sync traits, which are used

to specify whether a type is safe to send or share between threads respectively, are

marker traits. Most marker traits are either automatically generated for user-defined

types with the property they represent, or have restrictions on when they can be

safely implemented.

2.4.4 Rust macros

Rust has a powerful macro system that allows for sophisticated automated

code generation. It supports two types of macros: declarative macros, which use

a limited grammar to define relatively straightforward code generation rules; and

procedural macros, which support more complex parsing and code generation. Macros

are evaluated and applied during compilation before most checks, including type and
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borrow checking, are run. We briefly describe the two types of macros here, and go

into more detail about how we use procedural macros in CapybaraKV in §5.4.1.1.

2.4.4.1 Declarative macros

Declarative macros define how to translate a given syntactically-valid string

into another. They are declarative in the sense that they specify what translation

should occur without specifying how to perform the translation. The definitions of

declarative macros use different syntax from standard Rust because they are pattern

matching on Rust syntax rather than Rust values. They are generally somewhat

difficult to read as a result, and are primarily used for straightforward translations

of small amounts of code and generating boilerplate. For example, Rust provides a

declarative macro that allows vectors to be created using the same syntax as arrays.

2.4.4.2 Procedural macros

Procedural macros are more powerful than declarative macros because they

allow one to implement custom operations on Rust syntax. This functionality is

implemented in standard Rust functions that take input parsed into a sequence of

tokens and returns a generated output sequence. The macro must output valid Rust

tokens but can otherwise perform any required operations on the input.

There are three types of procedural macros. We briefly describe function-like

macros and attribute macros and go into more depth about derive macros, which

are discussed further in Chapter 5. Procedural macros must be defined in a separate

crate from the project they will be used in, unlike declarative macros that can be

defined anywhere.

Function-like macros. Function-like macros are similar to declarative macros and

are invoked in the same way, but allow arbitrary operations on the input tokens.

Function-like macros replace the code that invokes them.
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Attribute macros. Attribute macros are invoked as annotations on items, such as

structure or function definitions. They take two inputs: tokens that are passed within

the attribute itself and the entire token tree of the item it annotates. Commonly-

used attribute macros provided by the Rust standard library let users label functions

as unit tests for a test harness or specify the in-memory layout of a data structure.

Attribute macros replace the item they annotate.

derive macros. derive macros are invoked using a #[derive(T)] annotation on a

structure and automatically generate an implementation of trait T for that type. They

take a trait to implement and the definition of the implementing structure as inputs.

Unlike function-like and attribute macros, derive macros do not replace the item

they are invoked on, instead inserting the derived implementation after the deriving

type’s definition. Many standard library types have derive macros that provide

default implementations of these traits, but custom implementations can be provided

for most of these traits as well. For example, a commonly derived trait is Debug, which

implements a fmt method that converts a structure into a human-readable string to

print out. Note that derive macros are not limited solely to deriving the specified

traits, as we discuss in Chapter 5; they can insert any arbitrary syntactically-valid

code.

2.5 Formal methods

In this section, we provide background on several techniques from formal meth-

ods used in this dissertation. We discuss these techniques generally here, and go into

more detail about their usage with storage systems in later sections. We compare

them and discuss their theoretical limitations in Chapter 7.

2.5.1 Model checking

Model checking is a technique for checking correctness of the design of a sys-

tem. It can be done in situ, as in eXplode [271], to check the correctness of the
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implementation of a system, but is more commonly used ex situ on a separate model

of the system. Model checking tools like TLA+ [157], Alloy [4], and Spin [112] are

growing in popularity primarily to check properties about production systems [212],

and have successfully been used to identify design flaws in complex distributed pro-

tocols [273].

To model check a system, a developer first writes a model describing the

behavior of the system. Models are structured as abstract state machines in which

transitions are atomic operations between system states. Transitions generally have a

guard condition specifying when they may be taken. A model checking tool explores

possible execution traces on the model from a starting state, usually up to a user-

specified bound. Unbounded model checkers exist, but often impose restrictions on

the model. For example, Alloy supports unbounded checking, but only for models

that do not use integers. The tool checks that user-specified correctness invariants

hold throughout all explored traces; if it finds a reachable state in which one does

not hold, it returns an error together with the counterexample trace that resulted in

that state.

2.5.2 The typestate pattern

The typestate pattern is a design pattern that encodes an object’s runtime

state into its type. This state information can be updated with each operation per-

formed on the object and checked at compile time. Whereas the type of a mutable

value does not change over its lifetime, its runtime state generally does. While an

object’s type defines the set of functions that can be called on it, it does not restrict

when they may be called, even though they may be invalid depending on the state of

the object. The typestate pattern provides a way to further restrict the set of legal

operations on a value to only those that are valid in its current state.

To build intuition about the typestate pattern, we will use a standard example:

keeping track of the current state of a file via a file handle API. Figure 2.2 shows an
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1 struct FileHandle<State> { path: String, ...}

2

3 impl FileHandle<Closed> {

4 fn new() -> Self {...}

5 fn open(self) -> FileHandle<Open> {...}

6 }

7

8 impl FileHandle<Open> {

9 fn close(self) -> FileHandle<Closed> {...}

10 fn read(&self, addr: usize, len: usize) -> String {...}

11 fn write(&self, addr: usize, bytes: &[u8]) {...}

12 }

13

14 fn typestate_check_fail() {

15 let file_handle = FileHandle::new(foo.txt); // FileHandle<Closed>

16 let bytes = file_handle.read(0, 64);

17 ^^^^ method not found in

18 ‘FileHandle<Closed>‘

19 }

Figure 2.2: Typestate example. The listing contains a Rust implementation of a
file handle API with typestate. A file handle’s typestate represents whether it is open
or closed. A file can only be read or written via an open handle.

abbreviated Rust definition of a FileHandle type and several methods. Note that

this example is describing how a userspace program might access a file, not how the

file is managed internally by a file system. We represent the file handle’s state using a

generic type parameter (§2.4.2). Handles can only be created in the closed state, and

the only operation defined for a closed handle is to open it. When the handle is open,

a user may read or write to the file or close the handle. The function typestate -

check fail on line 14 shows an attempt to read a file handle while it is closed. The

file handle is initially created in the closed state, and the read method is not defined

for the type FileHandle<Closed>, so this code does not compile. Note that Rust

can infer all types in this code snippet, including the value of typestate parameters.

The typestate pattern is most useful in languages that impose restrictions on
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aliasing. Specifically, the language must ensure that there is at most one mutable

alias for each value at a time [243]. If we try to track typestate for a value that may

be modified via multiple mutable aliases, an operation on one alias will not update

the typestate of the others. Thus, the value’s typestate will not be guaranteed to

reflect its real runtime state, so compile-time checks will not provide much value to

the developer. We discuss challenges and limitations of the typestate pattern in more

depth in Chapter 7.

2.5.3 Formal verification

A formally verified system is one that has been proven correct with regard to a

specification. To verify a system, a developer writes an implementation, a high-level

specification of correctness, and a set of proofs that the implementation matches the

spec. There are two broad categories of tools used to verify programs: proof assis-

tants (also known as interactive theorem provers) and verification-aware programming

languages. We now provide an overview of these two tool types.

2.5.3.1 Types of verification tools

Proof assistants. Proof assistants such as Rocq [226] (formerly known as Coq),

Lean [203], and Isabelle/HOL [123] are highly-interactive tools for constructing and

checking logical and mathematical proofs. These tools present languages and inter-

faces that allow a user to guide the system through the process of searching for a

proof [106]. They are based on type theories in which proofs can be verified en-

tirely via type checking [13, 225]. Proof assistants have been used to verify software

systems, including OS kernels [5, 40, 100, 147, 173], as well as to formalize and check

mathematical theorems like the Four-Color Theorem [89].

Proof assistants provide a high degree of flexibility and expressivity, which

enable users to reason about a wide variety of arbitrary features and semantics using

custom logics [29]. This comes at the cost of automation and simplicity; most proof
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assistants are known to have a steep learning curve and writing proofs requires a

significant amount of manual effort. For example, it took 11 person-years to write

proofs for the seL4 kernel [148]. Obtaining an executable from a program verified

by a proof assistant is generally not straightforward. Building seL4 involved writing

a formal semantics for a subset of C so that the implementation could be reasoned

about in Isabelle [148]. Some systems, such as the verified file system FSCQ [40],

are written entirely in a proof-assistant-provided language and then extracted to a

functional language (e.g., Haskell for FSCQ). Recent work on projects like Goose [31],

which translates Go code into Coq for verification, have made bridging this gap easier.

Verification-aware programming languages. Verification-aware programming

languages like Dafny [171], F* [245], and Verus [163,164] support formal specifications

and proofs of executable implementations in a single language. Programs written in

these languages can be compiled, either to another general-purpose language like Java

or C, or directly to an executable using an existing language’s compiler. These tools

are usually based on Hoare logic [77,111], in which each function is annotated with a

precondition that must hold when the function is called and a postcondition that must

hold when it returns. The verifier checks that the preconditions and postconditions

of each function in the program always hold.

These languages verify programs by automatically translating code into queries

to an underlying solver, often an SMT (satisfiability modulo theories) solver such as

Z3 [59] or CVC5 [17]. These solvers generalize the Boolean satisfiability problem

to determine whether more complex formulas including, e.g., integer arithmetic and

operations on arrays, are satisfiable [59]. Whether these queries are satisfiable (or

if the solver can determine satisfiability at all) is used to prove or disprove program

correctness.

Verification-aware languages generally provide a higher degree of automation

than proof assistants, at the cost of reduced flexibility and expressivity. They are

limited to reasoning using built-in logics and the language’s own semantics. How-
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ever, they still require developers to write proof code, often 6 − 10× the amount of

implementation code, to help the underlying solver prove correctness [5,40,104,148].

Since these languages can be compiled to other low-level languages (or are built on

top of existing languages [10,61,164]), they can be easier to use in practice to ensure

the correctness of critical systems without sacrificing performance. One of the most

mature verification-aware languages, Dafny [171], is used in production at Amazon

Web Services [35,36,190].

2.5.3.2 Rust verifiers

There has been a flurry of recent research on formally verifying Rust programs.

This work has targeted Rust because its strong static type system can simplify verifi-

cation for both developers of verified programs and verification tools. We now provide

a brief overview of recent Rust verification tools.

Verus. Verus [163, 164] is the primary Rust verification tool discussed in this dis-

sertation. It uses a set of macros to add a specification language to Rust and uses

an SMT solver backend to dispatch verification conditions. Verus relies on the Rust

compiler’s ownership and borrow checking to facilitate heap reasoning, and extends

these checks to ghost code. Verus is aimed primarily at verifying low-level systems

and supports verification of concurrent programs, additional forms of automation,

and custom support for common systems idioms like bit manipulation to achieve this

goal. Recent work has shown that Verus outperforms many other verifiers, includ-

ing Rust-based tools, on several verification-time benchmarks [163]. It has also been

used to build verified systems that achieve competitive performance with unverified

systems [163]. CapybaraKV, introduced in Chapter 5, is built in Verus. An early

version of its log component is discussed as a case study by Lattuada et al. [163].

Creusot. Creusot [61] is an SMT-solver based verifier for Rust programs. Like

Verus, it relies on the Rust compiler to check ownership and aliasing properties that

are difficult to verify. It also uses procedural macros to build on Rust with a specifi-
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cation language for expressing, e.g., preconditions and postconditions. Unlike Verus,

it does not support ownership and borrow checking in ghost code and cannot verify

concurrent programs.

Prusti. Prusti [10] is another SMT-based Rust verifier. It is based on the Viper [204]

verification tool, which provides a general interface and intermediate representation

between multiple front-end languages and backend solvers. Unlike Verus and Creusot,

Prusti does not offload reasoning to the Rust compiler; instead, it re-verifies ownership

properties using Viper’s separation logic support.

Aeneas. Aeneas [1, 110] is a tool that translates programs written in a subset of

Rust into a functional language for verification in a proof assistant like Rocq or

Lean. Developers write the original program in Rust and verify it in a different

language. Aeneas takes advantage of the observation that programs in their targeted

subset of Rust can be translated into a pure functional equivalent thanks to Rust’s

static type system. It supports backends to translate Rust code into one of several

proof assistant-supported functional languages in order to verify it. It is unable to

verify code involving unsafe Rust or interior mutabililty (a common pattern in which

ownership is managed at runtime).

RustBelt. RustBelt [128] aims to model part of the Rust language in order to

prove that it is sound. It focuses on verifying unsafe Rust, a part of the language

in which some restrictions are lifted at the cost of some safety guarantees. Much of

Rust’s standard library uses unsafe code internally, and the language-provided safety

properties rely on this code being correct. Most external crates (Rust’s term for

libraries) use little to no unsafe code [11], but those that do also depend on it being

correct to provide safety guarantees. The developers of RustBelt formally modeled

part of Rust in Rocq and proved that several components of the standard library and

popular external libraries are safe according to their model.

Kani. Kani [137] is a model-checking tool for Rust programs. Like RustBelt, Kani
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focuses on checking safety properties in unsafe Rust, but can also check more general

user-specified properties via assertions. Kani is a crate that can be imported as a

dependency and used by other Rust projects. For example, it was used to check

particularly critical properties in Firecracker [154]. Since Kani uses bounded model

checking, it cannot guarantee full verification in many cases.

2.6 Summary

In this chapter, we introduce key concepts for understanding the rest of this

dissertation. We first discuss persistent memory (PM), the storage technology at the

center of this dissertation, and provide an overview of the performance characteristics

and programming model of existing hardware. We also describe different types of

applications that use PM and compare them to traditional storage systems. We next

discuss the problem of crash consistency and describe techniques used in current

storage systems and related research to build crash-safe systems. We introduce data

corruption as another problem storage systems must solve in order to be robust,

and discuss how current storage systems detect it. Next, we describe key features

of the Rust programming language relevant to this dissertation. Finally, we discuss

techniques from formal methods used in this dissertation, including model checking

and formal verification. We also provide an overview of recent work on Rust-based

verification tools.
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Chapter 3: Crash consistency in PM file systems

Work on PM file systems has produced a diverse set of systems with new crash-

consistency specifications and architectures, including in-kernel [69, 132, 266, 267],

kernel-bypass [8, 66, 155], and hybrid systems [133]. These systems have introduced

new architectures that differ significantly from the standard design practices of tra-

ditional storage systems, as discussed in §2.1.5. In order to build robust PM storage

systems, we first need to understand the key causes of crash-consistency bugs in these

systems. This chapter presents Chipmunk, a record-and-replay framework for test-

ing the crash consistency of PM file systems. Using Chipmunk, we found 23 new

crash-consistency bugs in five PM file systems. We analyze these bugs to obtain useful

insights about PM file system design and efficient crash-consistency testing of these

systems, which inspired the other projects described in this dissertation.

In §3.1, we motivate the need for a new tool to test PM file systems. In §3.2,

we describe the challenges addressed by Chipmunk, the design and implementation

of the tool, and our methods for workload generation. In §3.3, we describe how we

tested PM file systems using Chipmunk and present the bugs that were found. In

§3.4, we distill these bugs into a set of observations about how PM crash-consistency

bugs arise and lessons for future testing and system design work.

This chapter is based on the paper Chipmunk: Investigating Crash-Consistency

in Persistent-Memory File Systems published in EuroSys 2023 [166].

3.1 Motivation

Research on PM file systems has produced a variety of new systems that

take advantage of PM’s unique characteristics. PMFS [69], NOVA [266], NOVA-

Fortis [267], and WineFS [132] are implemented in the kernel. Strata [155], Assise [8],

and SplitFS [133] are implemented as kernel-bypass systems. Strata and Assise are
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implemented entirely in user space, while SplitFS handles file data in user space

and passes metadata operations to a kernel component. As described in §2.1.5, the

design of these PM file systems differs significantly from that of traditional file sys-

tems. In particular, these systems do not require fsync for durability, so we say

that they have strong crash-consistency guarantees. Several systems (ext4-DAX and

XFS-DAX [177]) are based on existing disk-based file systems. These systems share

much of their code with their original implementations and have the same weak crash-

consistency guarantees.

Why current tools are not enough. Existing work on crash-consistency testing

is insufficient for today’s PM file systems for four reasons. First, prior work on

testing disk-based file systems cannot record writes to PM. CrashMonkey [201] and

Hydra [143], two state-of-the-art tools for testing traditional file systems, rely on the

kernel block layer to record disk I/O. Since PM file systems do not use the block layer,

these tools are incapable of intercepting writes made by these systems. Second, these

tools do not check all necessary crash states. CrashMonkey and Hydra only insert

crashes after fsync-related system calls. Injecting crashes during system calls is

crucial for exposing bugs in the complex and untested crash-consistency mechanisms

of PM file systems. Furthermore, the consistency checkers for these tools would need

to be rewritten to properly check these crash states.

Third, tools for testing PM file systems do not scale well. Yat [161], PMTest [183],

and Vinter [135] record individual PM I/O instructions, resulting in a high number

of instrumentation points. Vinter uses PANDA [65] for dynamic binary instrumen-

tation, which introduces significant overhead. Yat records individual memory stores

using a modified hypervisor and has limited optimizations to focus on interesting

crash states. Its authors report that it would take over 5 years to fully check one of

their three test workloads.

Fourth, prior work on testing general PM applications cannot test high-level

crash-consistency properties of file systems. These tools focus on PM programming
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Figure 3.1: Chipmunk architecture. Given a target file system and its persistence
functions, Chipmunk uses workloads from both ACE and Syzkaller to test the file
system. Chipmunk produces bug reports with enough detail to reproduce the bug.

errors, like missing or unnecessary cache-line flushes and store fences [63, 96, 121,

181–183]. Several tools [82, 210] can detect narrow classes of logic bugs — for ex-

ample, that certain fine-grained updates are atomic — with hard-coded checks or

developer-provided oracles. We are interested in checking higher-level crash consis-

tency guarantees without requiring specifications from developers, so these tools are

not sufficient.

3.2 Chipmunk

In this section, we describe Chipmunk, a framework to find crash consistency

bugs in PM file systems. Chipmunk tackles the challenges outlined in §3.1 with

function-level interception and a new testing strategy tailored to PM file systems.

Chipmunk can test all PM file systems implementing POSIX, and requires no modi-

fication of file system code. We have run Chipmunk on file systems in both user and

kernel space.
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3.2.1 Overview

Chipmunk is a record-and-replay framework. It first runs a given workload

(a sequence of file-system operations) and records the writes made by the file system.

Workloads are run sequentially, so there is only one system call running on the file

system at any given time. It then replays recorded writes to create crash images,

which represent the state of the system if it had crashed at different points during

the workload. Chipmunk mounts the target file system on the crash image, lets it

recover, and then checks whether it has recovered to a consistent state.

We use two tools to generate workloads for Chipmunk to test. The ACE

workload generator is based on a hypothesis from the CrashMonkey work [201] that

testing small workloads on a newly-created file system is effective at finding crash-

consistency bugs. To determine if this hypothesis holds for PM file systems, we also

use the Syzkaller [95] gray-box fuzzer to generate long, complicated workloads.

We used Chipmunk to test seven file systems: six in-kernel systems and

one hybrid system with both user and kernel components. There were no publicly-

available user-space PM file systems that supported recovery from arbitrary crashes

when this work was originally published (§3.3.1).

3.2.2 Challenges

In order to effectively test PM file systems, Chipmunk must overcome three

key challenges: how to intercept writes, how to deal with new crash-consistency se-

mantics, and how to deal with very large sets of crash states. We describe each

challenge and outline the empirical observations and design decisions that allow Chip-

munk to discover many bugs in PM file systems.

Intercepting writes. Prior work on testing file-system crash consistency has taken

a black-box approach to recording writes to storage media. Yat [161] uses a modified

hypervisor that triggers a VM exit on stores, flushes, and fences to PM, PMTest [183]
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uses the tracking mechanism provided by WHISPER [208] to trace these instruc-

tions, and Vinter [135] uses dynamic binary instrumentation in PANDA [65]. These

approaches introduce overheads associated with the instrumentation tools and a high

number of instrumentation points.

CrashMonkey [201] and Hydra [143], two state-of-the-art tools for testing

crash-consistency in traditional file systems, also use a black-box approach based

on the Linux kernel’s block layer. The file systems they target issue all writes to

storage via this layer, so it provides a natural interception point. However, since

PM file systems do not use this layer, we cannot use this approach to log writes in

Chipmunk.

Instead, Chipmunk uses gray-box function-level instrumentation to intercept

writes to PM. Each PM file system we examined uses a small set of centralized

persistence functions to perform I/O. These abstractions simplify reasoning about

PM semantics and potentially enable portability to new architectures. All tested

systems implement functions for some subset of the following: non-temporal memcpy,

non-temporal memset, flushing cache lines associated with a buffer, and issuing store

fences. Each of these operations handles a single, contiguous non-temporal store, a

contiguous set of cache line flushes, or enforces store ordering. Chipmunk is not

limited to recording just this set of functions; a system’s logger can be written to

handle other types of persistence functions, if, for example, the system is designed

for another persistence model.

Chipmunk requires developers to provide the names of centralized persistence

functions; it then instruments these functions at runtime using the Kprobes [178] and

Uprobes [179] debugging mechanisms in the Linux kernel. This gray-box approach

to recording writes has multiple benefits. It makes logging feasible without requiring

source code modification, and it makes Chipmunk portable to new PM architectures

since the semantics of x86 PM primitives are not built into the recording code. It

also enables Chipmunk to encode information about the context in which a write
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was made and use it during consistency checking.

New crash-consistency semantics. In traditional file systems, if a user wants to

ensure that a specific file or set of files is persistent on disk, they must call an fsync-

related system call to flush updates from the volatile page cache to the storage media.

Since crash-consistency guarantees are not well-defined if the system crashes prior to

such system calls, and the journaling mechanisms that handle incomplete updates

are very mature, systems like CrashMonkey and Hydra only insert crash points after

fsync-related calls.

However, PM file systems with strong crash consistency specs clearly define the

correct state of each file at every point during execution, not just after fsync. These

systems guarantee that most operations are both synchronous and atomic. To test

the novel, complex, and untested crash-consistency mechanisms of PM file systems,

Chipmunk must inject crashes during system calls (and not just after fsync). We

developed a new testing strategy and set of consistency checks (§3.2.3) to handle these

new crash points for systems with strong guarantees. Chipmunk coalesces logically-

related non-temporal stores and flushes (e.g., those all associated with the same file

data write) and replays them in different combinations to focus on interesting crash

states. It uses an oracle-based checker that compares the post-crash state of each file

to a set of possible legal states.

Increased number of crash states. PM file systems with strong crash consistency

make fine-grained writes to storage media in the critical path of system calls. As a

result, a workload can result in significantly more crash states that are interesting to

test than in systems with weaker guarantees. Specifically, if the number of in-flight

writes between each store fence is too high, the number of possible crash states to

check will explode to an intractable number.

We studied five systems with strong guarantees and made two observations

that we use to overcome this challenge. First, when PM file systems perform metadata

operations, they issue a small number of small writes to PM with frequent store fences.
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We found that the average number of in-flight writes for metadata operations is three

and the maximum is 10 in the tested systems. This means that at any given crash

point in metadata-related system calls, the number of crash states is small enough to

test exhaustively. Second, although file data operations often involve many in-flight

writes with few store fences, checking every possible crash state is unlikely to expose

new bugs. We want to check how the file system recovers when some file data is lost

in a crash, but it is unnecessary to check every possible state. Chipmunk coalesces

data associated with the same file data update into a single write, and checks only a

small subset of states with missing data. Metadata about the size of buffers and how

they are written guides this heuristic; for example, non-temporal memcpy on a large

buffer usually indicates a file data write.

3.2.3 Chipmunk Architecture

Chipmunk is built on top of the CrashMonkey framework [201]. CrashMonkey

consists of a set of user space utilities, a block device wrapper kernel module that

intercepts writes, and a copy-on-write device to facilitate constructing file system

snapshots. We adapt CrashMonkey’s user space utilities to target PM file systems

and build new kernel modules based on Kprobes and Uprobes, two Linux kernel

debugging utilities, to record writes to PM.

Given a workload and a target file system, Chipmunk proceeds in four steps

(Figure 3.2): (1) run the workload and log the writes made by the file system; (2)

construct crash states; (3) check each crash state; and (4) generate a bug report if

required. We now describe these steps in detail.

Logging writes. Chipmunk uses two dynamic debugging and tracing tools, Kprobes

[178] (for in-kernel file system components) and Uprobes [179] (for user space com-

ponents), to automatically instrument centralized persistence functions at runtime.

Our logging modules only require the name (for kernel space components) or offset

(for user space object files) of these functions in order to instrument them. Kprobes
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rename(old, new)

write: deleting old 

write: tx begin 

write: creating new 

write: tx end

write: deleting old 

write: tx begin 

write: creating new 

write: tx end

Crash State 
with neither old or new

WORKLOAD

Sequence of writes

Creating a crash state  
with only 

first write applied

Bug Report: rename 
not atomic

1

2

3

4

Figure 3.2: Chipmunk workflow. The figure shows how crash consistency is tested
using a rename() workload. In this example, the old file being deleted is updated
in-place, while the new file creation happens inside a transaction. 1) Chipmunk runs
the workload and logs a sequence of PM operations. For simplicity, the operation
has been reduced to a sequence of four logical writes. 2) Chipmunk creates a crash
state where only the old file is deleted; the other writes are lost. 3) The consistency
checker finds that both the old and new files are missing. 4) Chipmunk creates a
bug report. Chipmunk discovered this bug in NOVA (bug 4).
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and Uprobes are used together in the same logging module to test SplitFS.

Kprobes and Uprobes make a copy of a probed instruction and replace the

first byte(s) with a breakpoint instruction. When the breakpoint is hit, control is

passed to a handler function. In Chipmunk’s loggers, these handlers record the

probed operation and its arguments. The destination of each update is translated

from a virtual to physical address within the logging module to facilitate later replay.

The user-space test harness also inserts markers into this log to record the start and

end of each system call, which Chipmunk uses to determine which writes to PM

are associated with each system call. This approach requires no code changes to

the file-system implementation other than to prevent the compiler from inlining the

persistence functions. In our experience, identifying these functions was simple, and

we expect it to be even simpler for file-system developers since these functions are

used extremely frequently.

Constructing crash states. Given a workload and a file system to test, Chipmunk

selects crash points based on the crash consistency guarantees of the file system and

simulates crashes at these points. For ext4-DAX and XFS-DAX, crash points are

placed after fsync, sync, and fdatasync calls. For the other systems, crash points

are injected after each store fence invoked by the file system. A single system call

may perform multiple store fences, resulting in multiple crash points per system call.

We construct and create possible crash states out of the in-flight writes that follow

each store fence. This process checks crash states that occur both during and between

system calls.

Chipmunk replays a workload by walking through the log of flushes, non-

temporal stores, and fences. When it encounters a cache line flush or non-temporal

store, it adds a structure containing the type, contents, and destination address of the

flush/store to an in-flight vector. When it encounters a store fence, it first constructs

and checks crash states based on the in-flight vector, then flushes the contents of the

vector to the replay device. Each crash state is constructed by replaying a subset of
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the contents of the in-flight vector on top of all updates that precede the most recent

store fence, which are guaranteed to be persistent. We replay the updates in each

subset in program order. For n in-flight writes, there will be 2n − 1 crash states to

check. As noted in §4.3.3, we have observed that n is small in practice for metadata-

related calls, allowing Chipmunk to apply this exhaustive testing strategy. File data

writes do not adhere to this pattern but can be coalesced into a small set of large

writes. Since a small number of in-flight writes is not a guarantee, Chipmunk can

place a configurable cap on the number of writes to replay. We find that in practice,

even a cap of two writes is sufficient to reveal many bugs (§3.4.1).

Testing crash states. To check file-system consistency, Chipmunk first mounts the

target file system on each crash state, which is itself a useful consistency check. Once

successfully mounted, Chipmunk compares the file-system state against an oracle

representing valid post-crash state(s). The oracle runs the original workload on a

fresh file system instance in parallel with log replay. When Chipmunk encounters

the beginning of a new system call in the log, it records the current oracle state of

file(s) that will be modified, then executes that system call on the oracle file system.

Files in a crash state are compared against an oracle version of the file by checking

whether metadata provided by stat differs between the two versions. For regular files,

Chipmunk also compares the contents of each version. For directories, Chipmunk

compares the directory entries of each version. Several crash states may be compared

to the same few oracle states, so Chipmunk caches the metadata and contents for

each oracle file version in memory.

Most system calls in file systems with strong guarantees are intended to be

atomic. The main exception is write, although many systems provide the option to

make write atomic. Further, all system calls are synchronous, in that modifications to

persistent data are made durable by the time each system call completes. Chipmunk

focuses on checking these atomicity and synchrony properties.

When a crash is injected in the middle of a system call, Chipmunk checks
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that the operation is atomic by comparing modified files in the crash state to the

current and previous oracle versions. If the operation modifies multiple files, the

files must all match the same version. When a crash is injected after a system call,

Chipmunk checks that the system call is synchronous by comparing the crash state

against the current oracle state. Chipmunk also confirms that files that should be

unmodified by the current system call match the current oracle state in each crash

state. These checks validate properties implied by POSIX or widely expected by

users in practice [25,215]. Finally, to validate that the file system is in a usable state,

Chipmunk creates files in all directories, then deletes all files. If any of these checks

or operations fail, Chipmunk outputs a bug report describing the inconsistency and

the corresponding crash state.

Because the consistency checks mutate the crash state, we reuse our logging

infrastructure to record an undo log for these mutations and roll back the changes

when advancing to the next crash state.

3.2.4 Workload Generation

Given a workload, Chipmunk generates crash states and tests them for con-

sistency. An orthogonal challenge is generating workloads for Chipmunk to test. The

CrashMonkey work [201] introduced the hypothesis that small workloads on new file

systems are useful in finding crash-consistency bugs. While this hypothesis was true

on traditional file systems, we aim to test whether it holds on PM file systems. To this

end, we modify CrashMonkey’s Automated Crash Explorer (ACE), which systemat-

ically explores workloads of a given size, to work with Chipmunk. We also modify

the Syzkaller [95] gray-box fuzzer to work with Chipmunk. Syzkaller generates long,

complex, randomized workloads while aiming to improve code coverage.
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3.2.4.1 Automatic Crash Explorer

We used a modified version of ACE [201] to systematically generate workloads.

ACE was designed to exhaustively generate workloads of a pre-defined structure to

test traditional file systems. Given a sequence length n, ACE generates workloads

with n core file-system operations over a small, predetermined set of files, then sat-

isfies dependencies by opening and closing files and adds fsync, fdatasync, or sync

operations. A workload with n core system calls is called a “seq-n” workload.

We use a slightly modified version of ACE’s default mode, which inserts at

least one fsync-family operation in each workload, for ext4-DAX and XFS-DAX.

We also added a mode that does not insert these calls for the other systems.

We test all seq-1 and seq-2 workloads, as well as the subset of seq-3 workloads

containing only pwrite, link, unlink, and rename calls (i.e. “seq-3 metadata” work-

loads [201]) to make testing tractable. For PM file systems with strong consistency,

we generate 56 seq-1 tests, 3136 seq-2 tests, and 50650 seq-3 metadata tests. The

default mode generates 419 seq-1 tests and 432462 seq-2 tests; we did not run seq-3

metadata tests on ext4-DAX and XFS-DAX.

3.2.4.2 Syzkaller

We modify Syzkaller [95], a state-of-the-art gray-box kernel fuzzer, to generate

workloads for Chipmunk.1 As is standard in gray-box fuzzing, our fuzzer starts

with an initial set of test cases (seeds) and uses genetic programming to generate

new tests for Chipmunk from those seeds. As Chipmunk executes each workload,

Syzkaller collects code coverage information by recording coverage points inserted by

the compiler. If the workload covered new parts of the kernel, the fuzzer adds it to

its set of seeds and generates new workloads from it.

Syzkaller generates workloads by randomly selecting sequences of system calls

1Shankara Pailoor contributed to the integration of Syzkaller with Chipmunk.
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and argument values. It generates syntactically and semantically valid workloads by

using a detailed template for each system call that specifies more precise qualified

type information [45] for the call’s arguments. For example, the template for write

specifies that its first argument is a valid file descriptor in use by the program, rather

than an arbitrary integer.

To adapt Syzkaller to our setting, we restrict it to only generate workloads that

contain file-system operations, and replace its workload executor with a custom one.

Our executor invokes Chipmunk on each workload and records code coverage both

before the crash and during recovery. For PM file systems with strong consistency,

we add crash points between each system call and in the middle of the final non-

failing system call in the workload. For ext4-DAX and XFS-DAX, we include fsync,

sync, and fdatasync in workloads and check crash states after each call to one of

these system calls. We add a sync at the end of each workload to make sure we

check at least one crash state. Since Syzkaller is a kernel fuzzer, and we are primarily

interested in collecting coverage on SplitFS’s user space component, we use GCC’s

sanitizer coverage instrumentation to collect code coverage [79] and modify Syzkaller

to use this coverage information. This required adding some code to SplitFS to log the

basic blocks covered during fuzzing, but did not require modification of any existing

code. We do not collect code coverage of SplitFS’s kernel component.

Like many fuzzers, Syzkaller can quickly generate many bug reports that are

duplicates. In our setting, this duplication also arises when multiple crash states

trigger the same bug. To address this problem, we extended Syzkaller to automatically

triage bug reports generated by Chipmunk during fuzzing. We use a simple triaging

procedure that clusters bug reports by lexical similarity. We also updated Syzkaller

to display these bug report clusters in its UI dashboard to make them easier for users

to debug.
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3.2.5 Implementation

Although Chipmunk was originally based on CrashMonkey, the two systems

diverged early in development and most of Chipmunk’s core code is new. Chip-

munk has twice as much code dedicated to constructing and checking crash states as

CrashMonkey. The increase in test harness size primarily comes from the complexity

of PM write semantics when constructing crash states, the need to associate each

logged write operation with the system call that issued it, and a much more complex

set of consistency checks that account for the semantics of each tested system call in

different file systems. We also wrote new code to track oracle state for the consistency

checks, as CrashMonkey’s was insufficient for checks outside of fsync-related calls.

Running SplitFS also required further modification to be made to the test harness,

since it requires its object files to be dynamically linked to the test harness at run-

time.2 About 2000 LOC in Chipmunk’s core testing infrastructure comes from a

Syzkaller-specific test harness that executes fuzzer-generated tests. The only parts

of CrashMonkey that remained largely unchanged were the code that loads and runs

ACE-generated tests and some functions related to recording the system calls in a

workload.

Chipmunk’s core testing infrastructure consists of about 9000 lines of C++

code as reported by sloccount. Five system-specific logger modules add about 1000

lines of C code each (several similar systems share modules). We also added about

1000 lines of Go to Syzkaller to handle crash consistency tests and to collect coverage

when remounting crash states.

3.2.6 Discussion

Limitations. We made certain design decisions to make testing PM file systems

for crash consistency tractable. However, it is possible that these choices may cause

2Om Saran K R E helped add support for SplitFS to Chipmunk.
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Chipmunk to miss some bugs or limit its ability to test some file systems. First,

Chipmunk cannot test every workload, and does not test all possible crash states

for each workload. Second, Chipmunk assumes that the PM file system has central-

ized persistence functions. A PM file system that uses in-line assembly or macros to

update PM would not be compatible with Chipmunk. Third, Chipmunk does not

currently support checking concurrent workloads. Testing crash consistency for con-

current workloads is a hard problem [78,207] that prior tools do not support. While

supporting concurrent workloads could expose more bugs, it is out of the scope of

this paper, and we leave it as future work.

Despite these limitations, we believe thatChipmunk is a useful addition to the

set of tools for building robust PM file systems. In particular, the level of automation

provided by Chipmunk allows developers to test new or in-development PM file

systems efficiently.

Persistence models. Chipmunk is implemented for x86’s epoch-based persistence

model, which at the time of writing was available on Intel’s Optane DC Persistent

Memory Module. Since then, Intel has cancelled their Optane project. However,

other hardware vendors have announced similar byte-addressable persistent storage

devices [72,109,145,251], which are expected to use the same persistence model [230].

Because Chipmunk logs writes at the function level and runs checks on real

file-system images, its techniques are not tied to any persistence model. Adding

support for a new model would involve implementing its semantics in Chipmunk’s

replay logic and logger modules, but the rest of the framework would remain the

same. Since the high-level operations governed by primitives in different persistence

models are broadly similar, these changes should be straightforward. We expect that

file systems for new models will use centralized persistence functions as the preferred

abstraction for writing data to durable storage for portability and simplicity.

Furthermore, our bug analysis shows that many bugs are caused by logic er-

rors rather than PM programming errors. Logic bugs will continue to occur across
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persistence models, and we expect Chipmunk would be a valuable tool for testing

file systems built for a variety of persistence models.

Code coverage. Although Chipmunk is not intended to be complete and achieving

high code coverage metrics was not a goal of this work, our results indicate that using

ACE and Syzkaller to generate workloads enables thorough testing of important file

system features. Our workload generation strategy, which focuses on testing common

file system operations, was effective at exposing many new crash-consistency bugs in

the tested systems. For long-running tests, Chipmunk could be paired with tools

like OSS-Fuzz [94] to focus on high code coverage.

3.3 Testing PM File Systems

In this section, we evaluate Chipmunk’s effectiveness at finding bugs across

different PM file systems.

3.3.1 Methodology

File systems. We ranChipmunk with seven open-source PM file systems: NOVA [266],

NOVA-Fortis [267], PMFS [69], WineFS [132], SplitFS [133], and ext4-DAX and XFS-

DAX [177]. NOVA, NOVA-Fortis, PMFS, WineFS, and SplitFS in strict mode have

strong crash-consistency guarantees, so Chipmunk inserts crash points both during

and after system calls when testing these systems. Ext4-DAX and XFS-DAX have

weak guarantees, so Chipmunk only inserts crash points after fsync-related system

calls when testing them. Chipmunk is compatible with Strata and Assise as well,

but we learned after communication with authors that neither system’s current ar-

tifact supports recovery from arbitrary crashes, so we were unable to proceed with

evaluation on these systems. We have also tested SquirrelFS using Chipmunk and

discuss the results in Chapter 4.

System calls. We select a set of system calls to test based on what is supported by
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each file system and what crash consistency guarantees they provide. We focused on

ten key operations: creat, mkdir, fallocate, write, link, unlink, remove, rename,

truncate, and rmdir. Tests run on ext4-DAX and XFS-DAX also include setxattr

and removexattr, which are not supported by the other systems we tested. All tests

also include open and close as necessary, and tests on ext4-DAX and XFS-DAX use

at least one of fsync, fdatasync, or sync to ensure that data becomes persistent.

We did not test mmap with Chipmunk, as modifications to memory-mapped regions

are not handled via centralized persistence functions and a number of other tools have

been built to target the crash-consistency of memory-mapped data (§6.2.3).

3.3.2 Experimental setup

Test infrastructure. All experiments described in this paper were run on QE-

MU/KVM virtual machines running Debian Stretch. Each VM is allocated one CPU

(except for those testing WineFS, which requires four CPUs) and 8 GB of RAM (ex-

cept for those testing SplitFS, which requires 32GB). Each VM also has two 128 MB

emulated PM devices, which are used to execute the workload, construct the oracle

file system, and check crash states.

We run ACE-generated workloads on a single Amazon EC2 m5d.metal instance

with 96 vCPUs, 384 GB memory, and four 900 GB NVMe SSDs. We use these

resources to check multiple file systems using workloads of multiple sequence lengths

in parallel. For the systems with strong crash consistency, we ran seq-1 and seq-2

tests on individual VMs, as the number of tests to run was relatively small. We split

seq-3 metadata workloads across 10 VMs and ran them in parallel. At the time we

ran these experiments, WineFS and SplitFS both had bugs that prevented many seq-

3 tests from running. The number of in-flight writes at any time during ACE tests

is consistently low, so we do not place a cap on the number of crash states for ACE.

For ext4-DAX and XFS-DAX, we ran seq-1 tests on an individual VM and split seq-2

tests across 20 VMs. We were unable to run seq-3 metadata tests on these systems
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due to time constraints.

To evaluate Chipmunk with Syzkaller, we ran seven Chameleon Cloud [142]

bare metal instances, which have two Intel Xeon Gold 6240R CPUs each with 24 cores

and 48 threads, as well as 192 GB RAM, and 480 GB storage. Each host fuzzed a

different file system using 15 virtual machines. Each fuzzer starts with an empty set

of seeds. Syzkaller-generated tests can be long and generate many crash states, so to

avoid the fuzzer getting stuck, we run Chipmunk with a cap of two writes per crash

state; as §3.4.1.2 observes, this cap does not affect its ability to find bugs in practice.

3.3.3 Evaluation

ACE tests. For each file system under test, Chipmunk took less than 1 hour to

run seq-1 workloads on a single VM. Running these tests on NOVA/NOVA-Fortis,

PMFS, and WineFS takes less than 15 minutes. Seq-2 tests take 7–20 hours on the

PM file systems with strong consistency. It takes about 30 hours for all seq-2 tests

to finish running on ext4-DAX and XFS-DAX when using 20 VMs in parallel. For

systems tested on seq-3 workloads, it took 16–26 hours to run them in parallel on 10

VMs. The number of crash states to check on each workload varies as much as 3×
between file systems, with PMFS generally checking the most and WineFS checking

the fewest. Overall, Chipmunk found 19 bugs using ACE tests across five of the

tested systems.

Syzkaller. We ran Chipmunk with Syzkaller for 18 hours on 15 VMs, for a total

of 270 CPU hours spent fuzzing each system. During this time, Chipmunk checked

over 40 million crash states across all tested systems, finding 23 unique bugs. Four

of these bugs cannot be found with ACE-generated workloads.

Comparison. We ran Syzkaller and ACE on each file system and recorded the

cumulative CPU time taken to find all bugs when using each workload generator.

Figure 3.3 shows the result of this experiment. ACE finds the first 19 out of 23

bugs in less than three CPU hours total, but is unable to find the final four bugs.
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Figure 3.3: File system testing. The figure shows cumulative time taken to find
crash-consistency bugs by ACE and Syzkaller.

Aside from a couple bugs that Syzkaller and ACE workloads both trigger almost

immediately, Syzkaller takes almost 20× more CPU time than ACE to find the first

12 bugs and almost 6× more CPU time to find all bugs exposed by ACE. However,

when we let Syzkaller run for an additional 47 CPU hours, it is able to find four

bugs that are not detected by ACE. ACE misses these bugs because they do not

conform to the patterns that it uses to generate workloads. For example, two of these

bugs create two open file descriptors to the same file and modify the file’s contents

through both file descriptors. ACE workloads do not open multiple file descriptors

for the same file and thus cannot trigger these bugs.

While the results of this experiment indicate that Syzkaller has greater over-

all bug finding capability than ACE, the ACE tests are considerably more resource

efficient. This suggests that the ACE tests can be run locally to find bugs during

file-system development, whereas Syzkaller should be run for a long time in an en-

vironment with ample compute resources for more comprehensive crash-consistency

testing.
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Bug # File System Consequence Affected system calls Type

1 NOVA File system unmountable All Logic
2 NOVA File is unreadable and un-

deletable
mkdir, creat PM

3 NOVA File system unmountable write, pwrite,

link, unlink,

rename

Logic

4 NOVA Rename atomicity broken
(file disappears)

rename Logic

5 NOVA Rename atomicity broken
(old file still present)

rename Logic

6 NOVA Link count incremented be-
fore new file appears

link Logic

7 NOVA File data lost truncate Logic
8 NOVA File data lost fallocate Logic
9 NOVA-Fortis Unreadable directory or file

data loss
unlink, rmdir,

truncate

PM

10 NOVA-Fortis File is undeletable write, pwrite,

link, rename

Logic

11 NOVA-Fortis FS attempts to deallocate
free blocks

truncate Logic

12 NOVA-Fortis File is unreadable truncate Logic
13 PMFS File system unmountable truncate, unlink,

rmdir, rename

Logic

14 & 15 PMFS, WineFS Write is not synchronous write, pwrite PM
16 PMFS Out-of-bounds memory ac-

cess
All Logic

17 & 18 PMFS, WineFS File data lost write, pwrite PM
19 WineFS File is unreadable and un-

deletable
All Logic

20 WineFS Data write is not atomic in
strict mode

write, pwrite Logic

21 SplitFS Operation is not syn-
chronous

All metadata Logic

22 SplitFS File data lost write, pwrite Logic
23 SplitFS File data lost write, pwrite Logic
24 SplitFS Operation is not syn-

chronous
All Logic

25 SplitFS Rename atomicity broken
(old file still present)

rename Logic

Table 3.1: Crash-consistency bugs. The table lists bugs found by Chipmunk,
their consequences, and the system calls that they affect.
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3.3.4 Results

Crash-consistency bugs. Using ACE and Syzkaller generated tests, Chipmunk

finds 23 new unique crash-consistency bugs across the tested file systems. The number

of bugs is based on the number of unique fixes required to patch all the bugs, not

different user-visible consequences. Two bugs are found in both WineFS and PMFS

for a total of 25 bugs.

Table 3.1 describes the consequences of each bug and the system calls they

affect. The bugs are classified as either logic or PM errors (§3.4.1). Chipmunk found

eight bugs in NOVA, five bugs in SplitFS, four bugs in NOVA-Fortis, two bugs in

PMFS, two bugs in WineFS, and two bugs in both PMFS and WineFS. Many of these

bugs have serious consequences: three prevent the file system from being mounted

entirely, and three impact the atomicity of rename, which many applications rely

on [215]. Many others cause data loss or prevent a user from accessing files entirely.

Bugs 4, 5, and 13 in Table 3.1 were found independently by both Vinter [135]

and Chipmunk. Vinter’s authors also reported a bug related to an optimization in

the non-temporal store function used by NOVA and NOVA-Fortis, which Chipmunk

can reproduce. Chipmunk found a related bug impacting PMFS and WineFS (17

and 20).

Chipmunk did not find any bugs in ext4-DAX or XFS-DAX. We attribute

this to the maturity of the base file systems. Most code in ext4-DAX and XFS-DAX

is shared with their non-DAX versions, which are very well tested. CrashMonkey also

found no new bugs in either system, and Hydra found only one new crash-consistency

bug in ext4.

Non-crash-consistency bugs. While working with Chipmunk, we also found eight

non-crash-consistency bugs not included in Table 3.1. We were able to find these bugs

because they caused KASAN errors, segmentation faults, or incorrect behavior that

our consistency checks could detect. For example, using the fuzzer, we discovered that
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Observation Associated bugs

Many bugs are logic/design issues, not PM programming
errors.

1, 3–8, 10–13, 16,
19, 20, 21–25

The complexity of performing in-place updates leads to
bugs.

4–7, 14, 15

Recovery related to rebuilding in-DRAM state is a signifi-
cant source of bugs.

1, 3, 7, 11, 13, 16,
19, 24, 25

Complex features for increasing resilience can introduce
crash consistency bugs.

2, 9–12

Many can only be exposed by simulating crashes during
system calls.

3–6, 9–13, 19, 20

Short workloads were sufficient to expose many crash con-
sistency bugs.

1–6, 9–20, 21–25

Many bugs are exposed by replaying a few small writes onto
previously persistent state.

3–6, 9–13, 19, 20

Table 3.2: Bug observations. The table lists observations about PM file systems
and the bugs associated with them.

NOVA does not properly handle write calls where the number of bytes to write is ex-

tremely large; it will allocate all remaining space for the file, causing most subsequent

operations to fail.

3.4 Bug Analysis

This section presents an analysis of the 23 crash-consistency bugs found by

Chipmunk (Table 3.1). To the best of our knowledge, this is the largest corpus of

crash-consistency bugs in PM file systems.

3.4.1 Observations

We first present observations about the nature of the crash-consistency bugs

found by Chipmunk, and then present observations about crash-consistency testing.
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3.4.1.1 Nature of crash-consistency bugs

Observation 1: Most of the observed bugs are logic issues rather than PM

programming errors. Prior work on crash-testing PM applications focuses on bugs

related to subtleties in the PM programming model, like CPU store reordering. How-

ever, the majority of bugs we found—19 of 23—are actually due to higher-level logic

bugs rather than mistakes in managing PM. The “type” column in Table 3.1 classifies

bugs into logic bugs or PM bugs. Logic bugs are issues that cannot be fixed by adding

cache line flushes or store fences. These results suggest that it is not sufficient for a

file-system crash-consistency testing tool to focus on exploring the persistence behav-

ior of individual writes and reorderings; it must also check higher-level consistency

properties that cannot be validated at the level of individual writes. We note that

all bugs in found in SplitFS are logic bugs. Our results suggest that SplitFS’s use

of ext4-DAX to handle metadata operations reduces risk of PM programming errors,

but does not eliminate logical bugs that impact crash consistency. All the bugs Chip-

munk found in SplitFS are related to its optimized logging approach, which SplitFS

uses to provide stronger crash-consistency guarantees than ext4-DAX.

Observation 2: In-place update optimizations are a common source of

crash consistency bugs. One of the allures of PM is that programs can access it

as memory, performing fine-grained reads and writes directly rather than coalescing

them into larger block-sized I/O operations. This design makes it possible in prin-

ciple to reduce the overheads of traditional consistency mechanisms like journaling

by manipulating on-disk data structures directly. Most of the systems we tested use

a journal for crash consistency, but have performance optimizations to bypass the

journal in certain circumstances. For example, NOVA updates the link count of a file

by updating a per-inode log. Appending to this log is usually done via a journaled

transaction, but if the previous operation on the file also updated its link count,

NOVA may modify that log entry in place.

We found these optimizations to be particularly error-prone: six of 23 bugs in
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Table 3.1 are caused by in-place updates. For example, in bug 4, NOVA’s rename im-

plementation removes the directory entry from the parent inode in-place but journals

the other metadata changes, allowing the file to be lost in a crash before the journal

transaction commits.

Fixing these bugs often requires journaling more data. To quantify the impact

of fixing such bugs, we compared the performance of NOVA before and after fixing

two rename atomicity bugs (4 and 5). We tested both versions on Intel Optane DC

Persistent Memory media. In a microbenchmark that repeatedly overwrites a file

using rename, the fixed version is 25% slower. A more real-world metadata-intensive

benchmark (checking out different stable versions in the Linux kernel git repository)

shows negligible overhead (<1%). In some cases, journaling can even be better than

in-place updates. The fix for bug 6 replaces an in-place update in link with extra

logging, but makes a microbenchmark that repeatedly creates links to a file 7% faster,

likely because checking whether the in-place update is safe requires an extra read from

the media.

Observation 3: Rebuilding volatile state during crash recovery is error-

prone. In a traditional file system, crash recovery scans on-disk structures like jour-

nals and updates the durable state to match. In contrast, PM file systems often

keep metadata like free page lists in DRAM as a performance and write endurance

optimization and rebuild them at mount. This rebuilding code is subtle because it

must account for potential inconsistencies or partial states after a crash, and we found

that nine of the 23 bugs in Table 3.1 were in such code. For example, bug 13 can be

caused by a crash during a truncate system call on PMFS. This operation first stores

information about the truncation in a “truncate list”; if the system crashes before

the truncation is complete, the truncate list can be replayed to finish the operation.

However, replaying truncations requires accessing the free page list, which is kept in

DRAM and thus lost in the crash. Attempts to replay truncations therefore cause a

null pointer dereference.
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Rebuilding volatile state is more complex in PM file systems that maintain

per-CPU volatile state to improve scalability. For example, in bug 19, WineFS failed

to properly index into an array of per-CPU journals that were read during crash

recovery, preventing journaled updates from being accessed after a crash.

Observation 4: Resilience mechanisms to recover from media failures can

introduce new crash-consistency bugs. NOVA-Fortis [267] is an extension of

NOVA that adds fault detection and tolerance for media errors and software bugs

by (among other techniques) replicating and/or checksumming inodes, logs, and file

data. While NOVA-Fortis is not explicitly designed to increase crash resilience, we

tested it to determine if it is more tolerant of crashes than NOVA.

NOVA-Fortis has all the same crash-consistency bugs we found in the original

version of NOVA, and in addition has four new bugs caused by the added complexity

of maintaining redundant state and checksums. A common theme in these bugs is

that data and metadata modifications are often not atomic with checksum and replica

updates, allowing checksum validation to fail (and render a file inaccessible) even if

the file system is consistent and data intact.

3.4.1.2 Crash-consistency testing in PM file systems

Observation 5: Many observed bugs require simulating crashes during

system calls. Current crash-consistency testing tools for traditional file systems,

like CrashMonkey [201] and Hydra [143], insert crashes only after fsync-related sys-

tem calls. This heuristic exploits the fact that most POSIX APIs only make crash-

consistency guarantees after persistence operations, so intermediate states are unlikely

to violate the specification. It allows these tools to scale to test larger workloads, and

does not appear to cause them to miss bugs: CrashMonkey has a mode to insert

crashes during system calls, but it did not find any additional bugs.

We found that this same heuristic does not work for PM file systems. 11 of

the 23 bugs in Table 3.1 require a crash to occur during a system call. This is a
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corollary of our observation that most PM file systems implement most system calls

synchronously, making their effects persistent by the end of the system call. For

example, the rename atomicity bugs in NOVA (bugs 4 and 5) arise when a crash

during the system call leaves only some writes persisted. Waiting until the system

call completes would hide these bugs, as NOVA flushes all writes by the end of the

operation.

Observation 6: Short workloads suffice to expose many crash-consistency

bugs. We use ACE [201] to exhaustively generate small test workloads. ACE’s design

is based on an empirical study of historical crash consistency bugs in traditional file

systems that showed that most bugs could be reproduced with at most three core

operations. It was unclear whether this would hold for PM file systems. However,

19 of the 23 bugs we found in PM file systems can be found using ACE, suggesting

that this same small-scope hypothesis [126] holds for PM file systems. We also run

Chipmunk using the Syzkaller gray-box fuzzer, which can generate much longer

workloads but without the exhaustiveness guarantees of ACE (§3.2.4). Syzkaller found

four bugs that ACE did not. However, all four bugs were found on short workloads:

three would be considered seq-2 and one seq-3. ACE missed them not because of

size but because of complexities that ACE omits to make exhaustive enumeration

tractable, such as testing non-8-byte-aligned writes.

Observation 7: Most of the observed buggy crash states involve few writes

to PM. Chipmunk generates crash states by snapshotting known-persistent disk

states between store fences, and then replaying all subsets of the in-flight writes

between each store fence (§3.2). For a system call with n in-flight writes before a

fence, this means Chipmunk should consider all 2n−1 possible crash states. However,

we found that most bugs found by Chipmunk involve crash states that include small

subsets of the in-flight writes. Of the 11 bugs in Table 3.1 that involve a crash in

the middle of a system call, 10 can be exposed by a crash state that replays only a

single write onto the last known-persistent state; the final bug requires two writes.
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This observation suggests a profitable heuristic would be to only test small subsets

of in-flight writes. Chipmunk exploits this observation by enumerating crash states

in increasing order of subset size, allowing it to find most crash-consistency bugs

quickly. In our experiments, we often cap the number of writes that are replayed

to build each crash state, primarily to prevent Syzkaller from spending many hours

checking a single outlier test with a high in-flight write count. The highest in-flight

write count we observed, 20 writes in some PMFS write calls, would take about 30

hours to check exhaustively using Chipmunk. A cap of two is enough to find all bugs

presented in this paper; a cap of five is sufficient to check all crash states for most

system calls in the PM file systems we tested.

3.4.2 Lessons Learned

Based on our observations above, we have distilled three lessons for developers

of PM file systems and for building the testing tools that support them.

Lesson 1: Synchronous crash consistency on PM file systems simplifies

the user experience, but complicates implementation and testing. Crash-

consistency guarantees in modern file systems are something of a vicious cycle. File-

system developers argue that relaxed guarantees are required to extract reasonable

performance [176], but these weak guarantees are a pain point for application develop-

ers and have caused severe data loss in popular applications [21,50,215], so file-system

developers implement workarounds to “fix” common mistaken application patterns

and make the intended guarantees even less clear. The fine write granularity and low

latency of PM finally offers a path to strengthen file-system crash-consistency models,

making resilient applications easier to build and validate. PM file system developers

have taken advantage of this opportunity by making all system calls synchronous and

durable.

While this end result is exciting, implementing it correctly carries new risks for

PM file-system developers compared to traditional file systems. We found that many
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PM file-system bugs come from complex optimizations to realize high-performance

synchronous crash-consistency — combining in-place updates with other consistency

mechanisms, replacing persistent state with reconstructible volatile state, or intro-

ducing new logging protocols — that are uncommon techniques on slower storage

media. This is a rich new design space for storage systems, and identifying the right

primitives for these optimizations will be good future work. These optimizations also

create complexity for testing and validation of PM file systems, which we found re-

quires driving the file system into exercising deeper data structure manipulations and

recovery mechanisms than existing crash-consistency tools are capable of.

Lesson 2: Diverse testing mechanisms and checkers help invalidate as-

sumptions about crash-consistency patterns. Most crash-consistency testing

tools build on heuristics and patterns in historic bugs to select the workloads they

test. We expected to bring those patterns across to PM file systems, focusing on

short workloads and a small set of potential crash points. However, we found instead

that most assumptions about file-system crash consistency do not carry across to PM,

where the consistency mechanisms and guarantees are significantly different. Finding

crash consistency bugs in PM file systems requires exploring many more crash states

than other file systems, including crashes in the middle of system calls; we had to

develop new techniques to make this search tractable. We also found that fuzzing was

an effective way to invalidate assumptions from prior file systems experience, such as

the significance of unaligned writes and exercising per-CPU code paths.

Another assumption we carried into this work was that the difficulty of building

a PM file system lies in correctly applying the PM programming model. We intended

to focus on exhaustively testing the precise persistency behavior of PM file system

code. However, we found instead that most PM file system bugs were logic errors.

Existing tools that focus on detecting specific PM programming error patterns [63,

82, 96, 121, 181–183, 210] would miss many of these bugs. Writing general-purpose

consistency checks and applying gray-box fuzzing to generate workloads helped to
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invalidate these assumptions.

Lesson 3: Lightweight testing offers a scalable approach to detecting many

crash-consistency bugs. Chipmunk is, in principle, a bounded exhaustive test-

ing [201] tool for PM file systems: given enough time, it can check every possible crash

behavior of every possible workload up to some bounds on its size and inputs. Of

course, it is not tractable to exhaust this search space even with very small bounds.

However, we found that Chipmunk is an effective lightweight testing tool, in that it

can quickly and automatically find many bugs by checking small workloads and few

crash states, and then run for longer to find more corner-case issues. Chipmunk runs

the ACE seq-1 workloads in less than 15 minutes on most tested systems. On the

other hand, the fuzzer frontend to Chipmunk takes 1–2 orders of magnitude longer

to run but finds four more bugs than ACE. These two frontends are complementary.

They enable a lightweight approach that helps developers iterate quickly on new code,

while offering stronger confidence as the code gets “closer to production” [24].

3.5 Summary

This chapter presents Chipmunk, a new record-and-replay framework for test-

ing the crash consistency of PM file systems. We use Chipmunk with the ACE

workload generator and the Syzkaller gray-box fuzzer and find 23 unique bugs across

five PM file systems. To the best of our knowledge, this is the largest corpus of

crash-consistency bugs on PM file systems. Our study of these bugs provides insights

into how crash-consistency bugs arise in PM file systems and what types of tools are

needed to test these systems.
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Chapter 4: Statically checking crash consistency

using Rust

In this chapter, we introduce SquirrelFS, a PM file system that uses the

Rust programming language to obtain some statically-checked crash-consistency guar-

antees. We motivated the need for new techniques and tools to help developers build

robust PM storage systems in Chapter 3, and we now discuss one such technique

that provides a lightweight way to gain confidence in the crash consistency of system.

Our static checking approach provides stronger guarantees of robustness than testing

with tools like Chipmunk. These checks do not obtain the guarantees that formal

verification offers, but they require no proofs or specialized language support, making

them more accessible to engineers.

In §4.1, we motivate the development of SquirrelFS by describing the limi-

tations and challenges of other approaches used to ensure crash consistency. We also

describe the key insights about PM, soft updates, and the Rust programming language

that make SquirrelFS possible. In §4.2, we describe the design and implementation

of SquirrelFS and how we checked its design using the model checker Alloy [125].

We also provide detailed information on the durable update dependencies checked

by the Rust compiler in SquirrelFS. In §4.3, we discuss our experience develop-

ing SquirrelFS and its Alloy model. §4.4 presents our evaluation of SquirrelFS’

performance and correctness. In §4.5, we discuss the theoretical limitations and guar-

antees of the typestate pattern. We also compare Rust’s typestate support to that of

several other typestate-oriented languages.

This chapter is based on the paper “SquirrelFS: using the Rust compiler to

check file-system crash consistency” [167] published at OSDI 2023. It also contains

content from an extended version of this paper accepted to ACM Transactions on

Storage in 2025.
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4.1 Motivation

We first motivate the need for a crash-consistency approach that provides some

static guarantees without proofs or verification. We also describe in more detail the

key observations that SquirrelFS is based on.

4.1.1 Crash consistency

As discussed in §2.2, there exist many mechanisms that can be used to protect

the integrity of data and metadata in a storage system in the event of a crash. How-

ever, ensuring that the design and implementation of a mechanism achieves crash

consistency is challenging. There are currently two primary approaches. First, as

discussed in Chapter 3, we can test systems for crash consistency using specialized

tools like Chipmunk. While such testing tools can find many bugs, they cannot prove

overall correctness or the absence of crash-consistency bugs. Second, we can verify the

correctness and crash-consistency of the system. Verification is stronger than testing

in that it can prove that the system is bug-free, but it also requires developers to

write proofs that the implementation matches a specification of correctness, which is

difficult and time-consuming. Prior work on verifying crash consistency required 7–13

lines of proof for every line of code. We discuss this approach further in Chapter 5.

Recent work has explored a middle ground between testing and verification.

Corundum [113] is a Rust crate for PM systems that, like SquirrelFS, uses the

Rust type system to enforce certain low-level PM safety properties at compile time.

For example, Corundum ensures that every update to PM occurs in a logged trans-

action, and prevents the storage of pointers to volatile memory in durable structures.

SquirrelFS was inspired by Corundum and aims to enforce higher-level properties

like file-system crash consistency with Rust.
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1 fn new_file() {

2 // Dentry<Free>

3 let d = Dentry::get_free_dentry();

4 // Inode<Free>

5 let i = Inode::get_free_inode();

6 // Dentry<Init>

7 let d = d.set_name("foo");

8 let d = d.commit_dentry(i);

9 ^ expected ‘Inode<Init>‘, found ‘Inode<Free>‘

10 }

Figure 4.1: Invalid typestate example. The listing shows the typecheck process
throwing an error when an uninitialized inode is passed to a function that expects an
initialized inode.

4.1.2 The opportunity: Rust and PM

We observe an opportunity to ensure file-system crash consistency in a cheap

manner. First, we note that the Rust programming language can statically enforce

a specific order on operations via its support for the typestate pattern [88, 233],

described in §2.5.2. We can enforce crash-consistency properties at compile time by

encoding pertinent information in the types of durable objects.

For example, one consistency rule enforced by soft updates is that a directory

entry should never point to an uninitialized inode. Figure 4.1 shows how typestate

is used to enforce this rule. To create a new file, we first obtain a free directory

entry and inode. Initially, both objects have typestate Free. Then, we initialize the

directory entry, transitioning its type to Dentry<Init>. The listing then has a bug

in which the directory entry’s inode number is set by commit dentry() before the

inode is initialized, breaking the consistency rule. The Rust compiler catches this

bug because the inode’s current typestate Free does not match the typestate Init

expected by the function.

Since soft updates is entirely built on ordering updates to file-system objects,

we can translate the required partial order into a set of types and use Rust’s type
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checking to enforce the order. Thus, the invariants we want to maintain are translated

into something the type system and compiler can enforce. We note that we are able to

do this with an unmodified Rust compiler; the new types introduced are no different

to the compiler from existing types in the codebase.

However, implementing soft updates correctly remains challenging even with

typestate support. With soft updates, file-system updates are applied to the page

cache in DRAM, and then later written to storage in the right order. Determining the

right order requires tracking complex dependencies across asynchronous operations.

When a single file-system metadata object (such as an inode or a bitmap) is updated

multiple times, it can lead to cyclic dependencies.

This leads to our second observation: persistent memory (PM) file systems

support synchronous operations thanks to the low latency of the storage media [265,

269]. These file systems write updates directly to storage without first caching them

in DRAM [69,132, 133,155, 266]. A synchronous implementation of soft updates

for persistent memory eliminates the complexities of asynchronous dependency man-

agement, greatly simplifying the mechanism and allowing the relevant invariants to

be encoded in Rust’s type system.

4.2 SquirrelFS

We now present the design and implementation of SquirrelFS, a novel file

system that uses the unmodified Rust compiler to check its crash consistency. If

the compilation is successful, it indicates that the ordering-based invariants hold

throughout the file system: in other words, the checking is complete. If compilation

fails, the error reported by Rust is useful in figuring out which operations are out of

order. Compilation takes only seconds, offering quick feedback to developers.

SquirrelFS is built on two key ideas:

• A novel crash-consistency mechanism, Synchronous Soft Updates, that achieves
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crash consistency purely via ordering file-system operations (§4.2.1)

• Using the Rust typestate pattern to encode ordering invariants into the Rust

type system (§4.2.2)

It is important to note that we are not modifying the Rust compiler in any

way. To the Rust compiler, it is no different from type-checking any other code base;

we are merely using the type checking to ensure that crash consistency holds in the

file system.

We now describe the key ideas in more detail.

4.2.1 Synchronous Soft Updates

We develop Synchronous Soft Updates (SSU), a novel crash-consistency mech-

anism. SSU is based on the traditional soft updates approach, but differs in two key

aspects. First, soft updates was designed for asynchronous settings, but all opera-

tions are synchronous in SSU. Second, soft updates does not provide atomic rename;

a crash during a rename of src to dst can result in both being present after a crash.

SSU fixes this flaw; renames are atomic, and a crash during rename will result in

either src or dst after recovery.

We now discuss why we developed SSU, its key aspects, and how renames are

atomic in SSU.

Why a new mechanism? To go with our overall approach of encoding ordering-

based invariants into the Rust type system, we needed a mechanism that achieves

crash consistency purely via ordering file-system updates. This rules out mechanisms

such as journaling and copy-on-write that use writes to a log or an extra copy to obtain

atomicity. Soft updates [187] obtains crash consistency by enforcing ordering on in-

place persistent updates to file-system objects; thus, it was a good match. However,

traditional soft updates suffered from two problems that we needed to tackle. The

first challenge was that soft updates had significant complexity arising from needing
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to track dependencies between asynchronous file-system operations; the presence of

cyclic dependencies also requires complex roll-back and roll-forward logic. The second

challenge is that soft updates does not provide atomic operations, particularly rename;

atomic rename is a crucial primitive for a number of POSIX applications [215]. Thus,

we need to modify soft updates to tackle both its high complexity and lack of atomic

operations.

Synchronous operations. We observe that the root of complexity in soft updates

(such as cyclic dependencies and structures for tracking dependencies) is asynchrony.

A synchronous implementation of soft updates neatly avoids these complexities. All

updates would be made durable by the end of each system call, which would elimi-

nate the need to track cross-operation dependencies. Cyclic dependencies would no

longer arise because there are no pending updates that can conflict with each other.

The SoupFS [67] soft updates file system for persistent memory eliminated cyclic

dependencies using fine-grained updates, but still required asynchronous dependency

tracking. A synchronous implementation is necessary to overcome both sources of

complexity.

A synchronous version of soft updates was not feasible until now, as running

this on magnetic hard drives or even solid state drives would be prohibitively slow.

However, synchronous soft updates is a good match for persistent memory (PM)

due to its low latency; system calls in many existing PM file systems are already

synchronous [69,132,133,266].

Similar to traditional soft updates, SSU maintains crash consistency by en-

forcing ordering among updates to file-system objects. SSU implements the original

soft updates rules [84]:

1. Never point to a structure before it has been initialized;

2. Never re-use a resource before nullifying all previous pointers to it;
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3. Never reset the old pointer to a live resource before the new pointer has been

set.

These rules are significantly easier to enforce in a synchronous setting, as there is no

need to track dependencies across asynchronous operations. Like soft updates, SSU

focuses on the integrity of file system metadata and cannot guarantee that operations

on file data are atomic. SSU could be combined with journaling or copy-on-write to

obtain stronger data guarantees.

Atomic rename in SSU. SSU ensures renames are atomic by cleaning up file-system

state after a crash. In traditional soft updates, if there is a rename from src to dst,

it is impossible to tell after a crash whether src or dst should be removed. To resolve

this, SSU adds an extra field, called the rename pointer, to directory entries in order

to persistently save enough information to complete the rename operation after a

crash. The rename pointer in the destination directory entry points to the physical

location of the source directory entry. The rename pointer allows the file system to

follow soft updates rule 3 (never reset the old pointer before the new one has been

set) while also retaining the ability to distinguish between src and dst after a crash.

Note that this is similar to what journaling-based file systems do; they write a

log entry specifying src and dst so that the right clean-up action can be performed.

In SSU, the information in this log entry is distributed over the source and destination

inodes; taken together, they provide enough information to the file system.

Figure 4.2 illustrates the process. Step 1 shows an example system state

prior to the rename operation. In 2 , dst’s rename pointer (dotted line) is set to

src. dst is invalid, and src is still valid. In 3 , we make dst valid; this also logically

invalidates src. This is an atomic point; after this step, the file system will always

complete the rename operation. If the file system crashes prior to this step, the

rename pointer is cleared on recovery. In 4 , we physically mark src as invalid.

In 5 , the rename pointer is cleared, and in 6 src is fully deallocated. Each step
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Figure 4.2: Atomic rename. The figure shows the steps in atomic soft updates
rename. The dotted lines represent rename pointers and the solid lines represent
inode pointers. src and dst are directory entries. The labels “v” and “i” indicate
whether a directory entry is valid or invalid.
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either modifies metadata that is invisible to the user (e.g., deallocating an orphaned

directory entry) or atomically modifies a single 8-byte value. All modifications must

be durable before proceeding to the next step.

Rename recovery. A question that arises is how the file system finds src and dst.

This is an example of how SSU is tailored for PM file systems. In PM file systems,

it is common for the file system to scan persistent objects to construct indexes in

DRAM; we add the rename-recovery procedure into this scan. Thus, when building

volatile indexes after a crash, the file system also looks for and completes any partially

completed rename operations.

A pseudocode Rust implementation of the rename recovery procedure is shown

in Listing 4.1. For simplicity, this code is written without typestates. We describe

the typestates used in rename and its recovery in §4.2.5. During both standard and

post-crash remount, SquirrelFS first scans inodes and page descriptors to create

an index mapping live inodes to their pages. After a crash, SquirrelFS passes this

index to rename recover (line 1 of Listing 4.1) and scans all directory entries in live

directory pages (lines 2 and 3). For each directory entry, we first check if its rename

pointer is set (line 4). If it is not set, then the directory entry was not the destination

in an interrupted and incomplete rename. It may still require cleanup if it is the

source for an interrupted rename, in which case it will be handled when we scan the

corresponding destination. If the rename pointer is set, we know that this directory

entry was the destination of a rename that crashed in step 2 , 3 , or 4 . We can now

use the inode pointers of the source and destination directory entries to determine

what steps are necessary for cleanup. If they do not point to the same inode, we

either crashed in Step 2 or 4 . Crash recovery is the same in both cases and only

requires clearing the rename pointer (line 10). If we had crashed in Step 2 , this will

effectively roll back to before the operation; if it was Step 4 , this will transition the

system to Step 5 . Otherwise, if the two directory entries point to the same inode,

we must have crashed in Step 3 . In this case, we recover by picking up where the
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1 fn rename_recover(pages: &PageIndex) -> Result<()> {

2 for page in pages.filter(|p| p.get_type() == DIR) {

3 for d in pages.dentries() {

4 if d.rename_ptr().is_set() {

5 // d was a dst dentry in an interrupted rename and

6 // we crashed at step 2, 3, or 4.

7 let src = d.get_src_from_rename_pointer();

8 if d.get_ino() != src.get_ino() {

9 // we crashed at step 2 or 4

10 d.clear_rename_pointer().flush().fence();

11 } else {

12 // we crashed at step 3

13 src.clear_ino().flush().fence();

14 d.clear_rename_pointer().flush().fence();

15 src.dealloc_dentry().flush().fence();

16 }

17 } // else, no cleanup needed for now

18 }}}

Listing 4.1: The listing shows the recovery procedure to clean up interrupted rename

operations.

rename operation left off and complete it using the same functions used for this part

of rename during normal operation (lines 13–15). This process may leave orphaned

structures, which will be cleaned up later in recovery.

4.2.2 Using Rust to enforce ordering

Rust’s typestate pattern can be used to ensure that a set of functions are al-

ways called in certain partial order. A total order is not necessary, as many operations

involve independent updates that can be safely reordered. As we discussed previously

(§4.1), an object’s typestate is encoded in generic type parameters in its definition,

and the partial order is encoded in the function signatures of its associated functions.

We encode two states (as different type parameters) in the types of persistent

objects:
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1 impl Inode<Clean, Free> {

2 fn init_inode(self, ino: u64, ...) -> Inode<Dirty, Init> {...}

3 }

4 impl Dentry<Clean, Alloc> {

5 fn commit_dentry(self, inode: Inode<Clean, Init>)

6 -> Dentry<Dirty, Committed> {...}

7 }

8 impl<S> Inode<Dirty, S> {

9 fn flush(self) -> Inode<InFlight, S> {...}

10 }

11 impl<S> Inode<InFlight, S> {

12 fn fence(self) -> Inode<Clean, S> {...}

13 }

Listing 4.2: Pseudocode implementations of file system objects with persistence and
operational typestate. Typestate arguments are shown in bold.

• Persistence typestate is a representation of whether an object’s most recent

update(s) have been made durable. We use three persistence typestates: Dirty,

InFlight, and Clean.

• Operational typestate represents the operations that have been performed on

an object and is used to determine what operations can happen next.

Persistence and operational typestate are separate to capture the fact that

most storage devices do not synchronously flush updates. For example, in persistent

memory, updates go to the CPU caches first, and must be explicitly flushed to the

persistent media.

Listing 4.2 shows implementations of several methods of persistent Inode and

Dentry types with persistence and operational typestate as generic type parameters.

The methods flush and fence invoke a cache line write back and store fence respec-

tively and are generic with respect to operational typestate. These methods must

be used to ensure updates are persistent before continuing; for example, commit -

dentry() requires an Inode<Clean, Init> to ensure the inode’s initialization cannot
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Figure 4.3: mkdir dependencies. The figure shows persistent updates and cor-
responding dependencies made during mkdir. Inodes are dark gray and directory
entries are white. Each object is labeled with its operational typestate and its outline
indicates whether it is clean (solid) or dirty (dotted).

be transparently reordered with the directory entry updates.

This formulation of persistence typestate has several performance benefits.

First, because the flush and fence methods can only be called on an object whose

typestate indicates it is not yet persistent, typechecking will prevent redundant per-

sistence operations (thereby improving performance). Second, developers can wait

to flush updates until it is strictly necessary and can write additional transitions to

enable multiple updates to share a single fence.

Why Rust? In order to obtain useful compiler-checked guarantees from the typestate

pattern, each object must have exactly one typestate [243]. Languages like C and

C++ cannot enforce this restriction, but Rust can, via its ownership-based type

system. See subsection 2.5.2 for more detail.
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4.2.3 Examples

To illustrate the typestates and dependency rules used in SSU, we describe

two example operations, mkdir and unlink. The typestates shown in these examples

are described in more detail in Table 4.1.

Example 1: mkdir. We first describe the dependency rules in an SSU implementa-

tion of mkdir, shown in Figure 4.3. To be crash consistent, an SSU implementation

of mkdir must ensure (1) that a structure never points to an uninitialized resource,

and (2) that each inode’s link count is greater than or equal to its actual number of

links. Both rules prevent dangling links in the event of a crash.

During mkdir, three file-system objects are modified: an inode for the new

directory, a directory entry for the new directory, and the inode of the parent di-

rectory. In Figure 4.3, inodes are represented by dark gray boxes and directory

entries are represented by white boxes. Each durable object is labeled with a type-

state representing its current status at each point during the operation. The full set

of typestates and dependencies for each durable structure are shown in Figure 4.9

for inodes and Figure 4.10 for directory entries. The initial updates to each data

structure are independent, so there are no dependencies between them, and they can

share a single store fence to ensure durability before setting the directory entry’s in-

ode number (not shown). SquirrelFS uses volatile allocation structures that are

not persistent during mkdir.

The system first finds the parent inode and obtains a free directory entry in

one of the parent’s pages as well as a free inode. The inode is then initialized (i.e.,

setting its inode number, link count, timestamps), the directory entry’s name is set,

and the parent inode’s link count is incremented.

Next, we commit the directory entry by setting its inode number. This makes

the directory entry valid and connects the inode to the file system tree. Directory

entry commit is dependent on inode and directory entry initialization and parent link

increment. Committing the directory entry before initializing the inode can result in
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a directory entry pointing to a garbage inode; committing before incrementing the

parent’s link count can lead to dangling links.

Example 2: unlink. To show how SSU handles multiple links to files and opera-

tions involving deallocations, we now describe how unlink works. Figure 4.4 shows

the dependencies between each step in this operation. As before, each node represents

a durable object at each step in the operation, with inodes in dark gray, directory

entries in white, and data pages in gray. Figures 4.8 (inodes), 4.10 (directory en-

tries), and 4.11 (data pages) show the full dependency relationships for each of these

structures.

The unlink operation is initially passed a volatile directory entry structure

maintained by the Virtual File System layer (VFS). We use this to look up the durable

inode and directory entry to unlink, both of which are initially in the Start typestate.

First, we clear the directory entry’s inode, which makes it invalid for future lookups.

The inode’s link count is now greater than the number of directory entries pointing

to it, but this cannot cause dangling links in the event of a crash and is thus safe.

We can now durably decrement the inode’s link count, which requires passing in an

immutable reference to the directory entry (shown in Figure 4.4 with a dotted arrow)

to ensure the link count is not decremented before a linked directory entry has been

cleared. The directory entry can now be deallocated. If the freed directory entry was

the last live entry in a page, that page may now be safely deallocated. We omit these

steps for brevity, but they are similar to those taken to deallocate data pages later in

this example.

The next step depends on whether the inode’s link count is now zero. This is

checked at runtime by a function that returns the inode in the Complete state if the

link count is greater than zero, and returns both the inode in UnmapPages state and

a list of pages in ToUnmap state if the link count is zero. If the inode’s link count is

greater than zero, there is still at least one directory entry pointing to it, so the inode

and associated pages should not be freed, and the operation is complete. If the link
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Figure 4.4: unlink dependencies. The figure shows the persistent updates and cor-
responding dependencies made during unlink. Inodes are dark gray, directory entries
are white, and page lists are light gray. Each object is labeled with its operational
typestate and its outline indicates whether it is clean (solid) or dirty (dotted). A
dotted arrow indicates that the typestate transition requires a reference to an object
in a particular typestate but does not modify that object’s typestate.
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Figure 4.5: SquirrelFS overview. The figure shows the main components of
SquirrelFS. Each CPU has its own pool of pages and private page allocator. The
inode allocator is shared between all CPUs. Volatile indexes are stored in VFS data
structures.

count is zero, there are no more links to the inode, so the inode and its pages can

be deallocated. SquirrelFS uses a backpointer-based page management approach

(§4.2.4) in which each page points to the inode that owns it, so the pages must be

deallocated before the inode to prevent dangling pointers in the event of a crash. If,

instead, the inode pointed to a structure containing the locations of its pages, the

inode would need to be freed first.

4.2.4 Implementation

We implemented SquirrelFS in Rust with 7500 LOC. It uses bindings

from the Rust for Linux project [232] to connect to the Linux Virtual File System

(VFS) layer. Figure 4.5 shows SquirrelFS’s architecture. We also built a model of

SquirrelFS in the model-checking language Alloy [125] to check its design for crash

consistency issues. We describe our experience developing SquirrelFS in §3.4.2.
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Overview. The design of SquirrelFS combines aspects of FreeBSD’s FFS [189]

and PM file systems such as NOVA [266] and WineFS [133]. Like FFS, it has a simple

on-storage layout, and uses soft updates. Like other PM file systems, SquirrelFS

uses volatile index structures that are built when the file system is mounted.

SquirrelFS’s design was primarily influenced by two factors. First, we

wanted to keep dependencies as simple as possible and avoid nested persistent struc-

tures that are difficult to represent in typestate. Second, we assume the x86 PM

persistence model in which only aligned updates of 8 bytes (or smaller) are crash

atomic. We also assume volatile CPU caches. In this model, persistent addresses

can be accessed via regular memory stores, but the corresponding cache line must be

flushed or written back before updates become persistent. A memory barrier like a

store fence must also be invoked to correctly order stores [229]. Durable structures

may also be updated via cache-bypassing non-temporal store instructions, which still

require a store fence for persistence ordering. This programming model influences the

structure of persistent objects and restricts the set of legal orderings. SquirrelFS

also supports systems with durable CPU caches (e.g., with eADR), which eliminate

the need for explicit cache line write backs. Typestate checking is also useful for these

systems, as store fences are still required to order memory stores and the high-level

update dependencies are the same as with volatile CPU caches.

All system calls in SquirrelFS are synchronous, meaning that updates to

durable structures made by each system call are durable by the time the system

call returns. As such, fsync is a no-op in SquirrelFS. Metadata-related opera-

tions are also crash-atomic. Data-related operations are not atomic in the current

SquirrelFS prototype, which matches the default behavior of other PM file systems

like NOVA [266]. These operations could be made atomic by using copy-on-write to

update file contents.

Persistent layout. SquirrelFS uses a simple layout to reduce the complexity

of update dependencies. At mount time, the entire PM device is mapped into
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SquirrelFS’s address space using DAX (direct access) management functions pro-

vided by the kernel [177]. SquirrelFS divides this mapped region into four sections:

the superblock, the inode table, the page descriptor table, and the data pages. The

inode table is an array of all the inodes in the system. SquirrelFS reserves enough

space for approximately one inode for every 32KiB of data (eight pages).

The page descriptor array contains page metadata. Rather than having inodes

point to the pages they own, each page descriptor contains a backpointer to its owner

(similar to NoFS [44]) and stores its own metadata (e.g., its offset in the file). This

approach simplifies dependency rules for updates involving page allocation and deal-

location. All remaining space after the page descriptor table is used for data and/or

directory pages.

All PM allocations are managed internally by SquirrelFS. As we discuss

next, these allocators are kept only in volatile memory, so there is no allocator-related

metadata stored on PM.

Volatile structures. SquirrelFS’s persistent layout simplifies typestate and up-

date dependency rules, but it is not amenable to fast lookups. Therefore, SquirrelFS

uses indexes in DRAM to speed up lookup and read operations. Each inode in the

VFS inode cache has a private index for the resources it owns; index data for uncached

nodes is stored in the VFS superblock.

Like many other PM file systems, SquirrelFS uses volatile allocators: allo-

cation information is not stored in a persistent manner, but rather rebuilt each time

the file system is mounted. It uses a per-CPU page allocator and a single shared inode

allocator (which could be converted to a per-CPU allocator to improve scalability).

The allocators use free lists backed by kernel RB-trees.

SquirrelFS’s indexes and allocators are rebuilt by scanning the file system

when SquirrelFS is mounted. Any persistent data structure that is zeroed out is

considered free during the rebuild scan and is added to the corresponding free list.

During the scan, SquirrelFS keeps track of allocated objects and uses them to
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traverse the file system tree and build the in-memory indexes. Data structures with

any non-zero bytes are counted as allocated. After a crash, it is possible for an object

to be allocated but invalid, e.g., a directory entry with a name but no inode pointer,

or an inode that is not reachable from the root. These objects are zeroed out and

added to the free lists during recovery. Thus, only updates that change an object’s

validity or update user-visible state in place need to be crash-atomic, since any invalid

objects will be cleaned up after a crash.

Synchronous Soft Updates. SquirrelFS uses an implementation of SSU for

crash consistency. As shown in Figure 4.3, operations that involve creation of new

objects must first durably allocate and initialize resources before linking them into

the file system (setting the directory entry’s inode in the example) to enforce rule

1 (never point to a structure before it has been initialized). Deallocation proceeds

in reverse; links are first cleared, then the object itself is deallocated by zeroing all

of its bytes. SquirrelFS enforces rule 2 of soft updates (never re-use a resource

before nullifying all previous pointers to it) by treating durable objects that are not

completely zeroed out as allocated and by ensuring via typestate that pointers to the

object are cleared before the object can be zeroed.

Typestate transition functions. SquirrelFS updates the typestate of objects

via typestate transition functions. These functions take ownership of the original

object, modify it, and return it to the caller with the new typestate. These functions

are defined only on certain typestates to ensure they are called in a safe order. For

example, the typestate transition function commit dentry(), shown in Listing 4.2, is

only defined for directory entries with type Dentry<Clean, Alloc>, and also takes

ownership of an inode of type Inode<Clean, Init>. Calling commit dentry() out

of order — e.g., on a directory entry that has not yet been persistently allocated —

is a potential crash-consistency bug and results in a compiler error.

Concurrency. SquirrelFS supports concurrent file-system operations. It relies on

VFS-level locking on durable resources like inodes. This locking, together with Rust’s
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type system, ensures that each resource has only one owner — and only one type —

at any time, enabling strong typestate-based compile-time checking. SquirrelFS

uses internal locks to protect its allocators and indexes.

Building a model with Alloy. While the typestate pattern can enforce a given

operation order, it cannot verify that this order is crash consistent. To gain more confi-

dence that SquirrelFS’s design is crash consistent, we built a model of SquirrelFS

in the Alloy model checking language [125].

Alloy provides a language for specifying transition systems and a model checker

to explore possible sequences of states (traces) of these systems. Alloy’s implementa-

tion is based on a logic of relations; each system is composed of a set of constraints

that define a set of structures and the relations between them, and the model checker

uses constraint solving to find traces.

In SquirrelFS, there is roughly a one-to-one mapping between typestate

transitions in the Rust implementation and the next-state predicates in the Alloy

model. Each next-state predicate specifies the states in which the transition may

occur and the changes it makes to the model’s state. The model includes next-state

predicates for typestate transitions and persistent updates. It also includes transitions

that model crashes and recovery, which let us check SquirrelFS’s design for crash-

consistency bugs.

Each persistent structure in SquirrelFS is represented by a corresponding

structure, also called a signature, in Alloy. The model also includes a Volatile

signature that is used to model volatile aspects of the file system like its indexes.

Each typestate is represented by a signature, and instances of persistent structures

are mapped to their current typestate. Each file system operation is also represented

by a signature, and relations map system calls to instances of persistent objects they

are operating on as well as other volatile state (e.g., the locks held by that operation).

We use this to model concurrent file-system operations.
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1 pred inc_link_count_mkdir [i: DirInode, op: Mkdir] {

2 // *Guards* specify when this transition can occur

3 initialized[i] and op in i.i_rwsem_excl and

4 lt[i.link_count, max] and isFalse[Volatile.recovering]

5

6 // *Frame conditions* specify what parts of system

7 // state are unchanged by the transition

8 inode_values_unchanged_except_lc

9 pointers_unchanged

10 dentry_names_unchanged

11 (all i0: Inode - i | unchanged[i0.link_count]

12 and unchanged[i0.prev_link_count])

13 (all o: PMObj - i | unchanged[o.typestate])

14 locks_unchanged

15 ops_unchanged_except_mkdir[op]

16 unchanged[op.inode_typestate]

17 unchanged[op.dentry_typestate]

18 page_values_unchanged

19 Volatile.recovering’ = Volatile.recovering

20 Volatile.allocated’ = Volatile.allocated

21

22 // *Effects* specify how the transition changes system state

23 make_dirty[i]

24 i.link_count’ = add[i.link_count, 1]

25 i.prev_link_count’ = i.prev_link_count + i.link_count

26 i.typestate’ = IncLink

27 op.parent_inode_typestate’ = IncLink

28 }

Figure 4.6: Alloy example. The listing shows a transition predicate in Alloy that
increments a directory inode’s link count during a mkdir operation.
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Alloy model example. Figure 4.6 contains the source code of a transition that

increments an inode’s link count during a mkdir operation. Transitions in Alloy

models are defined as predicates that are true in steps where the transition is applied

and false at all other times. The predicate is evaluated based on the conjunction of

each line in its body. The next value of a variable is referenced with ’ syntax; for

example, i.typestate’ = IncLink is true if i’s typestate in the next step of the

trace is IncLink (Alloy uses single-equals for equality).

This predicate takes two arguments: the inode to modify and a representation

of the mkdir operation. Transition predicates Alloy models are generally organized

into guards, frame conditions, and effects. The guards specify what must be true in

a given state for the transition to occur. In this predicate, the operation must hold

the inode’s lock, the inode’s link count must be less than the maximum, the system

must not be recovering from a crash, and an initialized predicate must hold.

Incrementing an inode’s link count is always safe in soft updates, so this operation

has relatively weak guards. A transition’s guards describe the typestate dependencies

of the operation as well as aspects like which locks that are held during the operation

and runtime error handling.

The frame conditions describe what parts of the system state may not change

in this transition and must include all mutable parts of system state that should not

be modified. Frame conditions do not directly correspond to any part of typestate

transitions written in Rust, but are necessary in Alloy as the model checker is free to

arbitrarily change aspects that are not captured by the frame conditions. Our model

contains a set of macros and predicates to make frame conditions more concise; for

example, locks unchanged specifies that no locks are acquired or released in this

transition.

The effects specify what parts of the system state do change during this tran-

sition. Some effects correspond directly with a durable or typestate update in the

implementation of the corresponding transition function in SquirrelFS; for exam-
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ple, line 22 of Figure 4.6 specifies that the inode’s persistence typestate becomes

Dirty, and line 23 specifies that its link count is incremented. The model also tracks

previous link count values between the last flush/fence and this update so that it can

roll back to previous values in the event of a crash. Line 24 specifies that the current

link count is added to the set of previous link counts for this inode. The model also

tracks the current typestate of this inode expected by the mkdir operation (line 26),

which helps maintain the association between the op argument and the persistent

objects it modifies across multiple transitions.

4.2.5 Typestates

Table 4.1 describes the three persistence and 22 operational typestates used

in SquirrelFS to represent Synchronous Soft Updates dependencies. SquirrelFS

additionally uses traits to define sets of typestates for which a single operation can

safely be performed on an object with any of the included typestates. For example,

the AddLink trait is implemented by Alloc and IncLink, two inode typestates in

which it is safe to add a link from a new directory entry to that inode.

Recovery typestates. Several typestates are used only during recovery: Recovery,

TooManyLinks, and Recovering. Most durable operations during crash recovery can

use existing functionality and typestates, as most of these updates involve deallocating

orphaned structures that are not visible from the file system root.

Recovery is a special typestate used when reading a persistent object after a

crash. Functions that return an object with typestate Recovery do not perform the

same validity checks as functions that return an object with typestate Start and can

thus be used in scenarios where, e.g., an object was incompletely initialized before a

crash.

TooManyLinks is used to represent an inode whose link count is higher than its

actual number of links. Like traditional soft updates systems, SquirrelFS allows

an inode’s link count to be incremented even if doing so may cause a link count leak

91



Type Associated
structures

State Meaning
P
er
si
st
en
ce

All

Dirty One or more updates to this object have not been
flushed from CPU caches.

InFlight All outstanding updates to this object have been
flushed but not followed by a store fence.

Clean All outstanding updates to this object have been
flushed and fenced.

O
p
er
at
io
n
al

All

Start Object has been read from PM in an initialized state.
Free Object has been freed, or read from PM in an unini-

tialized state.
Alloc Object has just been allocated.
Recovery Indicates that an object has been read during recovery

and may be in an invalid state.

Inodes

IncLink Object’s link count has been incremented.
DecLink Object’s link count has been decremented.
IncSize Inode’s size has been increased.
DecSize Inode’s size has been decreased.
TooManyLinks Indicates that an inode read during recovery has an

incorrect link count and needs to be repaired.
UnmapPages Indicates that an inode’s pages can be unmapped

safely; once they are, the inode can be deallocated.

Page desc.

Zeroed All bytes in the page have been zeroed.
Writable Page’s backpointer is set; page can now be written to.
Written Page has had data written to it
ToUnmap Indicates that a page descriptor’s inode number field

can be safely cleared.

Dentries

SetRenamePointer Destination dentry’s rename pointer has been set to
point to source dentry. Only used with destination
directory entry.

InitRenamePointer Destination dentry’s inode number has been set to tar-
get inode. Only used with destination directory entry.

Renaming Rename pointer to source dentry has been set. Only
used with source directory entry.

Renamed Destination dentry’s inode number has been set to tar-
get inode. Only used with source directory entry.

Recovering Represents a directory entry whose inode number does
not need to be modified during post-crash rename
cleanup. Only used with source directory entry.

Dentries & ClearIno Object’s inode number field has been cleared.
page desc. Dealloc Object has been persistently deallocated.

Inodes &
dentries

Complete The current operation has finished updating this ob-
ject.

Table 4.1: Typestates used in SquirrelFS..
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in the event of a crash. Unlike other systems, SquirrelFS detects such leaks and

fixes them during crash recovery by counting the number of directory entries that

refer to each inode and comparing the count to the inode’s real link count. The only

legal operation on a TooManyLinks inode is a special recovery dec link function

that durably sets the inode’s link count to the correct value.

Recovering is used only to represent a source directory entry in a rename

operation that is interrupted by a crash in Step 2 or 4 in Figure 4.2. In both steps,

the destination directory entry’s rename pointer must be cleared, either to roll the

operation back (Step 2 ) or forward (Step 4 ), but the source directory does not need

to be modified yet. Rename pointer fixes run before orphaned resource cleanup; if

the source directory entry is orphaned after the rename is completed or rolled back,

it will be deallocated later.

Metadata updates. Operations that modify file metadata like link count, size, or

permissions need to update an existing inode in place. Each of these fields fits within

8 bytes and can be updated atomically. SquirrelFS does not currently support

atomic updates to multiple separate file attributes. Some metadata operations, such

as changing link count or file size, are either dependent on or are depended on by

other operations. For example, as shown in Figure 4.3, the parent inode’s link count

must be durably incremented before setting the new directory entry’s inode number

in mkdir operations. These operations have special typestates used to enforce these

dependencies. Others, such as setting permissions or changing file ownership, are

completely independent of other durable operations and can be performed at any

time. Updating these attributes is permitted in any typestate and does not change

the inode’s operational typestate, but does set its persistence typestate to Dirty.

Typestate dependencies. Figures 4.7, 4.8, 4.9, 4.10, and 4.11 illustrate the de-

pendency relationships between typestates in SquirrelFS. Each typestate is rep-

resented by a gray box connected by solid arrows representing typestate transitions.

The arrows are labeled with the operation or condition associated with that tran-
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sition. Dotted arrows represent implicit typestate transitions. These are usually

transitions from Complete, a typestate indicating that an operation has completed

all updates to an object that is still in use, to Start, the starting state of initialized

persistent objects in system call handlers. This transition is not associated with an

explicit function invoked by SquirrelFS; rather, it occurs implicitly between when

the typestate wrapper around a persistent reference is dropped and when the same

persistent value is read again.

Most typestates are used with multiple types (see Table 4.1), but the de-

pendencies and transition functions differ between types of persistent objects. For

simplicity, these diagrams do not reflect all dependency relationships in SquirrelFS.

They do not include recovery typestates and do not show full dependencies for op-

erations that interact with multiple persistent objects. Typestate transitions that

have a dependency on the operational typestate of another object that is not shown

are marked with an asterisk. While these figures present persistence and operational

typestate separately, they are used together in SquirrelFS to determine whether a

transition is safe; for an example, see Figure 4.3. An object must be Clean before an

operation that updates its operational typestate can be performed. However, inde-

pendent transitions may change the typestate of some objects while others are Dirty

or InFlight.

Figure 4.7 shows the dependencies between the three persistence typestates

used in SquirrelFS. Persistence typestates are maintained separately from opera-

tional typestates and apply to all types of persistent objects. Each typestate wrapper

type implements flush and fence functions to transition from Dirty to InFlight

and InFlight to Clean, respectively. Any function that modifies a Clean persistent

object acts as a transition from Clean to Dirty.

Figure 4.8 shows dependencies between typestates associated with regular in-

odes in SquirrelFS. Regular and directory inodes are distinguished using a type

parameter and are thus generally treated as different types with some shared func-
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Figure 4.7: SquirrelFS persistence typestates. The figure shows dependencies
between persistence typestates in SquirrelFS.

Figure 4.8: SquirrelFS regular inode typestates. The figure shows dependen-
cies between operational typestates for regular inodes in SquirrelFS.
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Figure 4.9: SquirrelFS directory inode typestates. The figure shows depen-
dencies between operational typestates for directory inodes in SquirrelFS.

tionality, so they have separate typestate dependency diagrams. Increasing a regular

inode’s size also requires a page descriptor structure with a typestate indicating that

we have already written some additional data to this file to ensure that a crash can-

not accidentally expose garbage data. SquirrelFS maintains as an invariant that

an inode’s link count is always greater than or equal to the true number of links, so

decreasing the inode’s link count also requires a directory entry whose inode number

has been cleared. The transitions from IncLink and Alloc to Complete do not make

any durable modifications to this inode; rather, they are made by a function that

updates a directory entry’s inode number. The transition to Complete, which has no

explicit transition functions to other states, ensures that an IncLink or Alloc inode

can only be used with a single directory entry update.

Figure 4.9 shows dependencies between typestates associated with directory

inodes. Directory inode dependencies are similar to those of regular inodes except

that the conditions for transitions associated with link counts are slightly different

and directory inodes do not use the {Inc,Dec}Link typestates. The specific directory

entry operation associated with the transitions from IncLink to Complete is also
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Figure 4.10: SquirrelFS directory entry dependencies. Directory entry update
dependencies in SquirrelFS.

different, since a directory inode’s link count is increased only when a new child

directory entry is created.

Figure 4.10 shows dependencies between typestates associated with directory

entries. Along with similar allocation/deallocation transitions to inodes, SquirrelFS

uses several directory-entry-only typestates in rename operations to provide a fully

crash-atomic implementation of the rename system call. Renaming and Renamed rep-

resent the state of the source directory entry after the rename pointer has been set

and after the destination directory entry’s inode number has been updated, respec-

tively (steps 2 and 3 in Figure 4.2). SetRenamePointer and InitRenamePointer

represent the state of the destination directory entry as its rename pointer and new

inode number, respectively, are set. The same functions simultaneously update the

typestates of both directory entries involved in the rename operation in both cases.

Figure 4.11 shows dependencies between typestates associated with page de-
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Figure 4.11: SquirrelFS page typestates. The figure shows dependencies be-
tween operational typestates for pages in SquirrelFS.

98



scriptors and page contents. For simplicity, SquirrelFS uses a single wrapper struc-

ture to represent modifications to both page descriptors and the contents of their

associated pages. The typestate of these structures describes the state of a list of

logically-sequential pages in a file, and typestate transitions on these structures up-

date the state of all pages in the list. SquirrelFS tracks the typestate of collections

of pages, rather than per-page typestate as with other types of persistent objects,

due to language limitations and the inherent challenge of tracking typestate for an

arbitrary number of objects. For more detail, see §4.3.3 and §4.5. This diagram is

not cyclic because the lists used in each operation are constructed on-demand with

the pages required for that operation, so there is no implicit transition from, e.g.,

Complete to Start as there is for other structures.

SquirrelFS may obtain an incomplete list of pages if the required pages have

not already been allocated, e.g., during an append operation. The caller passes the

wrapper constructor the range of desired pages; if all pages in that range exist, the

constructor returns a list in the Writeable state. Otherwise, it returns a list in the

Start state, which cannot be written to or zeroed out until the missing pages have

been allocated.

Code example. Figure 4.12 shows a typestate transition function used by SquirrelFS

as part of mkdir operations. The shown code is a slightly simplified version of the real

function from SquirrelFS. This function completes a mkdir operation by setting

the new directory entry’s inode number to that of a newly-allocated directory inode.

The function is implemented only for DentryWrapper objects with type parameters

Clean and Alloc.

This function (and any other functions defined in this impl block) can only

be called on DentryWrapper objects with the specified typestates. This function also

takes, and updates the typestate of, two Clean directory inodes: one in the Alloc

state and one in the IncLink state. Together with the self parameter, these three

parameters specify the typestate dependencies for this operation and ensure that
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the new directory entry cannot point to the new inode until the new inode is fully

allocated and its parent’s link count has been incremented.

Note that although DentryWrapper takes two type parameters, it does not

store values of these types at runtime. However, the Rust compiler requires that a

struct that is generic over a type T own a value of that type. The PhantomData

type seen on lines 13 and 14 is a Rust standard library type that can be used to

satisfy this requirement without using unnecessary space. A struct with a field of

type PhantomData<T> appears to own a value of type T to the compiler, allowing this

check to pass. However, PhantomData<T> is a zero-sized type, meaning that the field

takes up no space at runtime. SquirrelFS types with typestate use PhantomData

to meet the compiler requirement without using any runtime resources for typestate.

The type argument to PhantomData can usually be inferred automatically, but we

include it here for clarity.

4.2.6 Limitations of the approach

It is important to note that the typestate-based approach used in SquirrelFS

is not as powerful as full verification. Fully-verified systems, such as the FSCQ file

system [40], use theorem provers that can prove a wide variety of complex properties.

For example, a developer could prove, if required, that the system only uses even-

numbered inodes for files.

In contrast, our typestate-based approach can only check ordering-based in-

variants. Our approach could be used to verify that functions are called in a specific

order; for example, our approach can ensure that a file is not linked into the file-

system tree before it is allocated. However, it does not verify the implementation of

each function that is called.

Thus, full verification is significantly more powerful and general, but it pays

a cost in terms of complexity and development time. Our approach is more targeted

and ordering-based, but allows quick feedback and incremental development.
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1 impl DentryWrapper<Clean, Alloc> {

2 pub fn set_dir_ino(

3 self,

4 new_inode: InodeWrapper<Clean, Alloc, DirInode>,

5 parent_inode: InodeWrapper<Clean, IncLink, DirInode>,

6 ) -> (

7 DentryWrapper<Dirty, Complete>,

8 InodeWrapper<Clean, Complete, DirInode>,

9 InodeWrapper<Clean, Complete, DirInode>,

10 ) {

11 self.dentry.ino = new_inode.get_ino();

12 (

13 DentryWrapper {

14 state: PhantomData::<Dirty>,

15 op: PhantomData::<Complete>,

16 dentry: self.dentry,

17 },

18 InodeWrapper::new(new_inode),

19 InodeWrapper::new(parent_inode),

20 )

21 }

22 }

Figure 4.12: mkdir typestate transition function. The listing shows a typestate
transition function used by mkdir. Typestates are shown in bold.
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We believe this approach is a valuable addition to the repertoire of tools we

have for building correct file systems. This approach should be used alongside runtime

testing and model-checking approaches.

4.2.7 Relevance beyond PM

While we have designed SquirrelFS for persistent memory, SquirrelFS

would be relevant for any storage technology with byte-addressability and low latency.

The Compute Express Link [47] standard will support attached memory devices,

including PM, via the Type 3 (CXL.mem) protocol. These CXL-attached PM devices

will have the same interface and persistence semantics as current NVDIMMs, though

performance will be lower [16].

SquirrelFS, and SSU file systems in general, could be used on CXL-attached

memory. As SquirrelFS’s mount performance and memory footprint are tied to

the size of the device, they may worsen with significantly larger-capacity devices.

Further work will be required to optimize file systems based on our approach for such

devices.

4.3 Experience developing SquirrelFS

We now describe our experience with designing, developing, and testing

SquirrelFS. We also discuss the challenges we faced during this process.

4.3.1 Development process

Designing SquirrelFS. Our initial design closely followed that of BSD FFS [187],

but most aspects eventually diverged due to differences between storage hardware and

typestate considerations. We found that some data structures and crash-consistency

properties were better suited for use with the typestate pattern than others. For

example, we chose SquirrelFS’s backpointer-based page management approach be-
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cause it simplifies update dependency rules when allocating or deallocating pages.

With backpointers, these operations involve a constant number of persistent updates

and involve no additional durable structures. In contrast, tree or log-based approaches

need extra persistent metadata and may require additional updates to balance the tree

or free log space, both of which complicate dependencies and typestate management.

An important design decision we had to make was how granular typestate

would be. One option was to use specific typestates to represent each fine-grained

operation; e.g., have one typestate for initializing an inode’s link count, another

for setting its flags, etc. Another was to make each typestate more general, with

transition functions potentially performing multiple persistent updates. More general

typestates may sacrifice some bug-finding power, but they make the system easier

to understand and develop. In SquirrelFS, we aimed to strike a balance by

representing only operations that require a specific ordering with typestate. For

example, when initializing an inode in SquirrelFS, the order in which the values of

most fields are set is not relevant to crash consistency, as the contents of the inode are

not visible until it is linked into the file system tree. Therefore, SquirrelFS uses only

a single typestate (Init) to represent inode initialization, and another (Committed)

to indicate when it has been added to the tree.

Parallel model and system implementation. We developed the Alloy model

alongside SquirrelFS. This created a useful feedback loop in which the model sup-

ported the Rust implementation, and questions or changes to the implementation

could be quickly reflected and checked in the model. We used an incremental de-

velopment process, incorporating feedback from the Rust compiler and the model

immediately as we implemented the system. Many transitions in the model could

be translated directly into Rust typestate transitions, making the model a valuable

guide for implementing file system operations. When we made mistakes translating

the model into Rust, typestate checking quickly caught these issues.

Alloy also includes a graphical user interface for visualizing traces of operations
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on the model. This was useful for both investigating invariant violations and seeing

the set of transitions that occur in a given file system operation, which could be

translated directly into system call handler implementations. It also demonstrated

locations where multiple updates could safely share a single store fence, which helped

us avoid redundant fences.

4.3.2 Finding bugs

While developing SquirrelFS, we used a combination of typestate checking,

model checking in Alloy, and dynamic testing to find bugs.

Typestate checking. Typestate checking in the implementation was successful at

quickly catching both missing persistence primitives and higher-level ordering bugs;

we provide an example of each.

• Missing persistence primitives. Our initial implementation of write was missing

flush and fence calls after setting the backpointer of a newly-allocated page.

This bug was immediately highlighted as an error by the compiler. Had this

bug made it into the implementation, a crash could cause a file to have a size

larger than the number of pages associated with it, causing errors when trying

to read the file.

• Incorrect ordering. Our initial rename implementation mistakenly decremented

an inode’s link count before clearing the corresponding directory entry. A crash

could result in a link count that is lower than the true number of links, leading

to a dangling link if the inode is subsequently deleted.

Although we did not specifically check execution paths without crashes, the

crash-consistency invariants encoded in typestate were general enough to detect some

bugs in this code. For example, the compiler caught a bug where pages were not fully

deallocated during unlink, which did not require a crash to manifest. Typestate-

related compiler errors were relatively uncommon overall, since using the model as a
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guide for implementation helped us get ordering right early. However, it provided a

crucial safety net to prevent subtle bugs when we did make mistakes.

Model checking with Alloy. The Alloy model found several high-level issues in

SquirrelFS’s design that would have otherwise been difficult to detect and time-

consuming to fix, including the following examples.

• We initially believed that crash recovery would not be needed other than to

fix space leaks. Alloy found an instance of the model where a crash during

rename followed by deallocation of the destination directory entry could cause

an invalid directory entry to reappear. Fixing this required the addition of

recovery transitions.

• Early designs for SquirrelFS stored . and .. directory entries durably. We

discovered via model checking that our original dependency rules for handling

these directory entries during more complicated operations like rename were

not correct. Ultimately, we decided to not store these entries, since they can be

constructed at runtime using indexed information.

Testing. Neither the typestate pattern nor the Alloy model eliminated the need

to test SquirrelFS. Our primary goal was to check crash-consistency, and we did

not check any invariants that only impact regular, non-crash execution. We used

handwritten tests and the xfstests suite [264] to test these unchecked parts of the

code.

All bugs found through testing were in parts of SquirrelFS that were not

checked by typestate or directly modeled in Alloy. Most bugs were related to updating

volatile indexes or VFS inodes, e.g., failing to remove a deallocated object from

an index or setting the wrong value in the VFS inode. There were also bugs in

the implementations of typestate transitions, which are not themselves verified; for

example, the transition that wrote new file data to a page did not always calculate
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the offset for non-aligned writes correctly. Implementing bug fixes was quick since we

did not need to modify the typestate-restricted interface to objects and there were

no proofs to update.

4.3.3 Challenges encountered

Challenges with typestate. It is easier to write typestate-checked code than

it is to write verified code, but this comes at the cost of less powerful compile-time

checking. For example, checking universally-quantified formulas (e.g., all pages in a

file are allocated) is undecidable, and unlike verification-aware languages, the Rust

compiler has no heuristics to attempt to solve them. As a result, we cannot ensure

invariants such as “all objects in a set are in a certain typestate”; specifically, we

can’t encode this in typestate because the number of objects in the set is not known

at compile time.

This became a problem when implementing file-system operations like unlink,

where we would like to e.g., check that the backpointers of all pages belonging to

the file are cleared before deallocating the inode. Such a check ensures that the

system always follows soft updates rule 2 (never re-use a resource before nullifying

all previous pointers to it); by clearing all the page backpointers before deleting the

inode, we ensure that none remain when the inode is eventually reused. However,

it is impossible to check this property on arbitrary sets of pages if each page has its

own typestate. We experimented with several workarounds, including forcing write

operations to update no more than one page at a time (which was prohibitively slow

and did not solve the problem for unlink), and storing typestate in page structures

at runtime and manually adding assertions (which also impacted performance and

lost the benefit of static checking).

Ultimately, we decided to use a single piece of typestate to represent ranges

of pages (e.g., all pages in a file or a contiguous subsection). As shown in Fig-

ure 4.11, each typestate transition performs an operation on a range of pages, which
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is obtained on-demand. This solution moves some logic into the typestate transition

functions, where it is not checked for crash consistency issues. This sacrifices some

static checking power, but provides a simple interface for modifying and reasoning

about collections of pages. For example, the transition from Writeable to Zeroed

in Figure 4.11 iterates over each page in the list and zeroes it out before returning.

If there is a bug in this implementation that causes it to skip some pages, it may be

caught by standard testing but will not be identified by typestate checking. In prac-

tice, we found that operations on page ranges were longer and slightly more complex

than other typestate transition functions, but they are not difficult to understand or

test.

Challenges with Alloy. As SquirrelFS grew in complexity, it became harder

to maintain the model and get useful feedback quickly. The model checker uses a

SAT solver to check invariants, and the formulas representing a large model can take

days or weeks to solve. We checked that traces with multiple concurrent operations

were crash consistent, which increased the size of the problem further. To get faster

feedback, we built a custom utility to run multiple independent instances of the model

checker in parallel and split larger predicates into smaller, more concrete sub-checks.

It could also be difficult to determine whether a reported failure was a false

positive. A particular challenge was dealing with frame conditions, predicates that

specify what should not change in a given transition. Alloy is free to arbitrarily change

any state that the current transition does not explicitly mention, so frame conditions

are crucial to constrain the model to real traces. This behavior helps Alloy find

corner-case bugs, but it also leads to false positives. To overcome this challenge,

we built a syntax-based checker that parses the model using Alloy’s API and checks

that each transition explicitly mentions all mutable structures in the model. The

current version of the checker cannot detect all issues, but it detected many missing

conditions that would have otherwise taken hours to catch via model checking.
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4.3.4 Typestate beyond SquirrelFS

Costs and benefits of typestate. We do not have equivalent verified or unverified

systems to compare with SquirrelFS in terms of development and debugging ef-

fort; however, in the authors’ experience, designing and implementing SquirrelFS

required more effort than a typical unverified system, but far less effort than a ver-

ified storage system. We believe that debugging SquirrelFS was faster and easier

than debugging an equivalent unverified system, as following the typestate-enforced

ordering rules made it easier to implement the system correctly in the first place and

reduced the number of bugs overall.

Using the typestate pattern for crash consistency represents a useful new point

in the trade-off space between runtime testing and full verification. While it comes at

the cost of additional development effort compared to unverified systems to determine

correct ordering rules and does not gain the same correctness guarantees as verified

systems, it does eliminate an entire class of crash consistency bugs that are otherwise

difficult to find and fix [143, 166, 201]. Furthermore, as the pattern builds ordering

rules directly into a system’s implementation, the rules will stay up to date and

continue to prevent crash-consistency bugs as the system is developed further [107,

212].

Broader applicability. As the typestate pattern is a general approach for statically

checking the order of updates to data structures, it is useful in a broad variety of

contexts, several of which are described below.

• Volatile data structures: SquirrelFS does not use typestate to manage up-

dates to volatile data structures, but prior work on typestate verification has

focused entirely on such use cases [3, 243].

• Other types of storage systems: The typestate pattern could be used to enforce

ordering invariants on durable updates in other types of storage systems (e.g.,

key-value stores) with different crash-consistency mechanisms. We note that
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crash-consistency mechanisms like journaling and copy-on-write do not achieve

consistency entirely through ordering and would require auxiliary techniques to

check properties like atomicity.

• Durable layout: SquirrelFS’s on-storage layout is tailored to reduce the num-

ber of durable updates per file-system operation and to simplify ordering rules.

Other layouts could also be used in typestate-checked storage systems, although

the complexity of the ordering rules would increase.

• Asynchrony: The typestate pattern is compatible with asynchronous systems,

although the ordering rules to enforce are much more complicated in such sys-

tems, as updates from different operations may be interleaved.

4.4 Evaluation

We seek to answer the following questions in our evaluation of SquirrelFS:

1. What is the latency of different file-system operations on SquirrelFS? (§4.4.2)

2. How does SquirrelFS perform on macrobenchmarks? (§4.4.3)

3. How does SquirrelFS perform on real applications? (§4.4.4)

4. How long does SquirrelFS take to mount and recover from crashes? (§4.4.5)

5. What compilation, memory, and CPU overheads does SquirrelFS incur?

(§4.4.6)

6. Is SquirrelFS correct? (§4.4.7)

7. How could SquirrelFS’ performance be improved? (§4.4.8)

109



4.4.1 Experimental setup

We evaluate SquirrelFS on a two-socket, 32-core machine with 128GB of

memory and one 128GB Intel Optane DC Persistent Memory Module. The evaluation

machine runs Debian Bookworm and Linux 6.3.

We compare SquirrelFS against ext4-DAX [177], NOVA [266], andWineFS [132].

We configure all three systems to provide metadata consistency but not data consis-

tency to match SquirrelFS’s guarantees. All reported results are the average of

multiple trials. The red errors bars in Figure 4.13 indicate the minimum and maxi-

mum values recorded over all trials.

We cannot compare SquirrelFS to SoupFS [67], the only other soft up-

dates PM file system, as it is not open source. We do not present a comparison

of SquirrelFS against ArckFS [277], a PM file system that uses a soft-updates-

inspired crash-consistency mechanism, because ArckFS runs entirely in userspace.

Userspace file systems have significantly different performance characteristics from

in-kernel systems due to the reduced kernel crossings and different resource man-

agement behaviors. Small tests on ArckFS indicate that while it has lower average

latency than SquirrelFS on some system calls due to its lower software overhead, it

must periodically perform costly in-kernel PM allocations to serve some system calls,

incurring high tail latencies.

4.4.2 Microbenchmarks

We compare each system’s latency by testing several file system operations:

appending and reading 1KB and 16KB to a file, file creation, directory creation,

renaming a directory, and unlinking a 16KB file. None of the tests call fsync.

The average latency over 10 trials of the tested operations are shown in

Figure 4.13(a). The lowest latency file system in each test is either WineFS or

SquirrelFS. Ext4-DAX has the highest latency on many operations because it in-

teracts with the Linux kernel block layer for tasks like block allocation, which incurs
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Figure 4.13: SquirrelFS performance evaluation. The figure shows the perfor-
mance of the evaluated file systems on different benchmarks and applications. (a)
shows absolute latency of different file system operations; (b), (c), and (d) show
the relative throughput in kops/s of each system relative to Ext4-DAX on filebench,
YCSB on RocksDB, and LMDB respectively.

additional software overhead. It achieves similar performance to the other systems

on operations that do not go through the block layer (e.g., unlink). NOVA has higher

latency on mkdir and rename than WineFS and SquirrelFS because operations that

update multiple inodes require journaling in NOVA.

4.4.3 Macrobenchmarks

We evaluate SquirrelFS on the Filebench [248] storage benchmark suite.

We run four workloads from the suite — fileserver, varmail, webserver, and webproxy

— in their default configurations. Fileserver performs mostly writes with some whole

111



file reads; varmail is half appends and half reads; webproxy appends to each file and

reads from it several times; and webserver reads and occasionally appends to a log

file. Figure 4.13(b) shows the average throughput in kops/sec for each file system

on each workload. SquirrelFS achieves slightly better throughput than the next

fastest system on fileserver and varmail (8% and 13% better, respectively) and within

10% of the fastest system on both webserver and webproxy. Fileserver and varmail

perform many small appends, which SquirrelFS performs well on due to its lack of

journaling. Webserver and webproxy are more read-heavy, which all systems perform

roughly equally on. Ext4-DAX does not go through the block layer on reads and

it benefits from data contiguity awareness, making its performance similar or better

than the other systems on these workloads.

4.4.4 Applications

YCSB on RocksDB. We evaluate the four systems on RocksDB [224] using YCSB

workloads [49]. We run all workloads on a 25GB database with 25M records, 25M

operations, and 8 threads. All workloads are run using standard workload configu-

rations and the default settings of YCSB, which uses system calls for all operations.

Figure 4.13(c) shows throughput in kops/second relative to Ext4-DAX on each tested

workload.

SquirrelFS outperforms the other systems on Loads A and E, which are

100% small inserts. As seen on the other benchmarks, SquirrelFS performs par-

ticularly well on small appends due to its lack of journaling or logging. Writes that

require page allocation are particularly expensive in the other systems, as journal-

ing/logging the new metadata incurs an additional 2–3us in NOVA and WineFS and

3–4us in Ext4-DAX. Ext4-DAX and NOVA both also journal or log metadata on

every append, spending roughly 30% of each non-allocating call (approx 1–1.5us)

managing journals/logs.

All file systems are within 10% of Ext4-DAX’s throughput on Runs B, C, and

112



D. All of these workloads are at least 95% small (4KB) reads, which all four systems

achieve similar performance on.

SquirrelFS achieves the best throughput on Runs A and F, which are 50%

reads and 50% updates (Run A) or read-modify-write operations (Run F). Ext4-

DAX, NOVA, and WineFS all incur logging/journaling on these workloads; Ext4-

DAX outperforms NOVA and WineFS because it has less journaling overhead for

in-place updates and is more aware of data contiguity on reads.

Ext4-DAX achieves the best performance on Run E, which is 95% range

scans and 5% inserts. Ext4-DAX’s contiguity-awareness and better fragmentation-

prevention mechanisms help it outperform the other systems on larger read opera-

tions.

LMDB. We also run LMDB [247], a memory-mapped database, using db bench’s

fillseqbatch, fillrandbatch, and fillrand workloads. Each experiment uses

100M keys on an empty file system. Figure 4.13(d) shows the throughput in kops/sec

for each file system on each workload. Each file system has throughput with 12% of

the other systems. Most updates are done to memory-mapped files, so differences in

the performance of system calls and metadata management designs have a reduced

impact.

Git. We also evaluate each system by using git checkout to switch between major

Linux kernel versions from GitHub. We start at v2.6.12 (the oldest version of Linux

available on GitHub) and successively check out versions 3.0, 4.0, 5.0, and 6.0. Ta-

ble 4.2 shows the average time for each checkout over 10 iterations. The time to check

out a given version in each file system is within 8% of the other systems.

4.4.5 Mount time

Table 4.3 shows how long it takes to mount SquirrelFS, compared to Ext4-

DAX as a baseline, on a 128GiB PM device with different contents. We report the
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Checkout time (s)
System v3.0 v4.0 v5.0 v6.0

Ext4-DAX 4.6 4.9 6.5 7.6
NOVA 4.6 4.9 6.5 7.2
WineFS 4.5 4.7 6.1 7.0
SquirrelFS 4.7 4.9 6.4 7.2

Table 4.2: Linux checkout time comparison. The table shows the time to git

checkout each successive Linux kernel version.

Mount time (s)

Normal Recovery
System mkfs Empty Full Empty Full

Ext4-DAX 0.33 0.01 0.01 0.01 0.01
SquirrelFS 5.80 5.51 30.50 5.76 55.50

Table 4.3: SquirrelFS mount times. Time in seconds to mount Ext4-DAX and
SquirrelFS in different states. Times in the “Normal” column come from mount-
ing a cleanly-unmounted system, and those in the “Recovery” column are obtained
by modifying the file system to run recovery when mounting a cleanly-unmounted
instance.
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average of 10 mount operations. We measure the time each system takes to run mkfs

(i.e., to create an empty file system instance), to mount an empty system, and to

mount a completely full instance. To create a full system, we create 128 directories

and create 32KiB files in each directory in parallel until failure.

SquirrelFS takes longer than Ext4-DAX in all setups. During mkfs, it must

zero out almost the entire device, since SquirrelFS interprets non-zeroed-out data

structures as allocated, and construct the allocators. Mounting an empty system is

similar, except that SquirrelFS scans the inode and page descriptor tables rather

than zeroing them. Mounting a full system takes longer because SquirrelFS has

to scan more data structures (e.g., it now must read each page of directory entries to

determine the file system structure) and allocate space for each index.

Table 4.3 also reports the time taken by SquirrelFS and Ext4-DAX to per-

form recovery procedures on a cleanly-unmounted device in the “Recovery” column.

We added a mount-time argument to each system that instructs it to run recovery-

related code, regardless of whether a crash occurred.

SquirrelFS takes additional time to mount when running recovery even

when no cleanup is needed. If SquirrelFS detects that it was not unmounted

cleanly, it constructs additional structures to keep track of orphaned objects and the

true link count of each inode. It fills in these structures during the regular rebuild

scan and uses them to free orphans and correct link counts at the end of the mount

process. SquirrelFS also checks each directory entry for non-null rename pointers

and either rolls back or completes any interrupted renames. In this experiment,

Ext4-DAX’s mount time is unaffected by running recovery code.

SquirrelFS’s mount time could be improved by parallelizing some of its

rebuild and recovery logic. For example, the inode and page descriptor table scans

are completely independent and could be done in parallel. The file system tree rebuild

logic could also be distributed across multiple threads.
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System LOC Compile time (s)

Ext4 45K 38
NOVA 16K 20
WineFS 9K 13
SquirrelFS 7.5K 10

Table 4.4: Compilation time comparison. The table shows the time to compile
different PM file systems as loadable kernel modules. Ext4’s line count includes
interleaved DAX and non-DAX code.

MiB used
System Empty Full

Ext4-DAX 1 336
NOVA 1 64
WineFS 3 57
SquirrelFS 1104 3220

Table 4.5: Memory usage comparison. The table shows memory usage in empty
and full instances of each evaluated system.

4.4.6 Resource usage

Compilation. SquirrelFS takes approximately 10 seconds to compile on our test

machine, including typestate checking. This compares well to fully-verified systems;

FSCQ [40] takes about 11 hours to verify, and VeriBetrKV [104] takes 1.8 hours (10

minutes when parallelized).

SquirrelFS also compiles faster than the other tested systems on the test

machine. Table 4.4 shows the size of each system in lines of code and how long it

takes to compile. SquirrelFS’s more complicated typechecking does not noticeably

impact its compilation time.

Memory. Table 4.5 shows the amount of memory used in empty and full instances

of each evaluated system. We measured memory usage by checking the amount of

available memory reported by /proc/meminfo before and after mounting and filling

up the file system. The reported numbers are the average of five measurements.
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SquirrelFS uses significantly more memory in both cases than the other evaluated

systems.

In an empty system, most of this space is taken up by free lists. SquirrelFS

uses free lists backed by red-black trees to allocate inodes and pages. Each inode and

page number in the free list is 8 bytes, and each red-black tree node uses 24 additional

bytes to store its color and child pointers. In this experiment, SquirrelFS has

approximately 4 million inodes and 32.5 million data pages, which result in free lists

that use about 1GiB of memory when full.

In a full system, most memory is used by SquirrelFS’ indexes. The indexes

use red-black trees to map inodes to information about their pages and/or directory

entries, which is also stored in a second level of red-black trees. The exact memory

usage depends on the number of directories and regular files in the system, as directo-

ries take more space to index since each directory’s pages and dentries are indexed in

memory. The dentry and data pages indexes are the most expensive, each occupying

about 1GiB. In this experiment, all indexes remain in the VFS inode cache along with

a lock around each index and some additional per-file metadata; altogether, this uses

another 1GiB of DRAM.

CPU. SquirrelFS does not start new threads in any of its operations. We leave

the use of more threads for operations like freeing pages, running crash recovery, etc.

to future work.

4.4.7 Correctness

Model checking. We check that a correctness invariant always holds in all traces

of our Alloy model. We bound traces to include two operations (which may be

concurrent), 10 persistent objects, and up to 30 steps. The invariant includes both

sanity checks on the model and file system consistency checks. The sanity checks

ensure, for example, that objects will never end up with conflicting typestates. The

consistency checks ensure that 1) objects always have a legal link count, 2) there
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are no pointers to uninitialized objects, 3) freed objects do not contain pointers to

other objects, and 4) there are no cycles of rename pointers and directory entries are

pointed to by at most one rename pointer.

Testing. We test SquirrelFS using a set of handwritten tests and the xfstests [264]

test suite. SquirrelFS currently passes all supported tests (67) from xfstests’

generic test suite. The rest of the tests use system calls or arguments that are

currently not supported by SquirrelFS.

Crash consistency. We used Chipmunk [166] (Chapter 3) to test SquirrelFS

for crash-consistency bugs. We modified Chipmunk’s test generators to remove sev-

eral system calls that SquirrelFS does not currently support but otherwise ran its

full suite of systematically-generated tests and fuzzed the system for approximately

24 hours. Chipmunk did not find any ordering-related crash-consistency bugs in

SquirrelFS, providing evidence that typestate-checked SSU is an effective mech-

anism for preventing such bugs. Chipmunk did find four crash consistency bugs in

unchecked parts of SquirrelFS code, three in its rebuilding of volatile data struc-

tures and one in the body of typestate transitions in which a cache line flush was

issued to the wrong address. As these are not caused by incorrect update ordering,

the typestate pattern did not catch them at compile time. We found that using the

typestate pattern in SquirrelFS made locating and fixing these bugs faster and

easier, as we could focus on the specific regions of code that are unchecked and are

thus more likely to have bugs.

4.4.8 Limitations and improvements

As SquirrelFS is a research artifact focused on correctness rather than per-

formance, its current design has several performance limitations. It uses more memory

than the other evaluated systems and takes longer to mount. SquirrelFS uses more

memory because it maintains an index of the entire file system in volatile memory.

Its longer mount times stem from additional work during its scan of the entire system
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and the need to allocate space for indexes and allocators as they are rebuilt. Recov-

ering from a crash involves scanning more durable structures and keeping track of

additional system information, which further increases post-crash mount times. We

now discuss several ways that SquirrelFS’s mount performance and memory usage

could be improved.

Parallelizing mount. SquirrelFS runs all mount-time device scans and volatile

data structure construction sequentially, and its mount time could be improved by

dividing this work across separate threads. Parallelizing mount procedures is a well-

known technique in PM file systems [132, 266]. During remount, SquirrelFS first

scans the inode and page descriptor tables to determine which entries are allocated

and which inode each allocated page points to. Since SquirrelFS uses per-CPU

page descriptor tables, each table could be scanned in parallel. SquirrelFS’ inode

table is currently managed globally, but could also be divided among multiple threads

to scan in parallel during mount.

After determining which inodes and pages have been allocated, SquirrelFS

scans each directory entry page to determine which durable structures are reachable

from the root of the system and build the global index. It performs a breadth-first

search over the file system tree, starting at the root inode, by reading the valid

directory entries in each directory page associated with the current inode. This scan

could be performed by multiple threads in parallel, although it would require more

synchronization than the previous step on shared data structures like the search queue

and indexes. Finally, we could parallelize the construction of the inode and page free

lists, which currently use an inefficient implementation that determines which table

entries are free by iterating over lists of allocated entries.

There are also several recovery-specific operations that could also be paral-

lelized. For example, checking for interrupted rename operations requires an addi-

tional directory entry scan before constructing the global index, which could also be

divided among multiple threads. SquirrelFS also durably frees all orphaned data
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structures after a crash; this could easily be parallelized but is unlikely to have a

performance impact, since we expect there to be relatively few orphaned structures

after a crash.

Durable indexes and/or allocators. SquirrelFS currently keeps all indexes

and allocators in volatile memory. Along with increasing its memory footprint, this

also hurts mount performance, since space for these structures must be allocated

at mount time. SquirrelFS could improve in both dimensions by moving these

structures (partially or entirely) to PM. Allocators could be straightforwardly stored

on PM, e.g., using bitmaps as in the original soft updates implementations [187].

Reducing the memory footprint of SquirrelFS’ indexes is more complex. We

now consider two possible approaches. First, SquirrelFS could be modified to use

a durable layout that is more amenable to lookups, eliminating the need for a global

index. For example, SquirrelFS could use a simple direct/indirect block design to

manage file contents as in prior soft updates implementations [187]. The dependencies

for this approach are more complicated than SquirrelFS’ current backpointer-based

page management, so this would require nontrivial changes to its typestates as well

as its durable layout.

Second, we could store separate durable index structures without otherwise

changing the layout of SquirrelFS. For example, NOVA and WineFS checkpoint

allocator structures during clean unmount so that they can be rebuilt without a full

device scan [132, 266]. This improves regular-case mount performance, but it does

not eliminate the need for an expensive post-crash device scan and would not reduce

DRAM usage in SquirrelFS. Another option would be to store these structures in

a dedicated region of PM to ensure updates become durable quickly without needing

to modify the layout of the rest of the system. However, it would be difficult to

keep these structures in sync with the main file system tree in the event of a crash.

One potential solution would be to maintain per-file indexes and store some durable

metadata (e.g., setting a bit or storing a checksum of the index contents) that can
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be used to determine if we crashed while updating a given index. After a crash, we

would rebuild only the indexes that may have been corrupted by the crash, which

would require a shorter recovery scan. To simplify this scan, we would most likely

also expand SquirrelFS’ typestates and dependencies to include updates to these

indexes.

Improved in-memory data structures. SquirrelFS’ memory usage could also

be improved by simply using more space-efficient data structures for volatile indexes.

This would also improve mount times over the current implementation by reduc-

ing the amount of memory that needs to be allocated during mount. For example,

SquirrelFS’ allocators are currently implemented using the Linux kernel’s built-in

red-black tree library, but an in-memory bitmap or a list of free page ranges would

be much more efficient. Its directory entry index uses full file names as keys, which

could be hashed to save space, and the dentry metadata structures stored in this

index could be further optimized. SquirrelFS also currently uses separate indexes

to map directory inodes to their pages and child directory entries for simplicity, but

these indexes could be combined to save additional space.

4.4.9 Summary

SquirrelFS provides comparable performance to other PM file systems,

while providing strong guarantees about its crash consistency. Due to the innova-

tive use of typestate checking, we were able to implement SSU and gain confidence

in its correctness. SquirrelFS gains an advantage over other file systems in write-

dominated workloads, since soft updates avoids writing to a log or to a second copy

of the data. The design of SquirrelFS trades off good common-case performance

for slightly longer mount times compared to other file systems; we believe this is ac-

ceptable since crashes are rare. SquirrelFS compiles at the same rate as other PM

file systems, despite the strong type checking.
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4.5 Typestate discussion

Prior work [60,75,160,243] has established the formal guarantees that can be

obtained from typestate checking, fundamental limitations of the approach, and the

computational complexity of statically analyzing typestates in a program. In this

section, we discuss these results and apply them to SquirrelFS and the Rust-based

typestate checking used in its implementation.

Theoretical properties of typestate checking. Static program verification is

computationally complex. Many problems in static analysis are at least NP-complete,

if not undecidable or uncomputable. Frameworks for developing fully-verified pro-

grams, like interactive proof assistants and verification-aware programming languages,

generally rely on sophisticated theorem provers such as Z3 [59] or other solvers [226].

To handle complex queries, these tools use heuristics and/or require a high degree of

developer interaction based on a significant amount of work over many years in the

verification community.

The computational complexity of tracking typestate in a program depends on

the structure of the target program and the specific property being verified. Even

conceptually-similar properties, such as ensuring that a file is not read after it is

closed and ensuring that it is not read before it is opened, are in different complexity

classes (here, P and PSPACE-complete, respectively). The presence of pointers and

aliasing in a program significantly complicates typestate analysis; in the worst case,

it is undecidable in a program with recursive data structures. For more discussion

and full proofs of these results, see Field et al. [75].

Typestate checking in SquirrelFS. Although SquirrelFS uses typestate to

check properties about data structures containing references to other structures (e.g.,

directory entries containing inode numbers), it only accesses a finite and statically-

known number of typestate-ful objects in each operation. When a durable object is

accessed, SquirrelFS checks its contents to determine its current typestate (gener-

ally Start or Free) and constructs a wrapper structure with the current typestate
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that contains a reference to the durable object itself. Typestate transition functions

act on the type of this wrapper, not the type of the durable object itself, which hides

pointers from typestate checks and reduces complexity.

Comparison to typestate-oriented languages. Several programming languages

have been designed partially or entirely around typestate-based static analysis. We

focus here on two such languages: Vault [60], a C-like language for low-level sys-

tems used to build Windows 2000-compatible device drivers, and Plaid [3, 244], a

general-purpose language that extends standard object-oriented programming with

dynamically-checked typestates. These languages include specific features for rea-

soning about typestates, such as the ability to maintain multiple mutable aliases

to a single value or to maintain typestate information about an arbitrary number

of objects in a collection. We present a comparison of these languages to Rust to

demonstrate other capabilities of typestate-related techniques not discussed or used

in SquirrelFS, and to provide intuition about the limitations of the approach.

Rust’s typestate support is less powerful than that of these other languages, so prop-

erties that can be checked with typestate in a Rust program are a subset of those

that could be checked in programs written in these typestate-oriented languages.

Vault. The Vault programming language is based on C and builds on the idea of

typestate to support tracking states of aliased objects using prior theoretical frame-

works [52]. Vault’s key insight is that adding a level of indirection between an object’s

type and its compiler-tracked state allows for more flexible and powerful static check-

ing. To do this, Vault tracks resources using a set of keys, which describe the current

state of each object and can be checked in function pre- and post-conditions.

Unlike Rust, Vault allows multiple mutable aliases to individual objects, al-

though developers are required to explicitly state which names alias to which objects.

Rust does not support multiple mutable aliases to the same resource without runtime

checking via the interior mutability pattern or use of unsafe Rust, both of which give

up some strong guarantees from the compiler. We did not find the inability to check
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properties about multiple mutable aliases problematic in SquirrelFS, as dealing

with aliasing restrictions is a standard part of Rust development, and we generally

did not need multiple aliases to the same durable structures. Vault also provides a

way to statically reason about the state of arbitrary numbers of objects in a collection

by storing key information alongside the corresponding resource. In Rust, typestates

are part of an object’s type, and objects of different types cannot be stored in a col-

lection and still benefit from strong compile-time checks. This imposed a limitation

on SquirrelFS’s design that all objects with typestate had to be used only in fixed,

statically-known numbers, which weakened the guarantees we could obtain in some

operations.

Vault’s main case study was a floppy disk driver compatible with Windows

2000 that tracked low-level states associated with, e.g., I/O request status, thread

coordination operations, and interrupt levels. Some operations modeled in this case

study — for example, passing a key from one thread to another to allow the second

thread to access the associated resource, and a lock model in which the proper key

must be held to access the resource — are similar to features of Rust’s ownership-

based type system and channels for sending data between threads, which are distinct

from the concept of typestate in Rust.

Plaid. Plaid is a general-purpose object-oriented programming language that treats

states similarly to classes. Plaid is dynamically typed and typestate violations are

reported as runtime errors (unlike Rust and Vault, in which typestate-related checks

run at compile time). As a result, Plaid avoids some challenges with typestate check-

ing in Rust, such as the issue of tracking typestate of objects in collections, at the

cost of static guarantees.

Plaid provides several ways to interact with aliased objects. Objects may be

defined as shared, meaning that there may be multiple mutable aliases to that object

but no client is allowed to change the object’s state (i.e., only modifications that do

not involve a state transition are legal). The authors also propose the use of dynamic
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tests to check that an object’s state has not been changed before some operations,

which is more flexible than the former approach but introduces additional runtime

overhead. Similar techniques could be achieved in Rust by using interior mutability,

a pattern that provides a way to gain mutable access to an object while there exist

immutable references to it. However, as in Plaid, this would give up the benefits of

statically checking.

4.6 Summary

This chapter presents a methodology for crash-consistent file system devel-

opment. We propose the use of the typestate pattern in Rust to statically check

crash-consistency invariants with low proof burden. We also introduce a novel crash-

consistency mechanism, synchronous soft updates, that is well-suited to enforcement

with the typestate pattern and that eliminates many challenges associated with the

original soft updates technique. We develop SquirrelFS, a new file system for

persistent memory that uses statically-checked synchronous soft updates for crash

consistency. SquirrelFS achieves comparable or better performance than other

PM file systems and required no language modifications or verification expertise to

build.

125



Chapter 5: Formally verifying PM storage systems

In Chapter 3 and Chapter 4, we discussed testing and lightweight language-

based static checking as techniques for ensuring crash consistency. However, neither

technique can guarantee that a system is correct with regard to a specification. To

obtain stronger guarantees, we can formally verify the system using a proof assis-

tant or verification-aware programming language. Verification is, however, difficult,

and existing techniques for verifying crash consistency and corruption detection in

particular are difficult to use in practice.

In this chapter, we present PoWER, a new approach to verifying crash consis-

tency, and use it to verify CapybaraKV, a PM key-value store, and CapybaraNS,

a PM notary service. Both systems also have verified corruption-detection capabil-

ities based on a new model of data corruption, also discussed in this chapter. The

key benefit of these techniques is that they are flexible and tool-agnostic. In partic-

ular, PoWER only uses standard constructs that are present in most verifiers and

that are relatively easy to learn, making it more accessible than prior work that uses

significant custom-built infrastructure or language features.

We first discuss prior work on verified storage systems to motivate the need

for new approaches (§5.1). We next describe PoWER, our new crash-consistency

verification approach, in detail (§5.2). We also describe the disk models we have

used with PoWER, proofs that PoWER corresponds to other crash-consistency ver-

ification techniques, and a set of proof strategies we use to simply crash-consistency

proofs with PoWER in this section. We describe our approach to detecting data

corruption, including our novel model that allows developers to prove the absence of

a certain number of bits of corruption, and a new primitive for crash-safe updates on

persistent memory (§5.3). We next describe CapybaraKV (written in Verus) and

CapybaraNS (written in Dafny), our verified systems built using PoWER and our

corruption model (§5.4). This section also includes a discussion of pmcopy, a Rust
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crate we developed for CapybaraKV to facilitate aspects of crash-consistency proofs

that are not currently supported by Verus. Finally, we present an evaluation focusing

on CapybaraKV and comparing its performance to unverified PM KV stores (§5.5).

This chapter is based on the paper “PoWER Never Corrupts: Tool-Agnostic

Verification of Crash Consistency and Corruption Detection” [165], which will appear

at OSDI 2025. We mention throughout the chapter the components to which co-

authors made significant contributions. Much of the work described in this chapter

was completed during two internships at Microsoft Research, during which I was

mentored by Jay Lorch and Chris Hawblitzel and collaborated with Cheng Huang

and Yiheng Tao in Azure Storage.

5.1 Motivation

In this section, we describe prior work on verified storage systems to motivate

the need for a new, tool-agnostic technique.

5.1.1 Formal verification of crash consistency

Software verification tools are best suited for verifying properties encodable

with Hoare logic [77, 111], and crash consistency does not seem to fit this mold. In

Hoare logic, one writes specifications for functions in the form of preconditions, which

must be true when the functions are invoked, and postconditions, which must be true

when the functions complete. However, crashes may occur partway through function

execution, and Hoare logic does not let a developer directly specify conditions that

must hold throughout the body of each function. For this reason, there has been much

research proposing specialized methodologies for reasoning about crash consistency.

Table 5.1 compares these techniques with our proposed approach, PoWER, across

several dimensions. We describe related work on verifying crash consistency in more

detail in Chapter 6.
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System
perf.

Tool
supportAutomation Expressivity

CHL [40] Low High Low Low
Atomic inv. [32] Low High Med Low
State machine [104] Med High Low Med
Push-button [240] High Low Low Low
PoWER Med High High High

Table 5.1: Verification technique comparison. The table compares different
crash-consistency verification approaches.

Crash Hoare logic. Crash Hoare logic (CHL) is used by FSCQ [40], an xv6-like

file system implemented and verified in Rocq [226]. CHL extends traditional Hoare

reasoning with crash conditions that describe system state in the event of a crash.

CHL’s support for crash conditions is based on separation logic [223], which enables

describing disjoint resources (e.g., different parts of a disk) with separate predicates.

CHL is currently only supported by Rocq-based verification tools, which have a steep

learning curve. Rocq programs can only be run by first extracting them to Haskell or

OCaml, which limits their performance. In contrast, PoWER can be used with any

verifier that supports standard Hoare logic, including verifiers like Verus [163] that

produce faster code.

Atomic invariants. GoJournal [32] and other systems using Perennial [31] make

use of an advanced language feature called atomic invariants to reason about crash

states. An atomic invariant is a predicate about a resource (e.g., a storage device);

the only way to access the resource is to “open” the invariant, which allows execu-

tion of a single atomic instruction before re-establishing the predicate and “closing”

the invariant. This approach is not tool-agnostic; support for atomic invariants is

difficult to implement, so many popular verifiers (e.g., Dafny [171], Prusti [10], and

Creusot [61]) do not support them. Even in those that do (e.g., Perennial, Verus),

they are challenging to use and often lack documentation.

State machine refinement. State machine refinement was originally developed for
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verification of distributed systems in the IronFleet project [107]. VeriBetrKV [104]

applies the technique to verify a key-value store based on the intuition that storage

software interacting with a disk is similar to unreliable nodes interacting in a dis-

tributed system. In these systems, each component (e.g., a single node, or a storage

system journal) is modeled as a state machine and proven correct in isolation using

Hoare logic assuming a synchronous and crash-free environment. Components are

then proven correct via a series of state machine refinement proofs using TLA-style

reasoning, which also prove properties related to asynchrony and crash consistency.

IronFleet and VeriBetrKV are implemented and verified in Dafny with custom-built

libraries for TLA-style reasoning, which is not natively supported. In contrast, our

techniques do not require additional infrastructure or separate proofs of state machine

refinement.

Push-button verification. Push-button verification [211] trades expressivity for

the ability to verify code without writing any proofs. Crash refinement [240] is a tech-

nique for push-button crash consistency verification in which the developer specifies

a (finite) set of all possible crash schedules and requires that all executions obey the

specification. This significantly reduces annotation and proof burden but is limited

to simple, bounded systems. Other highly-automated verification techniques, such as

the approach taken in TPot [29], have not been applied to storage verification.

5.1.2 Formal verification of corruption detection

VeriBetrKV [104] formally reasons about the use of checksums for corruption

detection. However, its corruption-detection axiom strongly dictates how data must

be checksummed and where the checksum must be stored. VeriBetrKV does not allow

checksumming data across blocks, and precludes storing the checksum separately from

the data. As we discuss in §5.3.1, this is overly restrictive for the systems we target.

In contrast, our proposed model imposes no limitations on what data is checksummed

or on where the checksum and data are stored. Moreover, it is difficult to determine
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what actual constraints VeriBetrKV’s axiom implies for the underlying storage device,

and whether it is sound, in contrast to our axioms that reason about the number of

corrupted bits that CRC algorithms are designed to detect.

5.1.3 Summary

Properties like crash consistency and corruption detection are difficult to rea-

son about using standard verification techniques like Hoare logic. To overcome this,

existing techniques have restricted the tools and approaches available to developers

who want to verify robust storage systems. Existing crash-consistency verification

approaches rely on non-trivial additional infrastructure and/or specific language fea-

tures. This restricts their applicability to future verified systems, especially because

developers of these systems may want to use newer, more advanced verification lan-

guages that do not support these features in order to achieve good system perfor-

mance. Furthermore, the only existing model of corruption detection in a verified

storage system is not compatible with byte-addressable storage media. These two ob-

stacles motivate the development of our new techniques for verifying crash consistency

and corruption detection, which we discuss in the following sections.

5.2 Verifying crash consistency using PoWER

This section discusses our novel, tool-agnostic technique PoWER for verifying

crash consistency in storage systems. Unlike prior work, it can be used to concisely

verify crash consistency with only basic verifier features.

5.2.1 PoWER

Our main contribution is Preconditions on Writes Enforcing Recoverability

(PoWER), a way to verify crash consistency based on standard Hoare logic. This is

challenging because most verification tools are designed to reason about the state of

the system before and after a method’s execution. They do not provide a clear way
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to specify what must be true throughout the method’s execution, and since crashes

may happen at any time, such a specification is necessary.

Overall idea. The key idea behind PoWER is to enforce at the API level that all

durable updates must be provably crash safe. To do this, we add a single precondition

to the API’s write method, which requires that all new crash states introduced by

the write are crash consistent.

This is possible because one can describe all new crash states introduced by

a write before it is invoked, even though asynchronous partial completion of those

writes can occur at any time. By adding a precondition to the write method that

forces the developer to reason about all such resulting crash states, we can ensure the

developer cannot introduce crash-consistency bugs.

Modifying the API this way ensures correctness with no performance cost

because all annotations involved in ensuring preconditions on writes are erased at

compile time. The compiler generates an executable equivalent to what would exist

with the standard, non-PoWER API.

The PoWER API. A standard storage API includes three main methods: read,

which returns the most recently written bytes at a given address; write, which starts

an asynchronous write but does not necessarily make it immediately durable; and

flush, which ensures prior writes are durable. Their standard preconditions check

properties like addresses being in bounds.

Figure 5.1 shows a simplified specification of a write method in the PoWER

API in Verus. The requires clause specifies preconditions and the ensures clause

specifies postconditions. old(x) is the contents of mutable reference x upon method

invocation. x@ is shorthand for x.view() and represents an abstraction of x (e.g.,

the current state of a storage device including outstanding writes).

The new precondition introduced by PoWER is on lines 5 and 6; it requires

that all newly introduced potential crash states are permitted. The spec function
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1 pub exec fn write(&mut self, addr: u64,

2 bytes: &[u8], perm: Tracked<&Perm>)

3 requires

4 addr + bytes@.len() <= old(self)@.len(),

5 forall|s| can_result_from_partial_write(s, old(self).durable_state,

6 addr as int, bytes@) ==> perm@.check_permission(s),

7 ensures

8 self@.can_result_from_write(old(self)@, addr as int, bytes@)

Figure 5.1: PoWER write example. The listing shows a simplified signature of an
asynchronous write method used with PoWER in Verus.

can result from partial write (defined in Figure 5.2) evaluates to true if s is a

possible crash state when writing bytes to addr in old(self).durable state. In

Verus, we express the set of permitted states with an unforgeable ghost (i.e., will be

erased by the compiler) permission token perm. Thus, this precondition specifies that

all storage states that may occur in the event of a crash during this write must be

allowed by perm. The set of newly-introduced potential crash states is defined by the

storage model, which accounts for device properties like atomic write granularity and

alignment.

The postcondition of this function specifies that the state of the PM device

is updated to reflect the write operation by the time it completes. We describe the

exact meaning of can result from write in the next section.

Storage model. PoWER is not tied to any specific device model or specification, and

we used several different models while developing systems using PoWER. It can be

used with any storage model that supports the standard operations described above

and captures the behavior of the device in the event of a crash.

The PoWER systems described in this chapter initially used a storage model

that we call the “natural model” as it is based on the standard intuition developers

use when reasoning informally about storage systems. The model we currently use is

based on the prophecy-based asynchronous disk model [249] used in Perennial [30,32].
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Compared to the natural model, this model eases reasoning about crashes by letting

proof code reason about possible future system states, akin to prophecy variables

used in some refinement proofs [130,159].

To explain the prophecy model, we first describe the natural model. The

storage device is modeled as a sequence of bytes, which each have a durable value

and optionally one or more “outstanding” values that may be lost in a crash. For

reasoning about crash consistency, storage is divided into chunks with size equal to

the atomic persistence granularity of the device. For instance, persistent memory uses

a granularity of 8 bytes, while hard drives generally use 512 B or 4 KiB sectors. A

read returns the most recent outstanding value for all bytes. A write updates the list

of outstanding values at each modified byte. A flush completes all outstanding writes,

replacing each byte’s durable value with its most recent outstanding value. On a crash,

each outstanding write operation is divided into chunk-granularity subwrites and some

of the subwrites are durably performed. This model is tricky to reason about because

the state includes both a current readable state and a set of outstanding writes.

Developers must explicitly reason about all outstanding writes and their potential

crash states each time the storage device is accessed, which complicates proofs. We

initially simplified this model by allowing only one outstanding value at each byte

at any time, but this imposed some unnecessary restrictions on legal operations and

required us to prove the absence of outstanding values in the range of every durable

update.

The prophecy model, given in Verus in Figure 5.2, is simpler in that the state

consists of only two byte sequences: the read state and the durable state (lines 2 and

3). The read state reflects all writes performed so far, including outstanding updates

that may be lost in a crash. The durable state reflects all subwrites performed so far

that will eventually become durable, due to either a subsequent flush or a crash that

will nondeterministically choose to render them durable.

Reads always return the contents of the read state. A write operation applies

133



1 pub struct PersistentMemoryRegionView {

2 pub read_state: Seq<u8>,

3 pub durable_state: Seq<u8>

4 }

5

6 pub open spec fn chunk_corresponds(s1: Seq<u8>, s2: Seq<u8>, chunk: int)

7 -> bool

8 {

9 forall|i: int| 0 <= i < s1.len() && i / chunk_size() == chunk ==>

10 s1[i] == s2[i]

11 }

12

13 pub open spec fn can_result_from_partial_write(

14 post: Seq<u8>, pre: Seq<u8>, addr: int, bytes: Seq<u8>) -> bool {

15 post.len() == pre.len() && forall |chunk| {

16 ||| chunk_corresponds(post, pre, chunk)

17 ||| chunk_corresponds(post, update_bytes(pre, addr, bytes), chunk) }

18 }

19

20 impl PersistentMemoryRegionView {

21 pub open spec fn can_result_from_write(self, pre: Self, addr: int,

22 bytes: Seq<u8>) -> bool

23 {

24 &&& self.read_state == update_bytes(pre.read_state, addr, bytes)

25 &&& can_result_from_partial_write(self.durable_state,

26 pre.durable_state, addr, bytes)

27 }

28 }

Figure 5.2: Partial storage specification. The listing shows part of the specifica-
tion used by the prophecy-based asynchronous storage model in Verus.
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the entire write to the read state and a nondeterministically chosen subset of chunk-

granularity subwrites to the durable state. The function can result from write in

Figure 5.2 (lines 21–27) describes the effects of a given write. It specifies that the

read state receives the full update (line 24), and that the durable state is updated to

become a possible crash state (line 25–26) according to the storage model. The call

to can result from partial write does not concretely choose a specific potential

crash state; rather, it states that the resulting durable state is some crash state

without specifying its exact contents. We say that this state is prophesized by the

model. The postcondition of flush in the prophecy model asserts that the read state

matches the durable state, but that neither of these is changed by the flush. That is,

the durable state does not become the read state as a result of the flush. Rather, it

asserts that the prophesized durable state must have already been equivalent to the

read state. The intuition for why this is valid is that the flush narrows down the set

of possible prophesized states to only the state with the full write, since we no longer

need to consider possible branching timelines in which some subwrites were lost.

We switched from the natural model to the prophecy model partway through

development of CapybaraKV and found that it made proving crash consistency

much simpler. One must still reason, when calling a PoWER write, about all the

possible new crash states the write can introduce. But after the write, thanks to the

prophecy model, one need only reason about the single prophesized resulting durable

state. The Perennial authors have proven, in Rocq, that any system proven correct

using the prophecy model is also correct using the natural model, so this switch was

safe to do. We have also formally proven the soundness of our prophecy-based model

by building it as a library atop a similar natural non-prophecy model, leveraging

support for prophecy variables in Verus.

Specifying crash-consistent states. PoWER, like all crash-consistency specifica-

tions [32, 40], requires that the specification writer formally specify the set of crash-

consistent states. In theory, the developer may define this set however they like. We
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1 pub exec fn log_append(&mut self, ps: &mut PoWERStorage, bytes: &[u8],

2 perm: Tracked<&Perm>)

3 requires forall|s| perm@.check_permission(s) <==> {

4 ||| Self::rec(s) == Self::rec(old(ps)@)

5 ||| Self::rec(s) == Self::rec(old(ps)@) + bytes@

6 }

7 ensures Self::rec(ps@) == Self::rec(old(ps)@) + bytes@,

Figure 5.3: Verified log append signature. The listing shows a signature for a
log-append method that enforces crash consistency with PoWER. The ||| syntax in
Verus is similar to || and allows for “bulleted list” organization of disjunctions.

suggest the following approach, exemplified by Figure 5.3 which shows a simplified

signature for a synchronous, crash-atomic append operation in an append-only log.

Have the code define a recovery function rec that maps a sequence of bytes to an

abstract state. Then, make the set of crash-consistent states be the union of two sets:

(1) the set of states abstractly equivalent to the initial state, and (2) the set of states

permitted by the postcondition. In other words, when crashing mid-operation, the

code may either atomically execute that operation or do nothing.

5.2.2 Correspondence to other approaches

To demonstrate the soundness of the PoWER approach for specifying crash

consistency, we use mechanically-checked proofs to show correspondence to two other

approaches: CHL and atomic invariants.1 These are among the current state of

the art for verified storage systems, but require additional verifier features or code

infrastructure beyond Hoare logic and are thus not tool-agnostic.

Correspondence to Crash Hoare logic. To validate the soundness of our PoWER

specification approach, we produce a mechanically-checked Rocq proof of its corre-

spondence to CHL. We prove that any code satisfying a PoWER specification satisfies

a corresponding CHL specification, encoded as a crash weakest precondition (WPC)

1These proofs were contributed by Nickolai Zeldovich.
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in Perennial, whose crash condition states that, if the system crashes, the storage will

satisfy the recoverability predicate.

Since we have not implemented PoWER in Rocq, this proof is metalogical and

depends on a trusted translation of PoWER semantics into Rocq. This translation is

fairly natural, so we feel confident in the correctness of this proof.

Correspondence to atomic invariants. Crash consistency can also be specified

using atomic invariants, an advanced feature of some verification tools including Verus

but not Dafny, Prusti [10], or Creusot [61]. To demonstrate that satisfying a PoWER

specification implies the satisfaction of an atomic invariant, we produce a Verus library

that exposes the PoWER interface but enforces an atomic invariant about the storage

state. Since both the PoWER interface we use for Verus code and this invariant-based

specification are both in Verus, this proof, unlike the one for CHL, is entirely machine-

checked.

5.2.3 Strategies for satisfying preconditions

We next discuss how a developer can prove their code matches a PoWER

specification. The challenge is proving, immediately before each write, that all new

crash states that can result from partial application of the write are permitted. In this

subsection, we describe four design patterns that simplify this reasoning, and libraries

we provide that make it easy to apply them. We classify durable updates into four

categories—tentative, committing, recovery, and in-place—and provide strategies to

prove the crash consistency of each category.

Tentative writes. We call a write tentative if it is intended to have no effect on

the abstract system state until some subsequent write happens. Tentative writes

generally modify data at addresses that are unreachable during recovery (e.g., inodes

unreachable from a file system’s root), and do not change system state regardless

of which subwrites become durable. Their contents only become relevant after a

subsequent, non-tentative write (e.g., storing a reachable direct or indirect pointer to
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1 ghost predicate AddressesUnused<T>(s : seq<byte>, addrs : set<int>,

2 rec : seq<byte> -> T)

3 {

4 ∀ s2 : seq<byte> : : |s2| == |s| ∧
5 (∀ i : int : : 0 ≤ i < |s| ∧ i ̸∈ addrs =⇒ s[i] == s2[i]) =⇒
6 rec(s2) == rec(s)

7 }

8

9 lemma Lemma_TentativeWritePermitted<T>(ps : PoWERStorage,

10 addrs : set<int>, rec : seq<byte> -> T, bytes : seq<byte>,

11 start : int)

12 requires ∀ s : : rec(s) == rec(ps.View().durableState) =⇒
13 s in ps.StatesPermitted()

14 requires AddressesUnused(ps.View().durableState, addrs, rec)

15 requires ∀ addr : int : : start ≤ addr < start + |bytes| =⇒
16 addr in addrs

17 ensures ∀ s : : CanResultFromPartialWrite(s,

18 ps.View().durableState, start, bytes) =⇒
19 s in ps.StatesPermitted()

Figure 5.4: Dafny tentative write lemma. The listing shows a Dafny library
lemma for proving that a tentative write satisfies the PoWER write API.

the address).

The developer need not prove anything about the specific bytes in a tentative

write to prove crash consistency. They must only prove that the addresses modified

by the write are unreachable by the recovery function. We provide lemmas in our

Verus and Dafny libraries (see Figure 5.4 for the Dafny version) that the developer

can call to satisfy the precondition of the PoWER API.

Committing writes. We call a write committing if it changes the abstract state of

the system using a single crash-atomic write. For example, such a write might update

a pointer that causes a tree of objects on storage to become reachable by the recovery

function. A committing write is typically done after a flush to ensure that a crash

does not cause the state to be invalid due to lost tentative writes.
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For committing writes, the developer only needs to reason about two possible

crash states: the states that result from the committing write being dropped or

applied. We provide, in our library, a lemma that ensures that for a committing

write there are only these two possible crash states.

Recovery writes. Recovery writes are writes done as part of a recovery procedure

(e.g., replaying a journal). Such writes are not tentative, as they can change the

abstract view, and they are not committing, as they may not match the atomic write

granularity. To prove that such writes are crash consistent, a developer must prove

that they only modify bytes that will be written to by a completed recovery procedure,

and that recovery is idempotent. If the system crashes while recovering from an

earlier crash, all modifications made during the first recovery will be overwritten by

the second recovery, ensuring that torn writes due to the second crash are fixed when

recovery completes.

We have written a generic log component that can be used as an operation

log in Verus. In CapybaraKV, we install logged operations on log commit or when

replaying the log after a crash. Internally, this operation log must reason about

intermediate crash states, but the user of the log component does not have to. They

just log updates and eventually commit (or abort) the updates gathered in the log.

In-place writes. In-place writes non-atomically modify user-visible state and can

change the abstract state of the system. They thus leave the system in a non-

deterministic abstract state. This may be reasonable for systems that provide weak

crash-consistency guarantees, e.g., a file system that lets a read see a write that is

then lost by a crash. Such a specification would permit a large set of possible crash

states, so in-place writes can be more easily proven to produce states in that set.

We have not yet had experience verifying storage systems with weakly crash-

consistent semantics, so we currently have no support in our libraries for reasoning

about in-place writes. The developer of such a system will have to directly prove the

PoWER preconditions.
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5.2.4 Extending PoWER for concurrency

Both of the verified systems we built using PoWER are single-threaded, and

we achieve parallelism in CapybaraKV via sharding (§5.5.2). As an alternative,

we speculate that PoWER could be extended in the future to support concurrency

directly in verification tools that support it.2 For example, a concurrent variant of

PoWER for Verus could exploit Verus’s ownership model, so that calls require full

ownership of addresses they write to and partial ownership of addresses they read

from. This way, we could ensure conflicting operations cannot occur and thus a

reduction argument [180] makes it valid to consider there to be a total order of all

operation invocations. (Note that operations themselves may not be totally ordered:

An asynchronous write can still have post-invocation delayed effects on the durable

state that do not obey the total order because chunk-granularity subwrites are each

independently scheduled.) Once we have this, we can expect developers to be able to

prove that their writes satisfy the preconditions required by a PoWER specification.

They will likely need to use (in code outside the TCB) a global invariant about the

state of the system to prove this. Such an invariant will let them reason, based on their

local knowledge of the subset of the storage that is owned (or partially owned), about

the possible crash states that can result from initiating their write. For instance, they

may have partial ownership of the path from the recovery root to the state of their

component. This partial ownership can be enough to conclude, e.g., that a certain

part of the component’s state is irrelevant to recovery and can thus be tentatively

written to.

5.3 Provably detecting corruption

Stored data may become corrupted over time due to media errors, so checking

the integrity of data using cyclic redundancy checks (CRCs) is standard in many

2This extension was proposed by Chris Hawblitzel, Jay Lorch, and Nickolai Zeldovich.

140



storage systems [20, 74, 262, 267]. A verified storage system should require that data

read from the storage device is checked for corruption before it is used or returned to

the user. In this section, we introduce a new model of media corruption, and a new

corruption-resistant atomic primitive for persistent memory.

5.3.1 Modeling media corruption

We present a model of data corruption that allows developers to prove the

absence of corruption under the assumption that no more than a certain number of

bits will be corrupted.3 Possible data corruption is modeled in the postcondition of

the read method. In the event of corruption, the bytes returned by read may not

match the last-written bytes to that location. We represent this using a predicate

maybe corrupted, shown on lines 1–7 in Figure 5.5, which we describe below. The

developer must perform a CRC check to prove that the returned bytes are uncorrupted

before using them.

There are several possible ways we expect PM may be corrupted. For example,

random bit flips due to hardware errors or cosmic rays may corrupt the contents of

memory and storage devices. Since PM is generally mapped into a file system and/or

application’s address space, “scribbles” from misbehaving code may also unexpectedly

modify its contents [267]. This issue cannot be eliminated entirely via verification, as

it may be caused by unverified components, other applications, or the kernel itself.

The corruption model presented here takes advantage of the design of CRC algorithms

to provably guarantee that a small number of flipped bits will always be detected,

so we primarily target on the former. It does not make strong guarantees about

detecting larger amounts of corruption, but since CRC collisions are rare in practice,

we expect that it will be effective at detecting such corruption in general.

Our model of device corruption, as specified in Figure 5.5, is as follows. The

storage model includes a ghost corruption mask with one bit per storage bit, which

3Nickolai Zeldovich contributed to the development of this model.
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1 pub open spec fn maybe_corrupted(self, bytes: Seq<u8>,

2 true_bytes: Seq<u8>, addrs: Seq<int>) -> bool

3 {

4 &&& bytes.len() == true_bytes.len() == addrs.len()

5 &&& forall |i: int| 0 <= i < bytes.len() ==>

6 exists |mask: u8| {

7 let masked_byte = mask & self.corruption[addrs[i]];

8 bytes[i] == true_bytes[i] ^ masked_byte

9 }

10 }

11 fn read(&self, addr: u64, num_bytes: u64) -> (bytes: Vec<u8>)

12 requires self.inv(), addr + num_bytes <= self@.len(),

13 ensures

14 ({

15 let true_bytes = self@.read_state.subrange(

16 addr as int, addr + num_bytes);

17 let addrs = Seq::<int>::new(true_bytes.len(), |i: int| i+addr);

18 self.constants().maybe_corrupted(bytes@, true_bytes, addrs)

19 })

Figure 5.5: Read method specification. The listing shows a read method specifi-
cation describing possible corruption of returned bytes.

represents which bits may be corrupted. Where the bitmask is 0, reads return the

correct data. Where the bitmask is 1, reads return arbitrary bits, not necessarily the

same on each read. The population count of the bitmask (i.e., the number of 1s) is

bounded by a constant c that is opaque to the verified code. The verified code has

access to a trusted CRC library and an axiom stating that any two byte sequences

with Hamming distance in [1, c] have different CRCs. For the ECMA variant of CRC-

64 that we use, c = 1 for arbitrary-length data (i.e., it guarantees to catch any single

bit errors). This value can be higher for shorter lengths (e.g., c = 3 for approximately

1 megabyte) [151], but our implementation does not currently take advantage of this.

This means that, assuming c or fewer device bits are corrupted, the result of a CRC

check on a given buffer definitively proves whether the buffer has been corrupted.

Our model differs from VeriBetrKV’s “corruption cannot produce a block with

a valid checksum” [104]. Our model is more fundamental, describing the behavior of
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the media at a lower level. It is also more flexible, allowing the contents protected

by a checksum to be noncontiguous and to not be in the same block as the check-

sum. This flexibility is required when building PM systems like CapybaraKV and

CapybaraNS, as we discuss next.

5.3.2 Checking for PM corruption

Persistent memory presents new challenges when it comes to maintaining

CRCs for corruption detection. Traditional storage systems often store a CRC of

each block’s contents within the block itself [241]. However, PM’s finer write granu-

larity (8 aligned bytes [258]) makes this technique crash-unsafe, as the hardware does

not guarantee that the CRC will be written atomically with any non-trivial amount

of data. In this section, we introduce a new primitive for crash-atomic updates to

arbitrary-sized data on PM.

To motivate the need for a new primitive, we first discuss existing work on

crash consistency and corruption detection on PM. We tested NOVA-Fortis [267],

the only corruption-resistant PM file system, with Chipmunk (Chapter 3) and found

that its CRC management logic is prone to crash consistency bugs. Furthermore,

we find that NOVA-Fortis’s Tick-Tock algorithm for updating data and CRCs is

based on a different set of assumptions and is not sufficient in either our model of

corruption or VeriBetrKV’s [104]. Tick-Tock maintains two copies (a primary and

a replica) of each persistent data structure, each with its own CRC. To update

the data structure, it updates the primary, then flushes, then updates the replica.

On recovery, it uses whichever copy has a matching CRC, preferring the primary.

However, CRC algorithms are designed to defend against media corruption in the

form of a bounded number of bit flips, not to distinguish between different user-level

values. CRC collisions between such values, which can differ arbitrarily, are plausible

(and indeed likely in scenarios where adversaries can manipulate values).

For example, suppose a data structure currently has value D0, and we begin
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Figure 5.6: CDB usage. The figure shows one way to use a CDB to atomically
update a data structure and its CRC.

updating it to D1. Tick-Tock writes D1 and CRC(D1) to the primary; suppose a

crash occurs after D1 is written but before the CRC becomes durable, causing a CRC

mismatch. Also suppose that the stored version of D1 is corrupted into D′
1 and that,

by chance, CRC(D0) = CRC(D′
1). Tick-Tock’s primary CRC check will pass, and it

will not detect the corruption. This is plausible in both our and VeriBetrKV’s models,

since D′
1 and D0 may have an arbitrary number of bit differences.

To address this challenge, we propose the following new primitive that enables

atomic updates on PM. The corruption-detecting Boolean (CDB) is an 8-byte integer

that can only take on two specific values, one representing false and one representing

true. These two values should be chosen carefully such that neither is likely to be

corrupted into the other; we use CRC(0) and CRC(1). Since a CDB is 8 bytes, it

can be written to PM atomically with respect to crashes. Since its valid values are

statically known, it can be checked for corruption without needing to maintain a

separate CRC.

Here is one way to use a CDB to implement an atomically mutable data

structure D. Reserve space for an 8-byte CDB and two versions of D plus their

CRCs. The CDB indicates which version is considered valid at recovery time. To

update, tentatively write a new version and its CRC to the invalid location, then flush,

then use a committing write to flip the CDB, then flush. Figure 5.6 illustrates this for
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the case where we start in step 1 with D0 as the valid version. In step 2 we write

the new version to D1 and its CRC to CRC(D1), then flush. In step 3 we update the

CDB to CRC(1) then flush. For the next update (not shown in the figure), we will go

the other way: store the new version and CRC in D0 and CRC(D0), then flush, then

update the CDB to CRC(0). Intuitively, this technique is similar to atomic pointer

updates, which are commonly used in PM storage systems and concurrent code.

We find the CDB to be an extremely useful primitive, and use it in several

places in CapybaraKV and CapybaraNS to facilitate atomic updates. For in-

stance, we use it in CapybaraKV’s log to atomically advance the log head or clear

the log, two operations that form the basis of the system’s atomic guarantees, using

the steps in Figure 5.6. To our knowledge, ours is the first proven-correct algorithm

for atomic updates on PM with corruption detection.

5.4 Verified systems

To demonstrate our support for multiple verification tools, we implement

CapybaraKV, the first verified PM key-value (KV) store, in Verus and Capy-

baraNS, the first verified persistent notary service, in Dafny.4

5.4.1 CapybaraKV

CapybaraKV is an embedded PM key-value store with verified functional

correctness, crash consistency, and corruption detection. It supports standard create,

read, update, and delete operations on key-value pairs. It is parameterized by key and

value types. CapybaraKV supports crash-atomic transactions in which operations

are visible immediately but not durable until committed.

Figure 5.7 shows the workflow for verifying CapybaraKV and compiling it

4Jay Lorch, Chris Hawblitzel, Cheng Huang, and Yiheng Tao contributed to the design of Capy-
baraKV. Jay built CapybaraNS and several components of CapybaraKV.
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Figure 5.7: CapybaraKV verification workflow. The figure shows how different
components of CapybaraKV are used to verify its implementation and compile it
to an executable.

to a binary. CapybaraKV includes a specification of legal crash states, correct KV

store behavior, and a model of the underlying storage device that are used only during

verification. These specifications are erased when the implementation is compiled.

The implementation has several dependencies on unverified external libraries. It

uses PMDK [118] to invoke cache-line write backs and store fences and an external

crate crc64fast [54] to calculate CRCs. It also uses pmcopy (§5.4.1.1), a crate we

developed for use with CapybaraKV and future PM systems written in Verus, that

helps developers prove crash consistency.

Specification. Its abstract state is two maps from keys to values, with one map

representing what would result from an abort and the other from a commit. Its

operations include create, read, update, delete, and commit. In the event of a crash,

the commit operation may either abort or commit the current transaction; all other

operations must abort.

Implementation. CapybaraKV has three main durable components: a main

table, a value table, and an operation log. The main table and value table are durable

arrays storing keys and values, respectively. Each entry in the main table contains a
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key, the index of the corresponding value in the value table, a CRC over these fields,

and a CDB (§5.3.2) indicating if the entry is valid. Each entry in the value table

contains a value and its CRC. A value is considered valid if it is pointed to by a valid

main table entry.

The operation log is a physical redo log. When a transaction is committed,

we tentatively append a single CRC for all pending log entries, then commit the log

using a committing write to a CDB as shown in Figure 5.6. Log entries are replayed

using recovery writes. Once all entries have been installed, we issue a flush and clear

the log.

New records are created in CapybaraKV by tentatively writing new main

and value table entries and logging an update to the main table entry’s CDB. Deletions

only require logging the invalidation of the target’s CDB. CapybaraKV uses copy-

on-write to update existing records and logs an update to the value index of the

record’s main table entry. Log entries are small (¡64B) and never include keys or

values.

CapybaraKV also has a volatile index, implemented using a Rust HashMap

and verified using specifications from the Verus standard library, that maps all keys

to their main table indexes. The main table and value table also maintain volatile

free lists used as allocators. These volatile structures are rebuilt at startup after

post-crash log replay.

5.4.1.1 Safe reads and writes

In PM systems likeCapybaraKV, PM’s low access latency makes minimizing

overhead essential. In particular, I/O latency can easily be eclipsed by software

overheads, so many systems memcpy data structures between DRAM and PM with

no serialization. However, such low-level operations risk crash safety and can lead to

undefined behavior. For example, structures that contain references (e.g., file handles

or virtual addresses) cannot safely be stored on PM, as the reference may be invalid
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1 #[repr(C)]

2 #[derive(PmCopy)]

3 pub struct PmCopyExample

4 {

5 v1: u8,

6 v2: u64,

7 v3: i128,

8 v4: bool

9 }

Figure 5.8: PmCopy example. The listing shows the definition of a durable data
structure. The structure is annotated with #[repr(C)] to ensure Rust uses the
C representation for its memory layout and #[derive(PmCopy)] to automatically
generate safety checks and Verus-visible code about its layout.

after a crash. And, when reading stored data, we must ensure that data is placed in

a properly laid-out buffer and checked for corruption before casting to a more useful

data structure to avoid undefined behavior.

Unfortunately, these properties are difficult to verify because compiler-generated

type and layout information is not available to verifiers. We tackle this issue by using

the powerful Rust compiler to check properties that Verus cannot. We are inspired

by Corundum [113], a Rust crate that uses various Rust language features to enforce

safety properties in PM storage systems.

We have developed pmcopy, a trusted Rust crate that provides a macro to

help developers check these crucial safety properties. It generates Verus ghost code

to facilitate proofs that rely on type layout information and provides executable

functions specified by this ghost code. It also adds compile-time assertions that

are checked by the Rust compiler, not Verus, to check that axioms it synthesizes

match compiler-generated information. CapybaraKV uses pmcopy to enforce safety

properties about all durable data structures. We expect pmcopy will also be valuable

in the development of other PM storage systems in Verus.

To use pmcopy, a developer need only include two annotations on the defini-
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Trait Description Generated code

PmSafe Ensures safety of
copying to storage

No methods; trivial PmSafe trait bounds on
field types

PmSized Ensures size known
at verification time

Spec and exec size of and align of meth-
ods, and static assertions that their output
matches compiler-generated type layout

Clone Implements explicit
copy method

Specification that copy equals original

PartialEq Implements equal-
ity operator

Specification that operator is consistent with
Verus equality

Table 5.2: PmCopy macro traits. The table lists traits implemented by the
#[derive(PmCopy)] macro in the pmcopy crate.

1 unsafe impl PmSafe for PmCopyExample

2 where u8: PmSafe, u64: PmSafe, i128: PmSafe, bool: PmSafe

3 {}

Figure 5.9: PmSafe example. The listing shows the implementation of PmSafe gen-
erated by the PmCopy macro on the structure in Figure 5.8.

tions of durable data structures, as show in Figure 5.8. The first annotation is the

directive to use the C representation (#[repr(C)] on line 1), as the default Rust repre-

sentation is intentionally under-specified and cannot be safely used for operations that

rely on a known type layout [231]. The second annotation is #[derive(PmCopy)] (line

2), which causes pmcopy to automatically generate an implementation of the PmCopy

trait and several supertraits. Routines that copy to and from PM require that their

parameters implement this trait. PmCopy can be derived for structs, enums, and

unions.

Table 5.2 summarizes four supertraits of PmCopy whose implementations are

generated by deriving PmCopy. We describe these traits in more detail now.

PmSafe. This trait generates code that checks whether a structure is safe to store

on PM. It has no methods and exists only to check this property at compile time.
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Numeric types, characters, and Booleans are assumed to be PmSafe. Arrays of PmSafe

types are also PmSafe. A user-defined structure is PmSafe only if all of its fields are

PmSafe. Figure 5.9 shows the macro-generated implementation of PmSafe for the

PmCopyExample structure defined in Figure 5.8. The implementation has trivial trait

bounds (i.e., a bound that does not rely on type parameters) specifying that the type

of each field must be PmSafe. If we attempted to derive PmCopy on a type that included

a non-PmSafe type (e.g., a reference or raw pointer), this code would still be generated

but would fail typechecking because the trait bound would not be met. PmSafe is

unsafe to prevent users from providing their own, incorrect implementations. The

only safe way to implement it is by deriving PmCopy.

PmSized. This trait (and a set of related helper traits generated by PmCopy) provides

functions for reasoning about the layout of data structures in proofs. Although the

Rust compiler statically generates type layout information, it is not available to Verus

for use in proofs. This trait provides both executable and spec functions that man-

ually calculate the size and alignment of each PmCopy type using the same algorithm

used by the Rust compiler for repr(C) types. When used in verified code, these

functions provide a way to formally reason about the size and alignment of types

in proofs. Due to current limitations in Verus, we cannot prove that the executable

and spec versions are equivalent, but we do check that the result of each of the ex-

ecutable functions matches the corresponding standard Rust version by generating

static assertions of their equality.

Clone and PartialEq. These traits are part of the Rust standard library but do not

have default specifications provided by Verus. Clone includes a method to explicitly

duplicate an object, and PartialEq methods define what it means for two objects

of the same type to be equal. Verus does not include a default specification of these

traits for arbitrary user-defined types because the user may provide a conflicting

trait implementation, which could introduce unsoundness. The lack of PartialEq

specification is generally not an issue when dealing with concrete types, since Z3
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supports equality comparisons, but can be problematic when dealing with generic

types. Z3 has no built-in notion of a clone operation and user must always provide a

spec for the behavior of Clone. This was particularly problematic in CapybaraKV’s

volatile index, which is generic over the key type and uses equality comparisons

and clone operations in its executable code. To handle this, PmCopy generates an

implementation and matching specification for both of these traits, which prevents

the user from providing their own incorrect versions.

We found pmcopy very useful during development of CapybaraKV. Before

writing it, we had hard-coded the layout and size of each data structure for use in

proofs, but this is very risky. Whenever we defined a new structure or modified the

contents of an existing one, we had to update this set of constants, which was error-

prone. Adding PmCopy as a derivable trait made the addition and maintenance of

user-defined types much easier and keeps the amount of trusted code related to type

layouts and PM safety constant as the system grows. The static assertions about type

layout also caught a change to Rust itself that would have impacted the soundness

of our system. Partway through development of CapybaraKV, an update to the

Rust compiler changed the layout of u128 and i128, which caused an inconsistency

between compiler- and pmcopy-generated layouts. Thanks to the static assertions

pmcopy generated, this discrepancy was immediately flagged.

5.4.1.2 Discussion

CapybaraKV is designed for a particular use case, storing small keys and

values on a small amount (10s of GiB) of dedicated PM, in a production cloud storage

service. In targeting this use case, we made several simplifying design decisions

that streamlined both implementation and verification but imposed limitations on

functionality.

CapybaraKV requires users to allocate statically storage space and specify

the number and size of keys and values at initialization. It does not currently support
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dynamic resizing and will waste space if the number or size of records is smaller than

initially specified. CapybaraKV uses a volatile index that keeps all keys in memory,

which grows its memory footprint (especially if large keys are used) and must be

rebuilt each time the system is started. CapybaraKV is single-threaded and does

not require concurrency since parallelism can be achieved via sharding, as we discuss

in §5.5.2. This parallelism is handled by a layer above CapybaraKV since PoWER

does not currently support concurrency (see §5.2.4).

5.4.2 CapybaraNS

CapybaraNS is a notary service similar to the verified notary in Ironclad

Apps [108]. It securely assigns logical timestamps to hashes so they can be conclu-

sively ordered, and stores its state on persistent storage to permit persistence across

crashes. We build and verify it in Dafny, with a trusted C# wrapper that provides

external methods for CRCs, cryptography, and serialization.

Its abstract state consists of a current logical timestamp (a 64-bit unsigned in-

teger) and a last hash. Its interface has two main operations: (1) Advance increments

the timestamp and updates the last hash to one provided as input. (2) Sign uses

the service’s private key to sign a binding between the last hash and the timestamp.

CapybaraNS uses the CDB algorithm from §5.3.2 to atomically update its storage

state during an Advance operation.

5.5 Evaluation

This section addresses the following questions:

1. How much effort does it take to build and verify a new system with PoWER

(§5.5.1)?

2. How does CapybaraKV compare to similar, but unverified, PM key-value

stores (§5.5.2)?
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Trusted Spec+Proof Impl

CapybaraKV

PoWER framework 971 2175 423
pmcopy crate 964 0 0
Base log 0 2173 590
KV store 1028 9815 3637
Total 2963 14163 4650

CapybaraNS

PoWER framework 266 118 4
Notary server 148 545 274
Total 414 663 278

Table 5.3: Verified lines of code. The table lists the number of lines of code in
each verified system.

5.5.1 Verification effort

Table 5.3 gives the number of lines of code in each of the major components of

CapybaraKV andCapybaraNS, organized into trusted (i.e., unverified), specifica-

tion/proof, and executable implementation code. We count the pmcopy crate towards

CapybaraKV’s trusted code, as it is unverified, but we do not count the lines of code

it generates. The CapybaraKV PoWER trusted line count also includes a mock

PM backend using a byte vector and backends for Windows and Linux. Both systems

have a low proof-to-code ratio (6.0 for CapybaraKV and 2.4 for CapybaraNS).

Designing, implementing, and verifying CapybaraKV took approximately

1.5 years of work by a team consisting of both verification experts and newcomers. We

built CapybaraNS when CapybaraKV was mostly complete, so its development

benefitted from lessons learned when building CapybaraKV. It took less than one

person-hour to port the PM specification to Dafny, about one hour to port the library

supporting reasoning about tentative and committing writes, and about nine hours

to implement and verify CapybaraNS in Dafny after writing its specification and

C# wrapper.

The first part of CapybaraKV that we built was a durable log (the base
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Figure 5.10: CapybaraKV operation latency. The figure shows average operation
latency in microseconds. Note the log scale.

log in Table 5.3), and it went through several iterations before the final version was

implemented and verified. The CapybaraKV-specific operation log was built on

top of this log later on. Our initial version of the log provided synchronous atomic

appends but did not check metadata for corruption. We subsequently added metadata

CRCs, tentative appends with a commit operation, and experimented with different

layouts and PM specifications. Thanks to Verus’ fast verification performance and

the fact that PoWER isolates crash-consistency reasoning to functions that perform

updates, these modifications were generally straightforward; most difficulty came from

designing new features rather than proving them correct.

Verification time. On one of our development machines (Linux v6.9.3, Intel Core

i7–11850H CPU, 8 physical cores, 32GB memory), it took 56 seconds to verify Capy-

baraKV with 1 thread and 37 seconds with 8 threads. It takes 12 seconds to verify

CapybaraNS with 1 thread; Dafny does not support multithreaded verification.
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5.5.2 CapybaraKV performance

We evaluateCapybaraKV against two unverified PM key-value stores, pmem-

Redis [119] and pmem-RocksDB [120]. CapybaraKV is the first verified KV store

for persistent memory, so we could not compare to any prior verified systems. Veri-

BetrKV [104], the most similar verified system, is designed for block devices.

Experimental setup. Experiments were run on a two-socket machine with 32

physical cores, 128GB memory, and 128GB Intel Optane DC Persistent Memory. The

evaluation machine runs Debian Trixie and Linux 6.7.12. We run the pmem-Redis

server and client on the same machine, enable its pointer-based append-only file, and

configure it to store the AOF and all values on PM. We configure pmem-RocksDB

to memory-map files for reading and writing and to use non-temporal stores when

appending to its write-ahead log.

Microbenchmarks. Figure 5.10 gives the average latency of put, get, delete, and

update over 25M operations on records with 64B keys and 1KiB values in each eval-

uated system with both sequential and random access patterns (note the log scale).

95% confidence intervals are shown in red.

Pmem-Redis has the highest latency due to communication overhead between

its client and server. CapybaraKV achieves similar or better latency to pmem-

RocksDB on all measured operations primarily due to its operation log with tiny

(¡64B) entries and its fast hash-map index. Pmem-RocksDB spends more time ap-

pending larger entries to its write-ahead log and managing its smaller but more com-

plicated in-memory MemTable and cache structures. Key lookups in pmem-RocksDB

involve searching the MemTable and potentially multiple durable files.

CapybaraKV’s random get latency is approximately 2× its sequential get

latency in this microbenchmark because sequential loads are faster than random loads

on Optane PM [124]. The sequential get workload runs on records that were inserted

sequentially, whereas random get accesses keys that were inserted in a different ran-

155



LoadA RunA RunB RunC RunD LoadE RunF LoadX RunX
(a) 1 thread

1
5

10

15

20
12 17 19 19 19 12 12 16 15

LoadA RunA RunB RunC RunD LoadE RunF LoadX RunX
(b) 16 threads

1
5

10

15

20

58 94 10
2

10
4

10
4

58 66 84 77th
ro

ug
hp

ut
 re

la
tiv

e 
to

 p
m

em
-R

ed
is

pmem-Redis pmem-RocksDB CapybaraKV

Figure 5.11: YCSB performance. The figures show YCSB throughput relative to
pmem-Redis with (a) one thread and (b) 16 threads. Numbers above pmem-Redis
bars show absolute throughput in kops/s.

dom order.

Battery-backed DRAM. We also evaluate CapybaraKV in a testing environ-

ment at a large cloud provider similar to the targeted production setup running Win-

dows with 20GiB battery-backed DRAM. These experiments were run by Yiheng

Tao. We run the microbenchmarks shown in Figure 5.10 on CapybaraKV in this

environment and find that operations are up to 2× faster on battery-backed DRAM

and follow similar performance patterns. We are unable to evaluate pmem-Redis and

pmem-RocksDB in this environment as they do not support Windows.

Macrobenchmark: YCSB. We also measure each system’s performance on several

workloads from the widely-used YCSB benchmark suite [49]. CapybaraKV does
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not currently support range queries, so we skip the YCSB workload (RunE) that

includes them. We also introduce workload X, which is based on a trace of traffic to a

production service similar to CapybaraKV at a large cloud provider and consists of

75% updates, 5% read-modify-write operations, and 20% reads with a uniform access

distribution. All YCSB workloads use 15M keys and are executed 5 times on each

system. The CapybaraKV instances in these experiments use 64B keys and 1024B

values, both structured as byte arrays.

Single-threaded performance. Figure 5.11(a) gives the average throughput of

each system using one thread relative to pmem-Redis. Unlike prior verified stor-

age systems, CapybaraKV outperforms the unverified systems on these workloads.

Pmem-Redis is unable to achieve high throughput on these operations due to its

high per-operation latency. CapybaraKV performs better than pmem-RocksDB on

these workloads for the following reasons. First, even in single-threaded workloads,

pmem-RocksDB has background threads performing LSM tree compaction and flush

operations, which can interfere with client thread performance; CapybaraKV uses

no background threads. Second, CapybaraKV’s in-memory hash-map index facili-

tates fast lookups for all keys, whereas pmem-RocksDB has to search its MemTable,

and sometimes several durable files, to perform lookups. Pmem-RocksDB achieves its

best performance on RunD, a read-heavy workload where the most recently-inserted

keys are the most frequently accessed, because most lookups can be handled in the

MemTable; in other workloads, lookups often require searching multiple durable files.

CapybaraKV’s index is also faster to modify than pmem-RocksDB’s more com-

plicated MemTable. Third, both CapybaraKV and pmem-RocksDB use CRCs

to detect corruption, and pmem-RocksDB uses per-block CRCs that take longer to

compute than CapybaraKV’s CRCs on smaller data structures. Fourth, Capy-

baraKV takes less time writing to its log during insertions and updates because

it uses tiny log entries that never include keys or values, whereas pmem-RocksDB’s

write-ahead log fully records all operations.
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Figure 5.12: Sharded CapybaraKV throughput. The figure shows sharded
CapybaraKV YCSB throughput with different thread counts.

Sharded performance. Figure 5.11(b) gives average throughput using 16 threads

(the number of physical cores in each NUMA node on our test machine). Capy-

baraKV does not internally support concurrent access, but we can achieve paral-

lelism via sharding, which we demonstrate here with the following simple setup. We

build a new database interface layer in YCSB that, for a workload with k records and

n threads, creates n separate CapybaraKV instances each with space for k/n + 1

records to act as shards. The shard placement of each record is determined using a

hash of its key, and each shard is protected by a read-write lock to prevent concurrent

mutations within a single shard. We do not shard the other two systems in this exper-

iment, as they already support multiple concurrent clients. Figure 5.11(b) shows that

with our simple sharding protocol, CapybaraKV scales similarly or better than the

other systems with multiple client threads.

Figure 5.12 gives average throughput of shardedCapybaraKV on each YCSB

workload with different thread counts. Read-heavy workloads like RunB (95% reads,

5% updates), RunC (100% reads), and RunD (95% reads, 5% inserts) scale well be-

cause the per-shard locks allow multiple concurrent readers. The Load workloads

(100% inserts), RunA (50% updates, 50% reads), and RunX (75% updates, 5% read-

modify-write, 20% reads) see some throughput improvement with more threads, but

do not scale as well due to write lock contention. We find that our hash-based place-
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Startup time (ms) Utilization (GiB)
Empty Full Memory Storage

pmem-Redis 137 — 11.3 22
pmem-RocksDB 6 8 2.0 17
CapybaraKV 235 954 5.0 18

Table 5.4: KV startup times. The table lists startup times on empty and full
instances, and memory and storage utilization on YCSB LoadA, on 128GiB Optane
PM for each evaluated system.

ment scheme distributes keys reasonably evenly across shards, but it makes no effort

to place hot keys in different shards or to temporally balance accesses. Some YCSB

workloads perform partial value updates, which CapybaraKV does not support,

so updates in our interface layer are implemented as read-modify-write operations.

RunA and RunF (50% reads, 50% read-modify-writes) are thus very similar, but

RunF scales better because the per-shard write lock is held for the entirety of an

update operation and only during the write part of a read-modify-write.

Startup times. Table 5.4 compares how long it takes for each key-value store to

start up on both an empty instance and a completely full instance on a 128GiB PM

device. To measure full startup times, we insert records with 1KiB keys and 512KiB

values into each system until it returns an out-of-space error, then repeatedly start

and clean up each system on those records. Attempting to start the pmem-Redis

server on a full instance fails with a memory allocation error. CapybaraKV’s full

startup time is about 4× its empty startup time because it initializes its in-memory

index by scanning the entire KV store instance. For this same reason, it is slower

than pmem-RocksDB on both empty and full startup.

Memory and storage utilization. Table 5.4 reports DRAM and PM utilization

for the three evaluated systems on a 15M record instance set up by YCSB’s Load A

workload. In CapybaraKV, we use 64B arrays for keys and 1 KiB arrays for values.

18GiB is the approximate minimum space required by CapybaraKV to store 15M
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records of this size; note that unlike pmem-RocksDB and pmem-Redis, this Capy-

baraKV instance cannot grow any further. In an optimally-provisioned instance,

CapybaraKV has low storage space overheads due to its simple durable layout and

does not use much more storage than pmem-RocksDB. CapybaraKV uses 2× more

memory than pmem-RocksDB due to its in-memory index that contains every key

in the instance. Pmem-Redis also keeps all keys in DRAM, but has higher per-key

overhead than CapybaraKV (almost 700B as reported by the server). Pmem-Redis

can be configured with a maximum memory limit after which it will evict records

from DRAM, but this impacts throughput and is not set by default. To achieve dura-

bility guarantees similar to those provided by CapybaraKV and pmem-RocksDB,

we configure pmem-Redis to store mappings from keys to durable values as well as

the values themselves, which adds additional storage overhead.

5.6 Summary

This chapter presents techniques for proving crash consistency and corruption

detection in storage systems. We introduce PoWER, a way to prove that a system is

crash consistent using only basic verifier features like Hoare logic, and a new model

of storage corruption that forces developers to properly perform corruption detection

while giving them flexibility in how to do so. We develop a new primitive, the

corruption-detecting Boolean, and show how to use it to implement a novel algorithm

for atomic updates to PM data structures. To demonstrate that our approach is

useful and tool-agnostic, we build two verified PM storage systems, CapybaraKV

in Verus and CapybaraNS in Dafny. We evaluate CapybaraKV and find that its

performance is competitive with unverified PM KV stores.
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Chapter 6: Related work

This section provides an overview of work related to this dissertation. §6.1

discusses other persistent-memory storage systems. §6.2 covers prior work on testing

crash consistency in both traditional and PM storage systems. §6.3 describes related

work on lightweight formal methods, including techniques similar to those used in

SquirrelFS. §6.4 discusses formal verification of storage systems.

6.1 Persistent memory storage systems

This section describes related work on storage systems that use PM as a storage

medium. The systems described here all use DRAM for main memory and use PM

either as the main storage device or as the top layer in a deeper storage hierarchy.

6.1.1 File systems

We first discuss file systems that support storing file data and metadata on

PM. All the systems described in this section are written in C.

Modified block-based systems. Two widely-used Linux file systems, ext4 and

XFS, have been modified to support PM. The PM versions, called ext4-DAX and

XFS-DAX [177], take advantage of DAX support to bypass the page cache for data

accesses. Otherwise, they share most code and functionality with their non-DAX

modes. For example, metadata updates use the same block-based journaling code and

the systems use the same durable layout for block- and byte-addressable media [131].

Ext4-DAX and XFS-DAX are currently the only PM file systems in the mainline

Linux kernel.

PM-specific in-kernel file systems. There are a number of fully in-kernel file

systems developed specifically for PM. These systems use a variety of architectures
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that differ significantly from those of traditional storage systems and their ports to

PM. BPFS [48] is a Windows file system that uses fine-grained copy-on-write for

crash consistency. It predates the first announcements about Optane PM but cor-

rectly anticipated that PM hardware would support 8-byte atomic writes and ordering

barriers. PMFS [69] is a POSIX-compliant PM file system built by Intel that uses

undo journaling for crash consistency. While BPFS did not support memory-mapped

files [48], PMFS used XIP (eXecute In Place), a predecessor of DAX, to provide ap-

plications with direct access to files. PMFS proposed two primitives for interacting

with PM: a weakly-ordered version of clflush, and a pm wbarrier operation to

flush the contents of memory controller queues. Intel later added the clflushopt

and clwb instructions, which support two optimizations for clflush. The addition

of asynchronous DRAM refresh (ADR) as a requirement for PM support eliminated

the need for pm wbarrier, as it moved the write-pending queue into the power-fail

protected domain.1

Subsequent systems use DAX, a feature in the Linux kernel that supports

direct access to storage by file systems or user-space applications [177], to access

PM. NOVA [266] is a PM file system that combines ideas from journaling and

log-structured systems. Its successor, NOVA-Fortis [267], added support for de-

tecting and recovering from data corruption using cyclic redundancy checks and

replication. WineFS [132] is a hugepage-aware PM file system designed to prevent

fragmentation over time, which can significantly improve performance for memory-

mapped applications. It uses fine-grained per-CPU journaling to preserve data lay-

out and prevent fragmentation. SoupFS [67] uses soft updates for crash consistency.

Like SquirrelFS, it takes advantage of PM’s byte-addressability to avoid complex

block dependency management and rollback/forward logic, but unlike SquirrelFS

it tracks dependencies for asynchronous writes at runtime.

1Before ADR was required for PM support, Intel proposed an instruction similar to pm wbarrier,
pcommit, to explicitly flush the write-pending queue. pcommit is deprecated and ADR ensures that
the WPQ is automatically flushed when power is lost in current systems [228].
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User-space and hybrid file systems. User-space file systems for PM can achieve

significant performance improvements over in-kernel systems by removing the kernel

from the storage software stack. The software overhead contributed by the kernel is

negligible when compared to access latencies of slower block devices, but becomes a

larger factor on PM [133,155,277]. However, user-space file systems are less compat-

ible with legacy applications, as programs must be linked to a user-space library file

system that intercepts system calls. It is also challenging to handle file permissions

and concurrent accesses without mediation by the kernel, so many of these systems

have both a user-space component and an in-kernel component [66]. We refer to these

as “hybrid” file systems.

Strata is a file system that uses PM as the top layer in a storage hierarchy that

can also include slower block media [155]. Assise, its successor, extends this idea to a

distributed context [8]. Strata and Assise were both proposed as hybrid file systems

but are currently implemented entirely in user space using devdax mode to manage

PM directly from user space. CrossFS [222] also uses PM as a faster storage layer on

top of a slower device and splits file system functionality between user, kernel, and

firmware components to take advantage of device firmware features. SplitFS [133]

uses a user-space library FS to handle data operations in memory-mapped files and

offloads metadata operations to ext4-DAX. ZoFS [66] is designed to reduce interaction

with the kernel by managing permissions for file system subtrees, rather than on a

per-file basis, and uses hardware features to prevent corruption due to stray writes.

The TRIO architecture [277] is a framework for building specialized user-space PM

file systems tailored to particular use cases. TRIO-based systems implement most

logic in user space but rely on the kernel to manage a small amount of core system

state.
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6.1.2 Key-value stores

Preexisting systems. Many existing key-value stores have been modified to support

PM. This includes durable KV stores designed for block-based media and in-memory

stores with no durability by default. These systems take advantage of PM’s persis-

tence, but their designs are not tailored to PM.

Pmem-RocksDB [120] is a PM KV store based on Meta’s durable RocksDB

system [224]. Pmem-Redis [119] is a version of the in-memory Redis [221] KV store

that obtains durability by storing some data on PM. Like modified block-based file

systems, these ported KV stores include some PM-specific optimizations but share

most code with their original versions. As a result, these systems are often less

performant than their PM-specific counterparts. In particular, they have been found

to utilize very little of the available bandwidth of Optane PM [216].

PM-specific systems. Recent research has resulted in the development of several

PM-specific KV stores. The majority of these systems use variations on log-structured

merge (LSM) trees, which are common in block-based KV stores, and focus on im-

proving throughput and reducing write amplification. ChameleonDB [274] uses a

sharded structure for concurrency and an LSM implementation designed to reduce

write amplification with Optane PM’s 256B internal block size. SLM-DB [134] com-

bines ideas from durable LSM trees and B+-tree indexes to simplify durable layout

without sacrificing read or write performance. ListDB [144] combines LSM trees and

skip lists to improve write performance and reduce remote NUMA accesses. Some

systems start from existing KV stores but tailor them to specific PM use cases rather

than simply porting existing functionality to PM. For instance, NoveLSM [138] is

based on LevelDB [87] and uses a multi-level storage hierarchy with PM at the top.

MatrixKV [272] is based on RocksDB and also uses PM as a storage layer above an

SSD to more efficiently handle higher LSM tree levels.

Several systems have broken from the standard LSM-based design to further

optimize performance on Optane PM in particular. Viper [18] uses an in-memory
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hash map to map keys to durable blocks that are carefully aligned to optimize per-

formance on interleaved NVDIMMs and allows applications to write directly to PM.

FlatStore [41] also uses an in-memory index and batches small updates to PM in per-

core logs. Skye [216] is based on an empirical study of KV operations on Optane PM

and implements several bandwidth utilization optimizations. It retains fine-grained

control over data placement on PM and manages individual NVDIMMs separately

with a fixed number of worker threads.

6.2 Testing crash consistency

This section discusses related work on crash-consistency testing for both tra-

ditional and PM storage systems.

6.2.1 Testing traditional storage systems

dm-log-writes is a Linux device mapper target that takes two devices and

uses one of the devices to log all I/O issued to the other [175]. It is not a full testing

tool on its own, but can be combined with a replay tool and tests to check potential

crash states. Block Order Breaker [215] (BOB) is a tool that records disk I/O and

replays it to generate possible post-crash states in which persistence guarantees do

not hold. BOB is used alongside the Application-Level Intelligent Crash Explorer

(ALICE) to explore application-level behavior in the event of a crash, but cannot also

not be used on its own to comprehensively test low-level storage systems. Although

neither of these tools constitutes a crash-consistency testing framework, both can be

used to explore possible crash states and likely inspired subsequent testing tools.

Many full crash testing tools use a record-and-replay approach to generate and

test potential crash states. Zheng et al. [275] use this method to test databases for

ACID properties in the event of power loss. They record operations at the iSCSI

layer, which allows one server to access another’s storage via block-level operations

over the network. CrashMonkey [201] records file system I/O at the kernel block layer
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during systematically generated test cases in order to find crash-consistency bugs in

those systems. Hydra [143] is a file-system fuzzer that focuses on crash consistency

bugs and POSIX violations.

As discussed in Chapter 3, these tools cannot be used with PM storage systems

because they rely on the block interface provided by traditional storage media or on

software layers designed for this interface.

6.2.2 Testing PM file systems

Yat [161], PMTest [183], and Vinter [135] have all been used to test PM file

systems for crash-consistency bugs. Yat was built for PMFS and records PM I/O

using a custom hypervisor. Yat has limited optimizations to reduce the space of

crash states. For example, the authors report that a workload of 1200 creat, mkdir,

and write calls would take over five years to complete. PMTest was also only used

on PMFS and found no crash consistency bugs.

Vinter [135] is a PM file-system testing tool that instruments instructions

using PANDA and uses a heuristic based on locations that are read during recovery

to reduce the crash state space. It was developed concurrently with Chipmunk and

the authors of Vinter independently found several bugs also found by Chipmunk.

Silhouette [127] is a similar tool, developed after Vinter and Chipmunk, that uses

a set of crash-consistency mechanism-specific persistence invariants to further reduce

the crash state space.

6.2.3 Testing PM applications

Recent research on PM crash consistency has focused on finding bugs caused

by incorrect use of persistence primitives, such as missing cache line write backs or

store fences. Some tools also try to detect performance bugs caused by redundant

usage of these primitives. Tools in this category target PM programming mistakes

and have limited support for identifying higher-level logic bugs. Many of these tools
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also require manual source code annotation.

Pmemcheck [121] is a Valgrind-based tool designed to find PM programming

errors in applications built with PMDK [118]. Using Pmemcheck without PMDK

requires manual annotation of source code. PMTest [183] and XFDetector [182] also

require developers to manually annotate regions of interest. PMFuzz [181] is a fuzzer

built on AFL++ that uses XFDetector and Pmemcheck to detect bugs.

Agamotto [210] is a symbolic execution tool built on KLEE for user-space

PM applications. Agamotto does not require source code annotation, but finding

bugs other than low-level PM programming errors requires developer-provided oracles.

Witcher [82] is designed to test key-value stores and targets both PM programming

errors and “persistence atomicity violations” by statically inferring which sequences

of writes are intended to be atomic. PmDebugger [63] is a tool for collecting and

analyzing PM access traces without source code annotation.

6.3 Lightweight methods for crash consistency

Recent work has shown increasing interest in applying ideas from programming

languages and formal methods literature to check storage systems in a way that is

more lightweight than full verification. These techniques leverage language features or

ideas like model checking to obtain confidence in the correctness of a system, but like

the typestate approach presented in Chapter 4, cannot prove full system correctness.

Rust compiler-based approaches. Corundum [113] is a Rust crate (i.e., library)

for building crash-consistent PM applications that uses the compiler to enforce PM-

specific safety properties. For example, Corundum ensures that objects stored on

PM are only updated inside of transactions, and that durable objects do not contain

references to volatile state. It enforces these rules mainly using smart pointers, wrap-

pers around PM-resident objects, and traits that represent properties about each type

(e.g., whether it can be stored safely on PM or modified in a Corundum transaction).
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Corundum was a major source of inspiration for SquirrelFS (Chapter 4), and the

safety properties enforced by the pmcopy crate in CapybaraKV (§5.4.1.1) are simi-

lar to those enforced by Corundum’s PSafe trait. The main difference between PSafe

and our PmSafe trait is that PmSafe is opt-in: developers must manually annotate

objects to store on PM to make them PmSafe. Attempting to annotate a type that

cannot be stored safely on PM results in a compiler error. Corundum’s PSafe is

opt-out; it is automatically applied to any user-defined type that does not contain

any non-PSafe fields. It explicitly specifies some types (e.g., references, raw pointers,

function pointers) as non-PSafe, with some limitations. If a developer introduces

a new type that is not safe to store on PM but does not contain any preexisting

non-PSafe types, they must manually indicate this.

Several experimental operating system kernels have used Rust to enforce low-

level safety properties. RedLeaf [209] is a microkernel that relies on Rust primarily to

enforce isolation between different domains. Theseus [22] is an OS composed of many

small components that uses Rust to check invariants about resource management

and fault recovery. It has been extended to obtain additional correctness guarantees

from the Rust type system (e.g., via the typestate pattern) and by verifying some

properties in Prusti [10]. Both systems use a single address space and single privilege

level and rely on Rust, rather than hardware primitives, for isolation.

There has been some work applying ideas from programming languages liter-

ature to check additional properties about Rust programs. This work has not been

applied to crash-consistency properties, but could potentially be used this way. For

instance, Flux [170] adds the idea of refinement types to Rust to perform lightweight

type-level verification of Rust programs. The set of values a refinement type can have

is constrained by a logical expression, which may specify a concrete value (e.g., in

Flux, i32[0] means an i32 with value 0) or a set of legal values (e.g., {v. i32[v]

| v > 0 } specifies the set of positive i32s). Reasoning about invariants encoded in

refinement types can be automatically handled using a constraint solver and requires

less programmer effort than verification in a language like Verus. Refinement types
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could allow developers to encode and check deeper properties than those allowed by

the Rust compiler’s typestate support. For example, Flux supports a vector type

refined by the vector’s size, which could be useful in a system like SquirrelFS to

handle operations on collections of unbounded size. Unlike the techniques used in

SquirrelFS, Flux requires a compiler plugin.

Model checking. Model checking has also been used in prior work to check correct-

ness properties about storage systems. For example, Alloy has been used to model

check the design of a flash file system [136]. This work also included a detailed model

of the behavior of a flash device including aspects like the limited number of write-

erase cycles a cell can support. It did not include an implementation of the file system

described by the model.

FiSC [271] and eXplode [270] use in situ model checking to check properties

of storage system implementations (rather than of a separate abstract model of the

systems). While this eliminates the possibility of discrepancies between the model

and implementation hiding bugs, implementation-level model checking introduces ad-

ditional challenges. FiSC requires a modified Linux kernel to be run as a user-level

process. eXplode is simpler but still requires kernel modifications and a custom kernel

module to record operations.

Ferrite [25] is a tool for specifying and checking crash-consistency behaviors

of file system interfaces that uses both exhaustive state enumeration and symbolic

model checking. It focuses on clarifying the crash behavior of POSIX-based storage

systems to aid automated reasoning and the development of more robust applications.

The authors also build a synthesizer to insert synchronization primitives required to

achieve application-level crash-consistency, and use Dafny to prove crash-consistency

of several small example programs Ferrite is aimed at modeling and exploring crash

behaviors, not finding implementation-level crash consistency bugs.

ShardStore [24] is a production storage system at Amazon Web Services that

has been checked for concurrency issues using model checking. The developers of
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ShardStore also used executable reference models and property-based testing to gain

confidence in the correctness and crash consistency properties of the system. Shard-

Store’s model checking, reference models, and property-based testing are all done in

Rust. This reduces the strength of guarantees they can obtain compared to full veri-

fication or more exhaustive model checking techniques, but keeps the full validation

framework more accessible to engineers.

6.4 Verifying storage systems

In this section, we discuss related work on verified storage systems. This

section expands on the discussion of crash-consistency verification techniques in §5.1

and discusses additional work.

FSCQ. FSCQ [40] and its successsor DFSCQ [39] are file systems written and verified

in the Rocq (formerly Coq) proof assistant [226]. FSCQ introduced Crash Hoare logic

(CHL), which was built in Rocq as a domain-specific language (DSL), to facilitate

reasoning about potential crash states. CHL also provided a notion of logical address

spaces to make reasoning about predicates over different types of resources (such as

disk blocks or inodes) simpler. DFSCQ added support for fsync and fdatasync,

which are required in block-based POSIX systems to achieve good performance but

add significant complexity and are difficult to formally specify. The developers of

DFSCQ proposed a “metadata-prefix” specification that defines what updates are

made durable by invocations of these system calls and when the system is allowed to

flush data and metadata updates in the background.

VeriBetrKV.VeriBetrKV [104] is a key-value store written and verified in Dafny [171].

It is based on the intuition that storage systems are similar to distributed systems

and can be verified using the same techniques. It follows the approach introduced

in IronFleet [107] in which Hoare logic is combined with state machine refinement to

reason about asynchronous behaviors between potentially faulty components. Veri-

BetrKV uses a BE-tree design with journaling for crash consistency. Its proof starts
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with an abstract specification (e.g., a map for the BE-tree) and establishes refinement

relationships between progressively more concrete and complex views of the system.

Individual components are specified and implemented assuming that no crashes will

occur, and then are proven to match a crashing version of the specification. Along

with building VeriBetrKV, the authors also modified Dafny to support a linear type

system [174], which subsequently led to the development of Verus [164].

Perennial and atomic invariants. Perennial [31, 33] is a tool for verifying con-

current, crash-consistent storage systems. It is based on Iris [129], a framework for

verifying concurrent systems using separation logic written in Rocq [226]. It has been

used to build and verify several systems – a crash-safe mail server [31], a journal [32],

and several networked file systems [34]. Perennial combines the idea of crash con-

ditions from Crash Hoare logic with a concept called capabilities from Iris, which

provide a way to both describe the current state of a resource (e.g., a disk block) and

give permission for a thread to access it.

Perennial also extends Iris’ support for atomic invariants to crash consistency.

An Iris invariant is a capability that must hold at every point during execution.

Invariants can be “opened” to use the internal capability to perform an atomic op-

eration, which must re-establish and “close” the invariant [31]. For example, each

lock in an Iris program is associated with a lock invariant, which can be opened and

closed by acquiring and releasing the lock. Perennial extends its specification of locks

to also include crash invariants, which must be part of the CHL crash condition of the

critical section [31]. Verus [163] also supports atomic invariants, but most languages

do not.

Yggdrasil. Yggdrasil [240] is a tool for automated verification of file systems. It

applies the idea of push-button verification [211], in which developers provide a spec-

ification and implementation but no proofs, to crash consistency. Systems built with

Yggdrasil are structured as stacked layers of abstraction, each of which with its own

specification and implementation. Although Yggdrasil removes the need to write
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proofs, it imposes other restrictions. It does not support reasoning over infinite do-

mains, so all aspects of the system must either be bounded or validated using other

techniques. It currently only supports building systems in a subset of Python, which

limits performance.

BilbyFS. BilbyFS [5] is a file system for raw flash devices implemented and verified

in Cogent [213]. Cogent is a functional programming language that can be verified

in Isabelle/HOL and compiled to C. BilbyFS has two verified operations, sync and

iget. The sync function synchronizes data buffered in-memory with durable data,

and iget looks up a durable inode given an inode number. It is an in-kernel system

that is compatible with the Linux Virtual File System (VFS) layer. BilbyFS is only

verified in terms of functional correctness; it does not have proven crash-consistency

guarantees.
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Chapter 7: Discussion

This chapter includes additional discussion and comparison of the techniques

presented in Chapter 3, Chapter 4, and Chapter 5. We describe the assumptions and

guarantees provided by each approach (§7.1) and their applicability to other storage

media (§7.2). We also discuss our experience learning how to build verified systems

(§7.3).

7.1 Comparison of guarantees and assumptions

In this section, we review and compare the assumptionsChipmunk, SquirrelFS,

and CapybaraKV are based on and the guarantees they provide modulo those as-

sumptions. We also briefly describe the consequences if these assumptions are incor-

rect.

Verified systems make concrete guarantees based on a set of assumptions, e.g.,

that the model describing the system’s interaction with the external environment is

accurate. Other techniques provide weaker assurances of correctness and thus do not

clearly state specific guarantees or assumptions upon which they are based. Neverthe-

less, we observe that this is a useful framework for comparing these approaches, so this

section will examine the three systems presented in this dissertation by considering

their (implicit or explicit) guarantees and assumptions.

7.1.1 Comparison of guarantees

We first describe the guarantees provided by each of the three approaches to

crash consistency.

Chipmunk makes the weakest promises out of the three. Its main guarantee is

that it does not report false positives; all bug reports describe true crash-consistency

bugs that could happen in practice. It does not explore every possible crash state in
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a given workload, and it cannot test every possible workload, so it cannot prove the

absence of bugs.

SquirrelFS guarantees that updates to durable objects with typestates will

always occur in a safe, crash-consistent order. Unlike prior soft updates systems,

it does not guarantee that every post-crash state will immediately be useable with

no recovery, as its atomic rename procedure may require cleanup to prevent future

inconsistencies. However, since it does use typestate-restricted operations during

this cleanup, it does guarantee that recovery is idempotent with respect to crashes.

Chipmunk and SquirrelFS base their guarantees on different characteristics of

crash-consistency bugs, so SquirrelFS’ guarantees are not strictly stronger than

Chipmunk’s. Typestate checking in SquirrelFS can only rule out ordering-related

bugs, whereas Chipmunk’s bug-finding abilities are based on the user-visible conse-

quences of each bug and not its root cause. There are bugs that may be detected via

typestate checking but not by Chipmunk, or vice versa.

As a verified system, CapybaraKV guarantees the absence of all crash-

consistency bugs. It also has verified functional correctness, which neither of the

other systems provide; Chipmunk does not attempt to find non-crash-consistency

bugs and SquirrelFS does not use typestate for volatile data structure manage-

ment. CapybaraKV also has verified corruption detection and guarantees that the

system will not erroneously report corruption after a crash. Chipmunk can (but is

not guaranteed to) detect inconsistencies related to checksums after a crash, while

SquirrelFS makes no attempt to detect corruption.

Chipmunk differs from the other two systems in the sense that it primarily

tries to avoid reporting a crash-consistency issue when one does not exist. It may,

however, fail to report real bugs. SquirrelFS and CapybaraKV, on the other

hand, may reject a correct implementation, but guarantee that they will never admit

a buggy one. We model checked SquirrelFS to ensure that its ordering rules did not

allow inconsistent crash states, but we did not check that all consistent states were
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possible. There are also some cases in SquirrelFS where a particular transition

function depends on a single typestate when it could safely depend on several others

because it was simpler to implement and did not impact performance. The potential

rejection of valid implementations in CapybaraKV stems from the behavior of the

underlying verifier. We discuss why attempting to verify a correct implementation

may fail in §7.3.

7.1.2 Comparison of assumptions

All three techniques presented in this dissertation are based on a model of the

semantics and behavior of the underlying storage device and assume that this model

is correct. The models we use are based on documentation from Intel on their Optane

DC Persistent Memory Module and resources from the Storage Networking Industry

Association (SNIA) [9,229,258]. It is expected that PM over CXL will adhere to this

same model [230], and we expect other future PM offerings to follow a similar (if not

the same) model. Future hardware may support non-volatile CPU caches (as in the

previously proposed eADR [122]). The current model is weaker than the expected

model for a system with non-volatile caches. It admits some durable update orderings

that may not happen with non-volatile caches, but there are no orderings that can

happen with non-volatile but not volatile caches. Therefore, we believe this model is

reasonable for both current and future PM systems.

Unlike the other systems we present, Chipmunk does not guarantee that it will

comprehensively find or prevent any set of bugs. Thus, Chipmunk makes relatively

few additional assumptions. Since it uses each file system’s regular-case execution

as an oracle during consistency checking, its primary assumption is that the system

states reachable via regular system calls are in fact legal crash states.

SquirrelFS assumes that the order of durable operations encoded in its

typestates is correct and cannot result in an inconsistent crash state. We improved

our confidence in this by model checking the design in Alloy, but this does not con-
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stitute a full proof of correctness. The correctness of the model checking depends

on the correctness of Alloy itself and of the invariants used when checking. Discrep-

ancies between the Rust implementation and the Alloy model could also introduce

crash consistency bugs. We also assume that the implementation of each typestate

transition function is correct and that the Rust compiler itself is correct.

CapybaraKV assumes that its high-level specification and its formal spec-

ification of PM are correct, including the specification of legal crash states. Like

SquirrelFS, it also assumes that the underlying tools (in this case, Verus, Z3, and

the Rust compiler) are correct. Several functions generated by the PmCopy macro

rely on hard-coded primitive type size and alignment values, and we assume that the

algorithm we use to calculate the layout of #[repr(C)] types is matches the one used

by Rust. PmCopy generates static assertions to validate these assumptions, but this

does not prove that they are correct. Due to current limitations in Verus, we cannot

prove that the ghost and executable versions of several PmCopy-generated functions

are equivalent, so the current implementation assumes this.

7.1.3 Impact of incorrect assumptions

The consequences of violated assumptions grow with stronger guarantees. Vi-

olating Chipmunk’s assumptions could result in either false positives, where a report

is generated for a bug that cannot happen, or false negatives in which bugs are not

detected. False positives are more problematic, as Chipmunk does not guarantee the

absence of false negatives even when its assumptions are met. Developers often prefer

testing tools that do not generate false positives, as establishing whether each bug is

real or not can take significant effort. However, even if they occurred due to violated

assumptions, the overall impact of false positives from Chipmunk is relatively small.

Unlike in SquirrelFS and CapybaraKV, such an issue does not have the ability

to directly and immediately impact the correctness and crash-consistency properties

of the target storage system.
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Violating the assumptions of SquirrelFS could call into question the order-

ing guarantees it provides. For example, incorrect ordering rules that are too lax

could allow an implementation that can produce inconsistent crash states. Note that

this does not guarantee that the implementation will be buggy; it just means that

if the implementation has a bug related to the incorrect rules, the bug will not be

caught at compile time. If SquirrelFS’ storage model is incorrect, its persistence

typestates may not be accurate, but the operational typestates may still be able to

prevent some higher-level ordering-related bugs.

Out of the three systems, CapybaraKV makes the strongest guarantees and

has the most to lose if its assumptions are violated. As we discuss in §7.3, program

verification aims to reduce the amount of code that a developer has to trust to believe

the system is correct as a whole. In practice, for instance, this means that a developer

who wishes to confirm the correctness of a system only needs to inspect its spec,

not test or read the whole codebase. This provides very strong guarantees when

assumptions are met, but those guarantees may be lost completely if the assumptions

are violated. In the worst case, unsoundness introduced by a verification tool or

user-provided specification may jeopardize the validity of the entire proof.

7.2 Applicability to other storage media

In this section, we discuss how the techniques presented in this dissertation

may be applicable to block-addressable storage media.

Chipmunk. The techniques and contributions from Chipmunk are generally not ap-

plicable to block-based storage media. Chipmunk’s function-based instrumentation

is useful on PM systems, but is more complex than instrumentation approaches used

in prior file system testing work. Current block-based media is too slow for testing

tools to take advantage of other insights from Chipmunk, such as the observation

that there are usually relatively few durable updates between each pair of ordering

points. The most likely pattern to be an interesting line of research is that corruption-
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detecting mechanisms can introduce new crash-consistency bugs; to our knowledge,

this interaction has not been investigated in traditional systems.

SquirrelFS. Many fundamental ideas underlying SquirrelFS originally came

from research on block-based storage systems and are not limited to byte-addressable

domains. The order of durable updates is critical for crash consistency on any type

of storage media, and soft updates was originally developed for use in block-based

file systems. Synchronous Soft Updates would not be a good crash-consistency mech-

anism with current block devices because they are not fast enough to support syn-

chronous operations. The typestate pattern could, however, be used to statically

enforce durable update ordering rules in other crash-consistency mechanisms. Ap-

proaches like copy-on-write and journaling do not derive consistency entirely from

ordering, so additional techniques would be needed to ensure their robustness. It

would be more difficult to use typestate-checked soft updates in an asynchronous set-

ting than a synchronous one, since the lifetime of a pending durable update would no

longer neatly correspond to the scope of a system call, but we are not aware of any

fundamental limitations that would prevent this with more engineering effort.

PoWER. The fundamental idea behind PoWER — that the set of crash states in-

troduced by a write can be stated and reasoned about prior to that write — is not

specific to byte-addressable storage. Our model of storage in CapybaraKV assumes

that 8-byte aligned updates are atomic with respect to crashes; this could easily be

modified to a different size (e.g., 512B or 4KiB) used by block-based storage devices.

The structure of proofs in such a system would be different from CapybaraKV.

In particular, both systems would support some degree of asynchrony, but whereas

durable updates in CapybaraKV are issued to the storage device immediately, up-

dates in a block-based system may first be reflected in a volatile cache and flushed and

ordered separately. Other techniques used in CapybaraKV, such as the corruption-

detecting Boolean (CDB), are designed for byte-addressable storage and would not

provide as much benefit to a block-based system, but are not incompatible with other
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storage types. Our general model of data corruption is compatible with any type of

storage device and any data layout and could be useful in future verified systems for

both byte- and block-addressable storage.

7.3 Experiences with systems verification

In this section, we discuss our experiences learning how to verify systems by

building CapybaraKV. We focus on the observation that there are key differences

between how systems experts approach development and best practices when building

large verified systems, and describe what we learned about bridging this gap. These

observations are based on my own experiences learning verification and on discussing

verified code with other researchers and students from a systems background. This

section draws primarily from experiences with Verus, but we believe that they may

be more broadly applicable to other verification tools as well.

7.3.1 A mental model of verification performance and failures

We begin this section by building some intuition about several key aspects of

verification tools like Verus. This section does not attempt to explain in detail how

verification tools work. Rather, we focus on building intuition about two factors —

performance and verification failures — that we argue are crucial when building a

large verified system. First, the structure of a specification or proof has an impact

on verification time, and slow proofs can significantly impact development speed.

Understanding these factors and designing systems to avoid verification performance

pitfalls is especially important for large systems with many proofs to check. Second,

just because a proof is correct does not mean it will pass verification. It can be

frustrating and time-consuming to debug such failures, but avoiding them requires

some understanding of how the verification tool works.

The main aspect of a verification tool that we argue systems programmers need

to consider when it comes to performance and proof failures is its proof context. The
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proof context is the set of facts that are known at a given time during verification. We

discuss the concept of a proof context abstractly here as a tool to understand better

how verification works, but most verifiers do have some concrete notion of a proof

context. Some tools, particularly proof assistants like Rocq, make the contents of this

context explicit to aid the interactive theorem proving process. Verification-aware

programming languages like Verus and Dafny do not show the developer the contents

of the proof context. In order to have a higher degree of automation, these languages

usually have a larger and more complex proof context that is not used directly by

users to help write proofs. Since this section focuses primarily on experiences with

Verus, we will focus on this latter category of verifiers.

Even though the exact contents of the proof context are not made explicit to

the developer in many verification languages, it is still a useful lens for understanding

how verification works. The process of verification can be thought of as a search

for a proof of each property in the system. In SMT-based verifiers like Verus, the

verifier builds logical formulas called verification conditions, and queries the SMT

solver to determine if they are satisfiable. These queries are structured such that

an unsat response implies that an assertion or pre/postcondition always holds, so

the SMT solver is searching for a proof that no satisfying assignment exists. The

proof context defines the search space, so the size and contents of the proof context

directly determine what can be proven and how long it takes. A larger proof context

results in a slower search, but a proof context that is missing key information can

prevent a valid proof from being found. Verus (and most other tools mentioned in this

dissertation) use modular verification, in which each function is evaluated separately

with its own proof context. Verifying a program is thus a balancing act between

ensuring that there is sufficient information to enable a successful search, without

including extraneous facts that will slow the process down.

To make this mental model more concrete, we now discuss an example in

which an obviously correct proof fails due to missing information in the proof context.

Later in this section, we will discuss examples from CapybaraKV where the way a
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1 mod M1 {

2 pub struct Foo {

3 val: u64

4 }

5 impl Foo {

6 pub closed spec fn le(self, other: Foo) -> bool {

7 self.val < other.val

8 }

9 }

10 proof fn lemma_foo_le_transitive_success(a: Foo, b: Foo, c: Foo)

11 requires

12 a.le(b),

13 b.le(c),

14 ensures

15 a.le(c)

16 {}

17 }

18 mod M2 {

19 proof fn lemma_foo_le_transitive_fail(a: Foo, b: Foo, c: Foo)

20 requires

21 a.le(b),

22 b.le(c),

23 ensures

24 a.le(c)

25 ^^^^^^^ failed this postcondition

26 {}

27 }

Figure 7.1: Closed spec function. The listing shows how identical proof functions
in different modules may fail or succeed to verify depending on the visibility of a spec
function body.
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specification was expressed had a significant impact on proof performance. Consider

the Verus pseudocode in Figure 7.1. In Verus, one way a developer can improve proof

times is to close spec functions, as on line 6 in the figure. The body of a closed

function is hidden outside its own module (i.e., it is visible in M1 but not M2). The

function may still be called in other modules if it is public, but its meaning is not

added to the proof context in those modules.

Figure 7.1 contains two proof functions with identical pre- and postconditions,

one in M1 and one in M2. Verus can automatically verify the function in M1 but not its

counterpart in M2 because doing so requires knowledge that the le method invokes

the less-than operator. This results in a potentially surprising verification failure

that is caused by the structure of the code, not an incorrect proof or implementation.

Keeping spec fn definitions open and globally visible can thus make proofs easier,

but it can also slow verification down by adding information to the proof context of

other functions.

In the rest of this section, we discuss observations and challenges we encoun-

tered both when learning how to build verified systems and when discussing the

process of verification with other systems experts. We will continue to use the mental

model described here to build intuition about challenges with verification performance

or getting correct proofs to succeed. For more detailed information on how Verus

works, see the official Verus guide’s section on “Understanding the Prover” [256].

7.3.2 Restrictions simplify verification, but impact system design

Verification of large, complicated systems has been made tractable by address-

ing or eliminating sources of computational complexity for the underlying solver.

Many techniques used in current systems verification stem from this goal. For exam-

ple, modular verification, in which functions are checked individually with minimal

proof contexts, reduces the size of solver queries to keep verification time low [190].

Since handling these queries generally involves solving NP-hard or undecidable prob-
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lems, keeping them simple and small is crucial.

Another major source of complexity in verification is handling shared state.

For instance, verifying concurrent programs is an active area of research that requires

specialized techniques and frameworks [30, 103, 129]. Managing heap-resident values

is also challenging, in part due to the restrictions imposed by modular verification.

This is hard even in single-threaded programs because if there are multiple mutable

aliases to a single value of the heap, it is difficult to keep track of how that value

changes over time [23]. In fact, alias analysis is undecidable or uncomputable in

general [160]. Many proof assistants use functional languages in which all values are

immutable [203, 226, 245], which solves this issue but impacts runtime performance

of the resulting system. Verus handles this by using Rust’s strict type system, which

prohibits multiple mutable references to individual values [164]. Dafny requires de-

velopers to explicitly specify what heap values a function accesses [55].

Restrictions on how systems may be built can thus simplify verification, but

also may impact how systems are built and introduce confusing or surprising chal-

lenges for verification newcomers. This same phenomenon can also occur outside of

verification; for example, consider the impact of Rust’s type system on how programs

are written. Rust is widely viewed as having a steep learning curve in large part

due to its type system, which provides safety guarantees but can also increase the

complexity of relatively simple tasks like implementing a doubly-linked list. This

same effect is compounded in formal verification, in which developers can only imple-

ment what they can specify and prove and properties for which informal reasoning is

straightforward may be surprisingly difficult to write proofs about.

The fact that verifiers trade completeness for soundness can also impact and

restrict system designs in unexpected ways. A true statement may fail to verify, for

a variety of reasons. For instance, it may require solving an undecidable problem, or

the necessary information is not present in the proof context, or the query is too large

to solve in a reasonable amount of time. We will further discuss differences between
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how systems and verification experts view soundness and correctness in §7.3.3. The

fact that the verifier cannot prove all true statements can also impose restrictions on

developers that require them to change how they write the system or proofs.

During the development of CapybaraKV, there were several times when we

were unable to prove a particular design or abstraction, even though we believed it

to be correct. We now describe a few examples of this.

PM management abstractions. CapybaraKV is made up of several durable

components that each require a (logically) contiguous region of PM but need not all

be stored together. One natural approach would be to use a PM abstraction that

stores each component in a logically-separate region. For example, each component

could each be stored in a separate PM-resident file. Note that such an abstraction

does not preclude informal global reasoning about the entire PM device. In particular,

a potential performance optimization is to use a single sfence to order writes to all

the files. If we have independent updates to multiple separate components that must

all become durable before a subsequent operation (e.g., updating CapybaraKV’s

key and item tables before updating the journal), we can safely use just one sfence

to enforce this ordering.

We initially tried to build CapybaraKV using this approach and optimiza-

tions to share sfence invocations between components. However, we quickly found

that formalizing this global reasoning was very challenging. There was no straight-

forward way to invoke an sfence in one component and use the fact that it had been

invoked in proofs elsewhere. A method of one component that uses sfence can indi-

cate in its postcondition that it has no outstanding writes, but it cannot use this to

update the state of other components. This is due to the modular approach used by

Verus; to keep proofs fast, no function has a full view of global system state. However,

developers can and do use this information in informal reasoning about the system’s

design and implementation. This challenge is similar to the aliasing problem. Here,

there are no explicit mutable aliases to a single value, but a key part of system state
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(the durability of recent writes) can be changed by one component in a way that

affects others.

We tried writing proofs that could be invoked after an sfence to establish

that prior updates could now be considered durable. This was difficult to do soundly

because we needed to ensure that an sfence made at time tn could not be used

to prove that data written at tn+1 was durable. We could have used techniques

from distributed systems (e.g., logical clocks) to establish an order of writes and

sfence instructions, but this would make proofs more much more complicated and

only bring a minor performance improvement. We decided instead to use a single

memory-mapped file on PM to store all components. CapybaraKV keeps track of

the location of each component in the file, and each component has the ability to

update the durability-related ghost state of the entire file.

Corruption-detecting Boolean. The corruption-detecting Boolean primitive we

propose in Chapter 5 was influenced by challenges we encountered when introduc-

ing corruption detection to our verified log, which is now used in CapybaraKV.

We initially attempted a design similar to the Tick-Tock algorithm used in NOVA-

Fortis [267] for crash-consistent CRC management on PM. However, we found it

challenging to verify on several fronts. First, we struggled to prove it correct with

the corruption-related axioms we were using. Our axioms required that the developer

know where the correct CRC for a given chunk of data be stored in order to prove

that the data was uncorrupted. This is a reasonable restriction; if a developer is not

required to use the stored CRC for a particular region of data, they could make up

a CRC for use in the proof, which would not be correct. However, after a crash, we

do not know which of the two Tick-Tock-maintained CRCs associated with a piece of

data is expected to be correct.

Second, even if we had managed to prove the algorithm correct (perhaps by

using different axioms), we found that Tick-Tock was not sufficient under our model

of corruption. The current model used in CapybaraKV relies on the fact some
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number c of bit flips will not cause CRC collisions [152] and assumes that no more

than c bits will be corrupted. Tick-Tock uses CRCs both to detect corruption and

also to determine which version of a data structure is valid; the two versions may be

arbitrarily different, which violates our assumption.

Tick-Tock is a reasonable algorithm under the standard assumptions that cor-

ruption will not cause CRC collisions and that the two versions of a given data

structure will not have the same CRC. It also has built-in redundancy to recover

from corruption in many cases, which the CDB-based approach does not. However,

when formalizing our model of corruption and attempting to prove our implementa-

tion correct, the restrictions imposed by verification forced us to look for a different

approach. This is not necessarily a bad thing; we found the CDB very useful when

developing CapybaraKV, and we likely would not have come up with it if we had

not encountered these obstacles. The additional restrictions and challenges imposed

by verification can lead to the development of new techniques and ideas that may not

have been considered otherwise but could have broader utility.

7.3.3 Soundness is crucial and relies on a small but critical set of assump-
tions

Verification tools strive to be sound and ensure that a valid proof will never

imply that false is equivalent to true. Since anything follows from a contradiction, if

a developer can accidentally (or maliciously) prove false, they can make the verifier

admit dangerous or incorrect code and endanger the utility of verification as a whole.

The axioms that are part of, e.g., Verus’s standard library are carefully considered to

ensure they are sound, and unsoundness bugs are taken very seriously by developers.

It is also possible for developers of verified code to accidentally introduce

soundness issues. Verified programs include trusted specifications about how the

system interacts with the external, unverified environment it executes in. In Capy-

baraKV, this includes assumptions about, e.g., the behavior of persistent memory in

the event of a crash and the conditions under which we can prove the absence of cor-
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1 impl Drop for X {

2 fn drop(&mut self)

3 requires false,

4 {

5 // do something dangerous...

6 }

7 }

Figure 7.2: Drop trait unsoundness bug. The listing shows an implementation of
Rust’s Drop trait in Verus with a precondition that introduces unsoundness.

ruption. If these assumptions are not always correct, then proofs that rely upon them

are at risk of unsoundness. There are also no verifier-imposed restrictions on writing

new axioms or unverified functions, so developers are responsible for the correctness

of these additions.

Thus, in verified systems, soundness is not optional. Maintainers of verification

tools often prioritize potential soundness issues, even if exploiting them requires a

convoluted set of steps or rare external conditions. We observe that this differs from

how many systems developers think about correctness. In many systems domains,

how problematic but rare events are handled is one dimension in a much larger trade-

off space, and safety guarantees are not always the top priority. For example, most

production file systems accept the possibility that some data may be lost or corrupted

in the event of a crash in order to improve regular-case performance. As another

example, most low-level systems are developed in non-memory-safe languages like C,

which increases the likelihood of issues like security vulnerabilities and serious bugs

in order to gain better performance. These trade-offs are a standard part of systems

development, and developers are used to weighing correctness considerations against

their impact on the performance and complexity of the system.

To compare these two lines of thinking, consider the code snippet in Figure 7.2,

which is unsound; a developer could write anything in the body of drop, and veri-

fication would still succeed. This code is referenced in a (now-fixed) Verus GitHub
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issue [102] which noted that it incorrectly passed verification. The root cause of this

issue is that calls to drop are inserted automatically by the Rust compiler whenever

an object goes out of scope, and it is rarely called directly by developers. Verus would

not allow explicit calls to this drop implementation because its precondition cannot

be met, but automatically-added drop call sites are not checked during verification.

This issue was fixed within several days by preventing developers from including pre-

conditions on most drop implementations. On one hand, this is a nontrivial problem;

it gives developers an easy way to introduce unsoundness that may then be exploited.

On the other hand, this code is obviously wrong, probably malicious, and would most

likely be caught immediately in a code review.

In our experience, verification experts tend to prioritize fixing these bugs and

try to strengthen their systems by seeking out ways that an adversary could exploit

newly-added assumptions. Verification newcomers with systems experience tend to

be confused about why this is necessary at all. As a concrete example, when building

CapybaraKV, the axiom we used for CRC reasoning went through multiple revi-

sions because it was difficult to ensure soundness. Our initial model of corruption

simply assumed that a CRC collision would not cause stored data to appear uncor-

rupted. We were willing to accept that our proofs would be compromised if that did

happen (although we ultimately strengthened the model and our assumption to make

them more realistic). However, we spent several weeks working on this axiom try-

ing to ensure that an adversarial developer could not prove false by manufacturing a

collision. Some potential “attacks” we considered were relatively straightforward; for

example, the axiom should not allow a developer to prove the absence of corruption

using a CRC they did not read from storage. We also considered more complicated

cases, such as where the attacker could wait for a specific corruption event that did

not violate our main assumption, use it to construct a CRC collision, and prove false.

Systems developers (including, initially, the author of this dissertation) involved with

these conversations were generally confused about why preventing this type of thing

was worth so much effort.
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Verification experts and tool maintainers prioritize this type of issue because a

key goal of verification is to reduce the amount of code that developers must manually

reason about to trust the correctness of the system. If assuring the correctness of a

verified system requires manually checking all of its code to ensure it does not attempt

(accidentally or intentionally) to exploit unsoundness, the fully utility of verification

has not been realized.

These observations have several interesting implications. First, in our expe-

rience, it is not uncommon for those unfamiliar with verification to assume that a

verified system is guaranteed to be completely correct. However, as we have just

discussed, these guarantees are based on the assumption of soundness of the underly-

ing verification tool and developer-provided specifications. The latter is particularly

important, because it means that the developers of a verified system have a responsi-

bility to carefully ensure not just that they are proving the correct properties, but also

that they have not introduced potentially-exploitable issues. Verification newcomers

are likely aware that the correctness of their system depends on its specification, but

in our experience it seems less widely known that there are other avenues via which

correctness can be jeopardized.

Second, we believe that it would be interesting and useful to further investigate

static analysis techniques that provide partial correctness guarantees, such as those

used in SquirrelFS. The reaction of systems experts to this aspect of verification

indicates that at least some subset of the community may be more interested with

simply improving confidence in their systems by some amount than in fully verifying

them. There has been recent interest from industry practitioners in more lightweight

techniques [24,158,212] as well, since these techniques require less specialized knowl-

edge and time investment than full verification. Defining the exact guarantees and

limitations of different techniques and how these characteristics concretely impact

system design and development would be a valuable contribution.

Alternatively, a potentially more controversial approach could be to apply
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verification tools in a different, less-complete way to achieve different goals. It may be

more useful in some cases to use verification not to eliminate the need to trust most of

a codebase, but rather to help a developer develop a more formal specification of their

system and ensure that their implementation meets some less-complete correctness

criteria. Again, establishing how to express what such an approach guarantees would

be crucial so that developers can use the right mix of dynamic and static methods to

check the correctness of their system.

7.3.4 Understanding quantifiers and triggers is key to writing good veri-
fied code

Quantifiers and triggers are one of the more challenging aspects of Verus for

newcomers to understand, but they are arguably also one of the most important. How

they are used both impacts whether code verifies successfully (even if it is correct) and

how long verification takes. The key challenge stems from the fact that solving logical

formulas including universal and/or existential quantifiers is undecidable. However,

quantified expressions are extremely common, so understanding how they impact

verification results and performance can help developers write better proofs.

We first explain how verifiers handle quantified expressions. Solvers like Z3

handle quantified expressions using pattern matching [198]. In Verus and Dafny,

the patterns to match on are specified using annotations called triggers. When the

pattern is used, an instance of the quantified expression is instantiated in the proof

context. This prevents the verifier from needing to somehow handle an infinite set of

facts established by the quantified expression, and also ensures that only facts likely

to be needed for the proof are included in the proof context.

For example, consider Figure 7.3, which contains a code listing borrowed from

the Verus documentation [257]. There are two proof functions (lines 4 and 11), both

of which have preconditions requiring that all elements of a sequence s are even. In

both, is even(s[i]) is chosen as a trigger. In test use forall, the quantifier is

instantiated with the use of is even(s[3]) on line 9. In our mental model, this in-
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1 spec fn is_even(i: int) -> bool {

2 i % 2 == 0

3 }

4 proof fn test_use_forall(s: Seq<int>)

5 requires

6 5 <= s.len(),

7 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

8 {

9 assert(is_even(s[3]));

10 }

11 proof fn test_use_forall_fail(s: Seq<int>)

12 requires

13 5 <= s.len(),

14 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

15 {

16 assert(s[3] % 2 == 0);

17 ^^^^^^^^^^^^^ assertion failed

18 }

Figure 7.3: Trigger example. The listing shows how the choice of trigger in a
forall statement can impact whether a correct assertion passes verification.

stantiation adds the fact 0 <= 3 < s.len() ==> is even(s[3]) == 3 to the proof

context. This fact is known to be true from the precondition, and it can be used to

prove that the assertion on line 9 holds.

In test use forall fail, the assertion on line 16 is logically equivalent to

the one on line 9, but it does not use the trigger pattern. Thus, 0 <= 3 < s.len()

==> is even(s[3]) == 3 is not added to the proof context (even though it is true),

so Verus does not have a way to prove that the assertion holds.

In this example, is even(s[i]) is not the only valid trigger; s[i] could also be

selected, and would make both assertions pass since they both use the pattern s[i].

In this way, the choice of trigger can impact the result of verification. However, more

general triggers will result in more instantiations, which can have a significant impact

on performance in large systems. Since each instantiation increases the size of the

proof context, many instantiations will make verification slow. The verifier cannot
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1 spec fn spec_no_duplicates(list: Seq<u64>) -> bool {

2 forall |i: int, j: int| {

3 &&& 0 <= i < list.len()

4 &&& 0 <= j < list.len()

5 &&& i != j

6 } ==> list[i] != list[j]

7 }

Figure 7.4: No duplicates spec function. The listing shows a spec function that
returns whether a sequence contains any duplicate elements.

tell a priori which instantiated facts will be necessary for the current proof, so it

must instantiate each quantifier every time the trigger pattern is matched, even if the

resulting information is not helpful.

Quantifier instantiations are a common source of verification performance

problems, and Verus includes a built-in profiler to detect problematic triggers. How-

ever, as systems grow larger, it becomes more and more difficult to choose the right

triggers and keep track of the patterns to use in new proofs. More general triggers

will cause performance problems, but more restrictive triggers can lead to frustrating

proof failures that are hard to debug.

As a concrete example inCapybaraKV, several system components maintain

volatile free lists as Rust Vecs to help allocate persistent memory. One important free

list invariant is that the list does not contain any duplicates. We initially specified this

property as shown in Figure 7.4. The quantifier must have a trigger for both i and

j, and the only patterns that can function as valid triggers are list[i] and list[j]

(in Verus and Dafny, arithmetic and (in)equality expressions cannot be triggers).

However, as this is part of an invariant that is included as a pre/postcondition in

many functions, the quantifier will be instantiated each time any index in list is

accessed. In CapybaraKV, the impact of all of these instantiations on performance

quickly became apparent. We discuss how we overcame this particular performance

issue in §7.3.5.
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We encountered many expensive quantifier instantiations during the develop-

ment of CapybaraKV, and there is no one-size-fits-all solution to fix them. These

issues arose in large part because the author of this dissertation did not fully under-

stand the impact that quantifier usage and trigger choice would have on the rest of

the system until those impacts were realized. We thus believe that obtaining a good

understanding of quantifiers and triggers is important for those learning verification,

and that designing systems and abstractions with this in mind will result in cleaner

code that verifies faster and is easier to write proofs for.

7.3.5 Proofs and specifications are not executable code

Verification of imperative programs blends ideas familiar to systems program-

mers with concepts from functional programming and automated logical reasoning.

We observe that one sticking point for some verification newcomers is understanding

how these newer aspects differ from the code they are used to writing. One potential

cause of this confusion is that many parts of a program written in, e.g., Verus, are

syntactically very similar to executable code but are expressing purely mathematical

properties. Understanding this is crucial for nearly all aspects of writing a verified

system. We now describe several examples from the development of CapybaraKV

where this idea came into play.

Proofs can take advantage of theoretical properties that programs can’t.

In our experience, a common pattern among verification newcomers is that they

approach writing proofs and specifications as if they were imperative code. This is

often fine, but we have also seen that approaching ghost code as if it will be executed

can leave simplifications and verification performance optimizations on the table.

Consider the spec no duplicates function shown in Figure 7.4. It looks sim-

ilar to an executable function a developer might write to check whether an arbitrary

list contains duplicate values. The main difference is the forall statement, but we

could replace this with loops over the elements of list to make an equivalent impera-
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1 spec fn is_reverse_mapping(s: Seq<u64>, f: spec_fn(u64) -> int)

2 -> bool

3 {

4 forall |i: int| 0 <= i < s.len() ==> i == f(s[i])

5 }

Figure 7.5: Reverse mapping definition. The listing shows a function defining a
reverse mapping from a sequence’s elements to their indices. The type spec fn(u64)

-> int represents a function from u64 to int.

tive function. Such an implementation is a standard way to check a list for duplicates

if no other information is known about it (e.g., whether it is sorted). However, as

discussed in §7.3.4, this function is not ideal as a specification because it can result

in frequent trigger instantiation and impact verification performance.

An alternative approach, proposed to us by Chris Hawblitzel, is to specify

what it means for a list to be free of duplicates using the mathematical definition of a

function. This is a different definition of function than what programmers generally

use. We normally think of functions as callable units of code, but Verus can also

express functions in the mathematical sense of a mapping that assigns each member

of a setX to exactly one member of a set Y . In this case, we can take advantage of this

to write a no-duplicates specification that has a much lower verification performance

impact.

We can write an improved specification as follows. Consider the function shown

in Figure 7.5, which defines whether a function f is a reverse mapping function for

a sequence s of u64s. Essentially, f is a reverse mapping if it maps each element of

s to its index in s. Because f is a function in the mathematical sense, a particular

sequence s only has a reverse mapping if each element maps to exactly one index.

Therefore, s contains no duplicate elements iff a reverse mapping function exists for

s. To prove that a sequence contains no duplicates, we can keep a corresponding

reverse mapping function in ghost state, maintaining as an invariant that it is a valid

reverse mapping, as shown in Figure 7.6. It’s not strictly necessary to maintain the
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1 struct FreeList {

2 contents: Vec<u64>,

3 reverse_mapping: Ghost<spec_fn(u64) -> int>,

4 }

5 impl FreeList {

6 spec fn invariant(self) -> bool {

7 is_reverse_mapping(self.contents@, self.reverse_mapping@) && ...

8 }

9 }

Figure 7.6: Specification with reverse mapping. The listing shows a structure
that stores a free list in a vector. It also maintains, as a field, a ghost reverse mapping
function to help prove that the free list has no duplicates. A spec function defining an
invariant for the free list specifies that the reverse mapping must match the concrete
free list. The @ symbols take the view of the contents vector and unwrap the Ghost
type, respectively.

ghost reverse mapping function (it is possible to establish the existence of a reverse

mapping, which is sufficient, without it), but it simplifies proofs and introduces no

runtime overhead. If we still want to use the definition of spec no duplicates in

some places, it is trivial to prove that the existence of the reverse mapping implies

there are no duplicates, and relatively easy to prove the converse. This was not a total

panacea; we still found it easier to write proofs using spec no duplicates in some

places, and we made some additional optimizations to speed up proofs about this

property. Still, this example illustrates one way in which engaging with the practice

of writing ghost code as writing mathematical expressions, rather than translating

imperative code into something the verifier can reason about, can be a beneficial way

to approach verification.

Reasoning about sequences. Verus’ standard library includes several types for

use in specifications, including sequences (Seq), maps (Map), and mathematical sets

(Set). We use sequences of bytes to model the contents of persistent memory in

CapybaraKV because they are a natural abstraction for array-structured objects.

Sequences are widely used in Verus, so it has good support for specifications and proofs
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1 struct MySeq {

2 s: Seq<int>

3 }

4 proof fn test_proof() {

5 let s1 = MySeq { s: Seq::new(4, |i: int| i * 2) };

6 let s2 = MySeq {

7 s: Seq::empty().push(0).push(2).push(4).push(6)

8 };

9 assert(s1 == s2);

10 ^^^^^^^^ assertion failed

11 }

Figure 7.7: Sequence equality. The listing shows a proof function that fails to
verify that two identical sequences are equivalent.

about them. Despite this, the way that Verus handles reasoning about sequences is

often unintuitive and does not match how systems developers may informally reason

about them.

For example, consider the Verus code in Figure 7.7. We define a type, MySeq,

that is a wrapper around the Verus standard library type Seq and stores a sequence

of integers. We then create two instances of MySeq in two different ways: s1 uses the

Seq constructor to create a list of four elements in which the value at index i is i *

2, and s2 is created by pushing values onto an empty Seq. It is easy to see that s1

== s2, but Verus fails to prove this. Verus uses extensional equality in determining

if two objects are equal; for Seqs, this means it considers two sequences equal if they

have the same elements. However, Verus will not always automatically check that

two objects are extensionally equal, because a simple basic equality check (which here

would be checking if the two Seqs were constructed in the same way) is faster. This is

why the code in the listing does not verify: the two MySeq instances are not checked

for extensional equality and are not obviously equivalent by definition. At the time of

writing, Verus does automatically check extensional equality for Seq types, but not

for user-defined types containing Seq such as MySeq.
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1 spec fn spec_padding_needed(offset: nat, align: nat) -> nat

2 {

3 let misalignment = offset % align;

4 if misalignment > 0 {

5 (align - misalignment) as nat

6 } else {

7 0

8 }

9 }

Figure 7.8: Memory layout padding function. The listing shows a spec func-
tion that specifies how to calculate the padding needed for a field in a #[repr(C)]

structure.

Nonlinear arithmetic. Linear arithmetic encompasses basic mathematical expres-

sions including operations involving constants; for example, x ∗ 3 ≤ 15. Integer linear

arithmetic is NP-hard and supported by SMT solvers like Z3. Nonlinear arithmetic

covers expressions in which variables are multiplied or divided (e.g., x ∗ y ≥ 15), and

is undecidable [197].

Unfortunately, nonlinear arithmetic is common in systems programming. For

example, CapybaraKV’s durable circular log uses modular arithmetic (which is

nonlinear if the modulus is not constant) to calculate addresses when log contents

wrap around. We encountered challenges trying to efficiently verify parts of Capy-

baraKV that involved modular arithmetic. Verus supports several optional solvers

for handling nonlinear arithmetic, one that handles a decidable subset and Z3’s built-

in solver that can often (but not always) solve general nonlinear expressions. We

primarily used the latter, as support for the former is less mature and comes with

some restrictions (e.g., no support for inequalities or division). However, because

this approach attempts to solve an undecidable problem, code dealing with modular

arithmetic was often more difficult to prove and took longer to verify.

One particular example of this had to do with how our PmCopy macro is used

to calculate the memory layout of each durable object. For each type that derives
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PmCopy, the macro generates code that uses the spec padding needed function shown

in Figure 7.8 to determine how much padding (if any) is needed between each field.

This function is based on the algorithm used by Rust to determine the layout of

#[repr(C)] types [231]. Because the value of align is not constant, line 4 involves

nonlinear arithmetic. Many proofs rely on the result of this calculation, so we ini-

tially kept the body of this function open and visible. For example, crash-consistency

proofs in CapybaraKV often require proving that updating a particular durable

data structure does not overwrite part of an adjacent structure, which involves rea-

soning about the size of the update. However, we found that making this specification

globally visible caused significant verification slowdown. To demonstrate this, mea-

sured how long CapybaraKV takes to verify with the current version of Verus at

the time of writing on a ThinkPad laptop. The version of CapybaraKV described

in Chapter 5, which hides the definition of spec padding needed, verifies in about

60 seconds with 1 thread. After making the definition of spec padding needed open,

verification of many functions initially times out. After increasing timeouts to allow

for verification to complete, it takes about 120 seconds with 1 thread.

7.3.6 Summary

This section provides an overview of some of our experiences learning Verus.

We initially build intuition using a mental model of verification based on a set of

known facts forming a proof context, and we use this to describe challenges and lessons

that we learned about verification when building CapybaraKV. A common thread

in many of these lessons is that verification impacts how a system is built beyond just

requiring the developer to write additional code for proofs and specifications; it also

requires developers to think about trade-offs and what it means to be correct in new

ways. These lessons may be unsurprising to verification experts, but we believe that

they may be useful to engineers or researchers with a background in systems who are

interested in learning verification.
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7.4 Summary

In this chapter, we first describe the guarantees and assumptions made by

Chipmunk, SquirrelFS, and CapybaraKV. These are standard aspects of veri-

fied systems to discuss explicitly, and although not all of these systems are verified, we

find this to be a useful framework for comparing them. We also discuss the impact of

violating these assumptions, noting how the severity of these consequences increases

alongside the strength of the provided guarantees.

Next, we discuss how the techniques discussed in this dissertation could be

applied to other types of storage hardware. Although the techniques we describe

here were originally developed for PM, some of them are more widely applicable and

may be useful to gain confidence in the correctness of systems for block-based storage

devices as well.

Finally, we describe our experiences learning systems verification when build-

ing CapybaraKV and distill them into a set of observations. We provide examples

from CapybaraKV to back up these observations. The key goal of this section is

to explain the intuition we built over the development of CapybaraKV about how

to design verified systems and write and debug proofs.
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Chapter 8: Future work

In this chapter, we discuss possible directions for future work.

8.1 Rust for lightweight static checking

As shown in this dissertation with SquirrelFS and in prior work [113], Rust’s

powerful type system can be used to check certain crash safety properties in persistent

memory file systems. We believe an interesting line of work would be to investigate

additional ways to use the Rust type system to statically enforce other properties,

both in storage systems and more broadly.

As discussed in §6.3, there has been some work on using ideas from the pro-

gramming languages and formal methods communities to statically check other prop-

erties using the Rust compiler. These techniques could be useful for enforcing ad-

ditional properties in storage systems (or low-level systems more broadly) without

high proof burden. Further investigation is required to determine if and how these

techniques could be applied to check high-level correctness and safety properties like

crash consistency.

Members of the Rust development community have also recently proposed the

addition of language support for contracts, predicates about program state and cor-

rectness that could be used for both static and dynamic analysis techniques [149,150].

Another proposal suggested the addition of ghost code that would be checked by the

compiler but erased in the resulting executable [162] to the main language. Contracts

and ghost code are widely used in program verification and are handled differently by

each Rust verification tool. These proposals aimed to standardize support for these

features and make them easier to use. Neither proposal has been adopted, but such

constructs could be used to express properties to check in a lightweight way, although

this may require additional tooling beyond the compiler.
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8.2 Typestate for asynchronous file systems

As discussed in §7.2, the typestate pattern could be applied to check ordering-

related properties in asynchronous file systems built for slower media. We believe

another interesting line of work would be to investigate the use of typestate in such

systems. As with traditional soft updates systems and other crash-consistency mecha-

nism currently in wider use, such a system would resolve most updates asynchronously

from a page cache, rather than in the critical path of a system call handler. Type-

states could potentially be used in this part of the system’s implementation to enforce

ordering properties.

A challenge we encountered in SquirrelFS that may become more promi-

nent in an asynchronous system is dealing with collections of unbounded size. For

example, it would be difficult to statically check that a set of pending journal entries

have become durable before committing them. One solution may be to wrap such

collections in fixed-size abstractions for typestate checking purposes, as we did in

SquirrelFS. It is also possible that new system designs that manage the page cache

or a journal differently from existing systems would be easier to check using type-

state, similar to how we designed a non-standard durable layout for SquirrelFS.

Extensions to Rust, such as those proposed by Flux [170], could also potentially be

useful.

8.3 Studying corruption in byte-addressable storage

The problem of data corruption on persistent memory has not been well stud-

ied. We present a model of corruption and techniques to detect it in Chapter 5,

as does the NOVA-Fortis file system [267], but there have been no large-scale stud-

ies as there have been for other storage media [14, 15, 98, 99, 237, 252, 276]. Further

research is required both to understand how best to model and detect corruption

on byte-addressable storage devices as well as to understand how to deploy them in

large-scale systems in a reliable way.
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Prior studies on other types of storage hardware have either studied data

collected over months or years on millions of drives [14,15,237] or used custom-built

hardware to stress-test storage devices by repeatedly cutting their power supply [98,

252,276]. To our knowledge, no study of either type has been conducted on any kind

of persistent memory hardware. The closest related work examined the nature of

PM-related patches submitted to the Linux kernel [85], some of which were related

to corruption detection and handling.

Detailed measurements from individual devices as well as large-scale studies

of corruption in production systems would both provide valuable information about

these devices and how they behave in real deployments in the presence of crashes or

other corrupting events. Such a study would be particularly valuable before PM is

widely deployed in cloud systems and/or personal computers in order to understand

and mitigate corruption issues before they occur.

8.4 Environmental impact of persistent memory

The sustainability and environmental impact of data center technologies is

becoming increasingly important. An interesting line of inquiry would be to study

the environmental impact of different types of storage-class memory and develop

techniques to reduce it.

Recent research on data center sustainability has shown that embodied car-

bon, or carbon emissions from manufacturing components, is a large problem [19,184].

Reusing or continuing to use components beyond their standard lifetime, potentially

in a degraded form, has been proposed as a way to reduce embodied carbon [185,219].

This solution, while effective, requires more investigation to apply it successfully to

storage devices, which can experience higher failure rates over time [184] or have

limited write endurance [186]. Understanding the lifetime, failure rates, and write

endurance of different PM technologies well enough to consider sustainability ap-

proaches like this will require more research.
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There are other non-carbon-related environmental concerns, such as water

consumption and e-waste, that should also be considered. In particular, batteries

can produce particularly hazardous waste [255], so using them for large amounts of

battery-backed DRAM could have additional impacts on the amount of e-waste pro-

duced by data centers. The materials used in the production of future PM hardware

could also be environmentally costly to obtain or produce. To our knowledge, these

factors have not been investigated with regard to future PM technologies.

8.5 Other PM use cases

This dissertation focuses on systems that use PM for its durability. However,

PM differs from existing DRAM technology in a number of ways besides persistence,

and recent research has also begun to investigate how these additional characteristics

may be useful for different types of systems. For example, systems and techniques for

tiered memory like Nimble [268], KLOCs [139], and HeMem [220] have explored how

to use slower types of memory (e.g., Optane PM) to expand main memory capacity.

These systems generally treat PM as additional, slower layer in the memory hierarchy

to store colder data. They have used Optane PM in both Memory Mode (which

configures the hardware to treat DRAM as an L4 cache and Optane as volatile main

memory [139]) and App Direct mode, but do not rely on PM’s durability in either

case. Memory Mode, which presents Optane PM as volatile, in fact encrypts and

stores data durably and throws out the encryption key on a power cycle to prevent

future access [116].

Note, however, that Optane PM still provides persistence regardless of whether

it is used. By not utilizing PM’s durability at all, these systems leave some features

on the table. For example, if a server one of these systems loses power, it has no

way to recover the information stored on its PM even though the data is still present.

Although losing this data does not impact the functionality of the system after a

crash, it could impact performance by requiring the system to read the data from
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block storage or other servers. However, the designers of these systems would likely

not want to give up any performance in order to obtain crash consistency on PM.

The techniques described in this dissertation prioritize consistency over performance,

so they would not work well in this use case. An interesting line of work would be to

look at how these systems could leverage the inherent persistence of PM devices they

already use with minimal performance impact. Since flush/write-back and ordering

primitives increase performance overheads, one potential approach could be to apply

ideas from NoFS [44], which achieves crash consistency without ordering durable

updates.

Recent work has also proposed developing storage-class memory technologies

that trade shorter retention times for better write endurance and capacity [169]. This

class of device, managed-retention memory (MRM), could be of particular benefit

for AI workloads that currently depend on high-bandwidth memory (HBM), which is

necessary to hit bandwidth requirements but is expensive and is expected to face yield

and scaling challenges in the future [169]. Systems using PM that only promises to

retain data for hours or days may have different crash-consistency and data integrity

considerations than the storage systems examined in this dissertation. We believe that

investigating the reliability requirements of these systems would also be an interesting

future direction for PM software research.
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Chapter 9: Lessons learned and conclusion

9.1 Lessons learned

The three projects discussed in this dissertation use techniques that are gen-

erally studied by separate research communities. In this section, we discuss lessons

learned from studying all of these techniques to address storage system robustness.

Lesson 1: Most prior work has focused on individual robustness techniques, but the
best way to build truly robust systems is to use multiple techniques together.

This dissertation presents three approaches to building robust storage systems

that are generally considered independent and completely distinct. Based on experi-

ences with all three techniques, I argue that the best way to build truly robust storage

systems is to use these approaches together. Although lightweight static checking and

verification provide stronger guarantees than testing, neither can prove the absolute

correctness of a system because they rely on assumptions about the external envi-

ronment and what it means for the system to be correct. Using multiple techniques

together can help catch additional bugs and detect flawed assumptions before they

cause real-world issues.

For instance, I argue that verified systems should be thoroughly tested, just as

unverified systems are. While such testing will almost certainly find fewer bugs than

in unverified systems, it can help find bugs in the specification of correctness or the

model of the external environment the proofs are based on. It is not hard to write

an incorrect specification or make potentially dangerous assumptions that are not

easy to notice when manually checking the code. Aspects of a system’s specification

that can be time-consuming to handle but seem somewhat less critical to correctness

may be particularly at risk. For example, during the development of CapybaraKV,

we prioritized specifying regular-case and crash-related behaviors, sometimes at the

expense of error-case specifications. At one point, when adding lists (a feature not
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discussed in this dissertation) an incorrectly-specified error case allowed an operation

to always return an out-of-space error regardless of how much space was actually

left.1 The root cause of the bug was the use of an incorrect Boolean operator, and

code with this bug verified because the implementation was valid for the incorrect

specification we had provided. This bug was only found when testing the system

using pre-existing tests written for an unverified system.

We also combined standard testing techniques, including Chipmunk, with

lightweight static checking in SquirrelFS to find regular-execution and non-ordering-

related crash-consistency bugs. An interesting avenue for future work could be com-

bining verification with typestate checking; for example, verifying the functionality of

typestate transition functions and using typestate to check higher-level operations.

The techniques we describe in this dissertation occupy various points in the

trade-off space between complexity and confidence, but they are not mutually ex-

clusive. We can further strengthen our confidence in systems by combining these

techniques to use the strengths of each approach while compensating for their weak-

nesses. Combining these techniques, as well as techniques from related work, in

different ways can help developers find the right spot in the trade-off space and ob-

tain the guarantees they need for their particular use case.

Lesson 2: All robustness techniques, not just verification, make assumptions that
are crucial to their ability to detect or prevent problems.

Developers of verified systems are generally explicit about the assumptions

they make and the unverified components they depend on. In contrast, developers

of testing tools do not usually state the assumptions that the correctness of their

tools rely on. In lightweight static checking, the authors of Corundum [113] list some

assumptions made by the library. We did not include such a list in the original

SquirrelFS paper, but a discussion of the assumptions made in that project is

1This bug was found by Jay Lorch.
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included here in §7.1.

We observe that all of these approaches make key assumptions upon which

their utility and ability to detect or prevent bugs depends. As discussed in §7.1, all

of these techniques assume that their model of the underlying PM’s crash behavior

is correct. Especially when trying to ensure properties like crash consistency, where

systematic testing requires modeling hardware behaviors we have little direct insight

into, the assumption that this model is correct is the crucial. Although the conse-

quences of getting these assumptions wrong in a testing tool are less problematic than

in a verified system, they can still result in false positives that waste developer time

or unnecessary false negatives that cause data loss later on. For example, an early

version of Chipmunk did not model cache lines correctly in all cases, resulting in

several false positive bugs. We did not realize they were false positives until after

finding and fixing the issue with cache line modeling, when they could no longer be

replicated.

I argue that the practices of explicitly stating and carefully scrutinizing as-

sumptions, already present in the verification community, should be adopted by de-

velopers of other techniques as well. I recommend the following practices that are

currently in use in the verification community. First, papers and/or documentation

about verified systems generally explicitly state which components are trusted for

correctness. Along with the specification of correctness and models of the external

environment, developers of these tools list the dependencies upon which the verified

code depends for correctness. The authors are generally explicit about what system

components should be manually audited by a human to confirm that they are correct.

Second, it is common for verified codebases to be organized such that each file con-

tains only trusted or untrusted code, and for this to be reflected in the name of each

file. For example, many projects (including CapybaraKV and CapybaraNS) use

a t suffix on file names containing only trusted code and v for files with verified

code. This practice makes it easier to determine which parts of the codebase should

be audited. Unverified systems would also benefit from clear documentation about
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assumptions and organizational practices that make it easier to understand how these

assumptions are made and used in different parts of the codebase.

It is more difficult to draw a clear distinction in unverified systems between

code that makes critical assumptions and code that relies on those assumptions for

correctness. More work is likely required to determine the best principles for under-

standing and stating the assumptions made in unverified code. One possible model

for this is unsafe code in Rust [234]. Unsafe Rust is somewhat analogous to unverified

code; it is subject to weaker compiler-enforced restrictions than regular Rust, and gen-

erally makes some unchecked assumptions about how underlying resources are being

used. Unsafe Rust is the only way to perform certain operations (e.g., dereferencing

a raw pointer or interacting with other languages), but it must be used carefully to

avoid introducing memory safety issues. It is standard practice for Rust developers

to document each unsafe function with a description of the assumptions the function

makes and how to use it safely. It is also common to include comments with each

invocation of an unsafe function to explain why that particular call is safe. Unsafe

Rust only targets specific, potentially-memory-unsafe operations, but it demonstrates

how critical assumptions can be handled more safely in unverified programs via both

language support and standard documentation practices.

Lesson 3: Most storage system robustness techniques are developed specifically for
asynchronous contexts, but starting from a synchronous storage model can help keep
these techniques simple and does not preclude generalizing to asynchrony later.

Thanks to our focus on PM, the systems discussed in this dissertation were

originally developed for mostly synchronous use cases. In particular, SquirrelFS

provides synchronous system calls, our original version of CapybaraKV’s storage

model assumed completely synchronous writes to storage and used synchronous op-

erations on keys and values. As discussed in Chapter 3 and Chapter 4, synchrony

allows systems to provide stronger, better-defined guarantees than can be achieved

in asynchronous settings, and often simplifies reasoning about properties like crash
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consistency. It was only after establishing the key ideas behind SquirrelFS and

CapybaraKV in a synchronous setting that we realized that some aspects in both

projects could be generalized to asynchronous settings as well.

I believe that starting in a synchronous context played a significant role in

the development of many of the techniques described in this dissertation, and is a

potentially useful tool for developing future robustness techniques as well. Specif-

ically, we started with a synchronous model of PM in SquirrelFS and PoW-

ER/CapybaraKV that we later extended to encompass asynchrony. The intuition

behind this approach is that it is easier to reason about crash behaviors in a syn-

chronous setting than an asynchronous one. In our experience, it is also easier to

assume that each storage I/O operation is synchronous, and determine where this

assumption could be relaxed later, than to have to consider all possible reorderings

from the start.

This approach was particularly valuable when building CapybaraKV. The

complexity eliminated by starting in a synchronous setting helped us land on the

key insight behind PoWER – that crash consistency can be enforced via Hoare logic

preconditions. We have been asked why prior work did not develop and use PoWER,

since it is simpler and more flexible than existing techniques. I believe the fact that

prior work had to reason about crashes and asynchrony together played a major role

in why these approaches are more complicated. SquirrelFS is more closely tied to

synchrony, but the core idea underlying the use of the typestate pattern to enforce

crash consistency is compatible with asynchrony. Furthermore, when determining the

ordering rules to enforce using typestate, our initial informal reasoning was based on

a synchronous model of PM, which we extended to an asynchronous model when we

built the system.

It is likely more difficult in general to generalize a synchronous system design

to an asynchronous setting; the approach proposed here is more useful when reason-

ing about the underlying storage model. For example, much of SquirrelFS’s design

209



(e.g., Synchronous Soft Updates) relies on synchrony, and the complex nature of file

system operations complicates the transition from synchrony to asynchrony. How-

ever, we did successfully transition CapybaraKV, which has a much simpler KV

store interface, from a fully-synchronous design to an asynchronous, transaction-based

design, so this approach is not limited to the storage model.

Crash consistency is already difficult to reason about, so focusing on it and

keeping other properties as simple as possible helped facilitate the development of

the techniques presented in this dissertation. PM provides an avenue for building

synchronous storage systems, and so it helped us develop novel and straightforward

storage-system robustness techniques that are applicable to traditional storage as

well.

9.2 Closing words

In this dissertation, we have explored a set of techniques for ensuring the ro-

bustness of persistent memory storage systems. We first presented Chipmunk, a

testing tool for POSIX PM file systems that is useful with both new and existing

systems and effective at finding serious crash-consistency bugs. Next, we presented

SquirrelFS, a new PM file system demonstrating the use of the typestate pattern for

crash consistency together with Synchronous Soft Updates, a new crash-consistency

mechanism. Finally, we presented PoWER, a new technique for verifying crash consis-

tency, and CapybaraKV, a verified PM key-value store that uses it. Each approach

falls at a different point in the trade-off space between effort and confidence. They

contribute to the set of tools available for storage system developers, enabling them

to build more robust systems with a variety of resources and requirements. We have

also discussed the guarantees and assumptions made by each technique and described

our experiences learning how to build verified systems in Verus, focusing on unex-

pected challenges and gaps that had to be bridged coming from a background in

systems with limited verification experience. We have described lessons learned by
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working on testing, lightweight static methods, and verification together and made

recommendations based on our experiences with these techniques.

We hope that the techniques presented in this dissertation inform the devel-

opment of future storage systems for PM as well as traditional and potential fu-

ture storage devices. We have focused on developing techniques that are useful for

practitioners and provide avenues for developers of real-world systems to adopt more

rigorous static approaches to robustness. In working at the intersection of previously-

separate research communities, we have also learned and shared valuable lessons both

about developing new robustness approaches and building robust systems themselves.

We hope that these lessons aid the development of both future robustness techniques

and of new storage systems, and that they inspire continued work on approaches

that utilize the knowledge from many different research communities to provide high

confidence and well-defined guarantees.
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Appendix A: Open-source code

All software presented in this dissertation is open source. The source code for

Chipmunk can be found at https://github.com/utsaslab/chipmunk. The source

code for SquirrelFS can be found at https://github.com/utsaslab/squirrelfs.

The source code forCapybaraKV can be found at https://github.com/microsoft/

verified-storage.
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