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Crash consistency: data 
can be correctly recovered 
after power loss or system 
crash What does it mean 

to recover 
correctly?

What actually can 
be recovered?
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Example: moving a file

foo

A B

Goal: move foo from A to B

1. Delete pointer to foo in A
2. Create pointer to foo in B
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Example: moving a file

foo

A B

Goal: move foo from A to B

1. Delete pointer to foo in A

— CRASH —

2. Create pointer to foo in B

foo is not reachable from 
either directory - incorrect!
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Example: moving a file

foo

A B

Goal: move foo from A to B

1. Create pointer to foo in B
2. Delete pointer to foo in A
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Example: moving a file

foo

A B

Goal: move foo from A to B

1. Create pointer to foo in B

— CRASH —

2. Delete pointer to foo in A

foo is present in both 
directories - incorrect??
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Traditional file systems

● Hard drives and SSDs are SLOW
● File systems are ASYNCHRONOUS 

○ User does not have to wait for written data to be flushed 
○ Need for asynchrony was recognized early - first Unix file system buffered writes to reduce # 

of I/O calls
● Coarse-grained updates can be delayed and reordered
● As shown in example: order of updates is very important for crash 

consistency!
● Inherent tradeoff between performance and reliability

○ The longer updates can be delayed, better performance will be - but more likely to lose data 
and confuse users



Crash consistency today

● Primary goal: performance
● Crash-consistency properties are often confusing, poorly specified
● Bugs in file system can break these properties… 

○ But it is hard to determine if something is *actually* a bug, or an intended behavior that users 
don’t like

● Today’s FSes are mature and well tested, but burden is often on developers 
to understand guarantees and write apps to achieve necessary level of 
reliability

● E.g. 2009 ext4 data loss issue





Persistent memory

Traditional storage media (HDD, SSD)

● Slow access latency (4ms-100µs) 
● Block-addressable

Persistent memory (PM)

● Fast access latency (~300ns)
● Byte-addressable
● Accessible via memory loads/stores



Advantages of PM file systems 

Jian Xu and Steven Swanson. “NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories,” FAST ‘16



Advantages of PM file systems

● PM file systems DO NOT need to be asynchronous to achieve good 
performance!

● New PM file systems are synchronous
○ All updates are flushed to storage by the time each system call completes
○ Memory fences prevent updates associated with one system call from being reordered with 

updates from the next one
● Reliability and clear crash-consistency guarantees are easier to achieve when 

writes cannot be significantly delayed or reordered



PM access modes

Application

PM file 
system

Persistent memory

PM file 
system

14



PM access modes

Application

Persistent memory

PM file 
system

read(), write(), 
creat(), unlink()

Option 1: access via file 
system operations
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PM access modes

Application

Persistent memory

PM file 
system

Option 2: map PM into 
application’s address space

Both 
approaches 
depend on 

PM file 
system 

correctness
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Crash consistency challenges with PM

● CPU caches are volatile - contents will 
be lost in a crash

● Cache line eviction can reorder writes to 
PM

● Finer-grained updates can still be 
delayed and reordered by hardware 

● Developers need to use store fences, 
non-temporal stores, and explicit cache 
line flushes to make programs crash 
safe

Andy Rudoff. “Persistent Memory Programming,” ;login; Vol. 42, No. 2.



Crash consistency bugs in PM applications

● Prior work focuses on low-level PM management errors
○ And have found many bugs this way!

● But is that the only source of bugs?
● PM file systems present similar interfaces to traditional systems…
● But their implementations are VERY different
● New (and untested) optimizations for PM usage



Chipmunk

● Tool for testing PM file systems for crash consistency bugs
● Goal: find both high-level logic bugs and low-level PM and cache 

management errors

Chipmunk found 23 new bugs in 5 PM file systems!

Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James Bornholt, Vijay Chidambaram. “Chipmunk: Investigating 
Crash-Consistency in Persistent-Memory File Systems.” EuroSys ‘23.



Chipmunk overview

● Chipmunk records updates to PM, then replays this record to generate file 
system images representing possible crash states

● Challenges
○ Recording writes
○ Managing the space of crash states
○ Checking images against new crash-consistency semantics

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, Vijay Chidambaram. “Finding Crash-Consistency Bugs with 
Bounded Black-Box Crash Testing,” OSDI ‘18



Recording writes

● Traditional FS testing tools use kernel block layer to record block-sized I/O 
● PM testing tools record individual mov, movnt, clwb, fences

○ Require special hypervisor support, manual code annotation, etc.
○ High overhead
○ How to determine which are relevant to us and which aren’t?

● Our solution: function-based recording
● PM FSes use small set (~4) of persistence functions to flush and order 

persistent updates
● One call to a persistence function → 10’s or 100’s of individual persistence 

instructions
● Kprobes kernel utility for automatic instrumentation



Managing crash state space

● Could examine every permutation of 8-byte (or smaller) updates between 
each pair of fences - MASSIVE state space

○ Yat: 1200 sys calls take 5 years to check
● We coalesce logically-related writes into larger chunks

○ Data updated flushed via cache line write back: 64 byte chunks
○ Data updated via non-temporal store: up to 4KB chunks
○ Function-based instrumentation provides info on which writes are logically related

● Only check permutations of larger chunks
● Observation: average of 3 chunks between fences; max 10 in tested 

workloads
○ Possible to brute-force check



Checking crash states

● PM FSes promise stronger guarantees, but don’t always clearly define them
● Older FS testing tools only check crash states after fsync, but we want to look 

at more states
● We check:

○ All sys calls are synchronous (effects are all persistent by the time the call returns)
○ All sys calls are atomic (except for write, sometimes)

● Matches implicit spec and expected behavior



Workload generation

● Automatic Crash Explorer (ACE) 
vs. Syzkaller

● ACE tests find 19/23 bugs in <3 
hours

● Syzkaller finds 4 more bugs
● Lightweight testing with ACE, 

longer-running checks with 
Syzkaller



Results

● 23 new bugs total in 5 PM file systems
● Bugs found in both kernel- and user-space file systems
● Bugs have significant consequences

○ Prevent FS mounting after crash
○ Break rename atomicity
○ Lose data

● Most (19/23 bugs) are logic errors, not PM programming mistakes
○ Optimizations for PM - new logging protocols, maintaining state in DRAM, in-place updates - 

caused many significant bugs
● Short workloads sufficed to expose most (19/23) bugs



Crash-consistent file systems

● How can we be confident that file systems for PM are truly crash consistent?
● Testing cannot find every bug
● Verification can make correctness guarantees, but requires specialized 

knowledge, takes significant extra time, and impacts performance
● Other techniques (model checking, etc.) are incomplete and/or introduce 

significant overhead



Rust language

● Compiler enforces memory safety without garbage collection and prevents 
data races

● Similar performance to C → increasingly popular for systems programming
● Recently merged into the Linux kernel!
● Key idea: ownership

○ Each value has a single owner (variable)
○ When the owner goes out of scope, the value is dropped and freed
○ No mutable aliases

● How can Rust be used for PM?



Related work: Corundum

● Library for managing PM in user-space applications
● Uses various language features to statically check PM applications for some 

of the same types of bugs we found with Chipmunk
○ E.g.: Corundum prevents persistent values from being updated outside of transactions

Morteza Hoseinzadeh and Steven Swanson. “Corundum: statically enforced persistent memory safety,” ASPLOS ‘21.



Rust for PM file systems

● In order for a file system to be crash consistent, the order of updates must be 
carefully managed

○ Journaling, logging make this easier
○ Soft updates: obtain consistency by carefully ordering updates with no additional data 

structures
● Can Rust ensure that data is written to PM in the correct order? Yes!
● Enter: typestate analysis

○ Each object has both a type and a state
○ Operations may transition objects from one state to another
○ An object’s typestate defines the set of legal operations that can be performed on it



Typestate analysis for file systems

● We can give persistent file system structures (e.g., inodes) typestate 
indicating their persistence state and their operation state

○ Persistence state: is the object guaranteed to be persistent yet?
○ Operation state: what is the last operation performed on this object?

● Each operation on a persistent object can only be called if the object has the 
right persistence and operation state



Typestate analysis for file systems

impl Dentry<Clean, Alloc> {
fn set_inode_pointer(self, inode: Inode<Clean, Init>) -> 
(Dentry<Dirty, Complete>, Inode<Clean, Complete>) 
{
    self.dentry.ino = inode.get_ino();
    return (Dentry::new(self),Inode::new(inode));
}

}



Conclusion

● Persistent memory introduces exciting new opportunities for storage system 
design

● But we need tools and techniques to build CORRECT storage systems with 
PM

● Chipmunk: test PM file systems for crash-consistency bugs
● Current work: build a PM file system with statically-checked crash-consistency 

guarantees





Typestate example: C

int a = 10;

char buf[10];

close(a);

read(a, buf, 10);

close(a);

● GCC will compile this code…
● But it doesn’t really make any sense



Typestate example: Rust

struct File<State> { filename: String, ..}

impl File<Open> {

fn read(...) {...}

fn close() -> File<Closed> {...}

}

impl File<Closed> {

fn open() -> File<Open> {...}

}


