
When Private Keys are Public:
Results from the 2008 Debian OpenSSL Vulnerability

Scott Yilek
UC San Diego

syilek@cs.ucsd.edu

Eric Rescorla
RTFM, Inc.

ekr@rtfm.com

Hovav Shacham
UC San Diego

hovav@cs.ucsd.edu
Brandon Enright

UC San Diego
bmenrigh@ucsd.edu

Stefan Savage
UC San Diego

savage@cs.ucsd.edu

ABSTRACT
We report on the aftermath of the discovery of a severe vul-
nerability in the Debian Linux version of OpenSSL. Systems
affected by the bug generated predictable random numbers,
most importantly public/private keypairs. To study user
response to this vulnerability, we collected a novel dataset
of daily remote scans of over 50,000 SSL/TLS-enabled Web
servers, of which 751 displayed vulnerable certificates. We
report three primary results. First, as expected from pre-
vious work, we find an extremely slow rate of fixing, with
30% of the hosts vulnerable when we began our survey on
day 4 after disclosure still vulnerable almost six months
later. However, unlike conventional vulnerabilities, which
typically show a short, fast fixing phase, we observe a much
flatter curve with fixing extending six months after the an-
nouncement. Second, we identify some predictive factors for
the rate of upgrading. Third, we find that certificate author-
ities continued to issue certificates to servers with weak keys
long after the vulnerability was disclosed.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
—Security and protection; C.2.2 [Computer-Communi-
cation Networks]: Network Protocols; C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms
Measurement, Security

Keywords
Debian, OpenSSL, PRNG, entropy, attacks, survey

1. INTRODUCTION
OpenSSL is a commonly-used cryptographic library with

related command-line tools. Beginning in September, 2006,
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Figure 1: Overview of certificate updating

the package for OpenSSL included in the Debian distribu-
tion of Linux was modified to incorporate a bugfix intended
to eliminate uninitialized memory reads flagged by the mem-
ory checking tool Valgrind. The bugfix did not just this but
more: it eviscerated OpenSSL’s entropy gathering. Until
the problem was noticed by Luciano Bello [18] in May of
2008, the entropy available to applications running on De-
bian (and Debian-derived distributions, such as Ubuntu)
was severely constrained. This vulnerability had a major
impact on SSL/TLS and SSH servers. Each server pos-
sesses a public/private keypair, but any keypairs generated
on an affected machine are easily predictable to an attacker.
Knowledge of the private key allows an attacker to imper-
sonate that server even when SSL/TLS or SSH is used and
in many cases to undetectably decrypt traffic to and from
the server.

Recovery from this bug was more complicated than for a
typical vulnerability. Patching affected machines, by itself,
provided protection only against a small, less important class
of attacks. Because the server’s long-lived keypair was com-
promised, administrators needed to generate a new keypair
and disseminate it to users. For SSL servers this typically
required obtaining a new certificate for that keypair, a fairly
heavyweight operation for certificates that aren’t self-signed.

The goal of this work is to measure recovery from this
type of vulnerability and compare it to what is known about
recovery from other vulnerabilities. While it is infeasible
to measure when servers are fixed, we can easily measure
when they begin to display strong rather than weak public
keys. We performed a daily survey of popular SSL servers,



beginning shortly after the bug was disclosed and continuing
for some six months. Approximately 1.5% of those servers
displayed weak keys and we were able to study the time
course of fixing. As shown in Figure 1, the replacement of
weak keys is a long, slow process, quite different from the
fast fixing processes seen with typical vulnerabilities [15, 16].
[Hashmarks on the diagram indicate censored units, which
stopped responding during the survey while still vulnerable.]

Our survey also yields new information about real-world
SSL usage. Due to the bug’s effects, we can determine, for
each affected certificate, the architecture of the machine used
to generate it and the process ID of the responsible process.
This is the first time such data has been available. Even for
the majority of sites unaffected by the bug, our data reveals
how certificates of popular SSL sites are updated over time.
Our collection of a new dataset by different methods allows
us to reexamine previous work on SSL server demograph-
ics. We believe our dataset will be useful for other studies.
See the Web page for this paper for information on obtain-
ing a copy: https://www-cse.ucsd.edu/groups/security/
debiankey/.

2. RELATED WORK
We build on two major previous lines of work: demo-

graphic surveys of SSL servers and longitudinal studies of
vulnerability fixing.

SSL Server Surveys. There have been a number of pre-
vious surveys of the properties of SSL servers, mostly fo-
cusing on deployment of new versions of SSL, support for
strong cryptographic algorithms, and valid third-party cer-
tificates. In 2000, Murray [12] surveyed 8081 SSL servers
and found that around a third supported “weak” algorithms
only (shockingly weak, in fact, by modern standards). He
also found that around 10% of servers had expired certifi-
cates and around 3% had self-signed certificates. In 2005
and 2006 Lee [9] et al. repeated and expanded upon this
work with a sample of 19,429 servers. They found that the
situation had improved significantly; less than 5% of servers
were weak by Murray’s definition, although an uncomfort-
ably high percentage of servers still supported the old “ex-
port”cipher suites (>90%) and SSL version 2 (>80%). They
did not measure certificate validity.

Netcraft [13] runs a monthly survey attempting to cover
all servers on the Internet. While this survey does not mea-
sure cipher suite support, Netcraft does collect information
on certificate validity: they find that around 25% (estimated
from their figures; raw numbers were not provided) of sites
have self-signed certificates and less than half are from a
“valid CA”. Netcraft doesn’t define this term but presum-
ably it refers to one of the major CAs in the browser root
list. Note that this data is very different from that reported
by Murray, who found mostly valid certificates. We shed
some light on this discrepancy in Section 7.1.

While our work is not specifically intended as a replica-
tion of either Lee et al.’s or Netcraft’s research, we collect
much of the same data as a side effect of our measurements.
Section 7.1 describes some interesting contrasts.

Studies of Vulnerability Fixing. The topic of upgrad-
ing rate in response to vulnerabilities has been studied by
Rescorla [16] and Ramos et al. [15]. The general pattern for
externally visible “critical vulnerabilities” seems to be of a
fast (half-life on the order of 10–20 days) exponential fixing

phase immediately after the announcement of the vulnera-
bility. The OpenSSL vulnerability studied by Rescorla pro-
vides probably the closest parallel: that study showed two
rounds of patching, one in response to the initial vulnera-
bility and one in response to the release of a worm. Each
wave was relatively fast, with the vast majority of patching
happening within two weeks and almost none after a month.
Ramos reports a similar set of patterns as well as that some
vulnerabilities show only irregular decline or no decline at
all (this may be an artifact of survey methodology). The
vulnerability we study exhibits yet a different pattern: a
long, slow, flat, fixing cycle that actually accelerates in the
first 30 days with significant levels of fixing as far out as six
months. In Section 7.2 we provide some potential explana-
tions for this difference.

3. BACKGROUND: SSL KEY EXCHANGE
In order to understand the issues discussed in this paper,

it is necessary to have a basic understanding of how SSL
works. In this section, we provide a brief overview of the
relevant aspects of SSL. Although the purpose of SSL is to
protect data, like many other cryptographic protocols such
as SSH [20] and IPsec [4], it starts with a handshake phase
which authenticates the peers and establishes joint keying
material. That keying material is then used to protect the
data flowing between the communicating peers. Figure 2
shows a highly simplified view of the most common variant
of the full SSL handshake: “static RSA”. [The technical term
for the set of cryptographic algorithms used for a given SSL
connection is cipher suite.]

Client Server

ClientRandom //
ServerRandom, Certificateoo
E(Kpub,PreMaster Secret) //

Figure 2: SSL static RSA handshake

In the static RSA version of SSL, the server generates a
single, long-term RSA keypair (Kpub,Kpriv) used for each
transaction. In theory the server operator then acquires
a certificate from a well-known certificate authority (CA)
attesting to the binding between the RSA public key and
the server’s domain name (e.g, www.amazon.com). Any client
that trusts the CA can then verify that binding. In some
cases, however, the server acts as its own CA and generates
a “self-signed” certificate. Such a certificate is just a key
carrier: clients cannot verify the server’s identity unless they
have some independent channel for verifying the certificate.

When the client contacts the server, it sends a random
nonce (the ClientRandom value). This is sent in the clear
and is used solely to ensure uniqueness of the keying mate-
rial for each connection. The server responds with its own
ServerRandom value and a copy of its certificate. All of this
information is also known to any observer. The client can
then verify the server’s certificate and extract Kpub. It then
generates a random PreMasterSecret (PMS) value; encrypts
that value under Kpub and sends the resulting Encrypted-
PreMasterSecret (EPMS) to the server. Because the server
knows Kpriv it can decrypt the EPMS to recover the PMS.

https://www-cse.ucsd.edu/groups/security/debiankey/
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At this point, both the client and the server know the PMS,
but any observer who doesn’t know the server’s private key
does not. The PMS is then mixed with the client and server
random values to form the keys which are used to encrypt
traffic between client and server.

This exchange uses four random values: the server’s RSA
keypair, the client and server randoms, and the PMS. How-
ever, it’s important to recognize that the client and server
randoms need not be secret (and in fact only really need to
be unique) and that the server’s RSA keypair is not gener-
ated in real-time; only the PMS must be generated securely
during the connection.

The other common full handshake variant, “ephemeral
Diffie-Hellman” (DHE), is shown in Figure 3; it has a rather
different set of properties. As before, the server has a long-
term RSA key (sometimes this is a DSA key, but so rarely as
to be irrelevant for the purposes of this discussion), but in-
stead of having the client encrypt under that key, the client
and the server do a Diffie-Hellman key exchange, with each
side generating a new ephemeral DH key for the handshake.
In order to authenticate the server side (as with static RSA,
the client is not generally authenticated), the server signs
its DH share with Kpriv. Once the client has received and
verified the server’s share, it generates its own DH share
and sends it to the server. The combined DH shared secret
(often known as ZZ) is used as the PMS.

Client Server

ClientRandom //
ServerRandom, Certificate,S(Kpriv,Ys)oo

Yc //

Figure 3: SSL ephemeral DH handshake

Unlike the static RSA mode, in DHE mode both sides need
to generate strong random numbers. The security of Diffie-
Hellman depends on the randomness of both sides’ private
keys; an attacker who can predict either side’s DH private
key can decrypt the connection. By contrast, an attacker
who knows the server’s RSA private key can impersonate
the server but cannot passively decrypt connections which
use DHE mode. This property is known as Perfect Forward
Secrecy (PFS).

There is one final variant of SSL to consider, one in which
neither DH nor RSA is used. Because DH and RSA opera-
tions are fairly computationally expensive, SSL incorporates
a “session resumption” feature. The first time that a client
and server pair communicate they establish a PMS which
is then converted into a long-term MasterSecret (MS). The
server provides the client with a “session id” which it can use
to establish a new connection based on the same MS. The
security of this resumed connection of course depends on the
original handshake, but because the client and server ran-
dom values are new, the connection will use different traffic
keys to encrypt the actual data, thus protecting against a
variety of cryptographic attacks (replay, cut-and-paste, etc.)

4. THE VULNERABILITY
The history of the Debian OpenSSL randomness vulnera-

bility has been well-covered elsewhere [7, 6, 8], and we will

not repeat it. Instead, we explain the technical details of
the bug and its implications for SSL security.

4.1 Overview of the Bug
OpenSSL’s pseudorandom number generator (PRNG), like

all PRNGs, is a deterministic function: an attacker who
knows all the inputs and the sequence of invocations can
predict the output. To make the PRNG secure, the entropy
pool must be seeded with many bytes from /dev/random or
another source of entropy that an attacker cannot predict.

OpenSSL exposes two functions that update a program’s
entropy state: RAND_add and RAND_bytes.1 The basic func-
tion used to update the entropy pool is RAND_add. RAND_add
is called with a block of bytes b of length l. RAND_add then
mixes all of these values into the PRNG entropy pool. The
effect of the Debian bugfix is to modify ssleay_rand_add

to mix in l but not b, with the effect that an attacker who
knows the calling sequence (which is mostly determined by
the program and not by the state of the machine) can pre-
dict the contents of the entropy pool and hence the output
of the PRNG.
RAND_bytes, the function used to generate new random

numbers, also updates the PRNG state with the number of
bytes to be extracted and the program’s process ID (pid)
at the time the call is made. Folding in the current pid
ensures that forked processes, which otherwise would have
identical entropy pools, do not obtain the same values from
the PRNG. (Reuse of random numbers renders many cryp-
tographic protocols insecure.) It is the binary in-memory
representation of the pid that is incorporated, so an attack
must consider the endianness and native word size of the
target machine. Because RAND_bytes folds in the number
of bytes extracted, asking first for 20 bytes and then for 10
produces different output than if the calls are reversed.

Because a program’s entropy pool starts in a known (all-
zero) state, a remote attacker can track its evolution if he
knows:

1. The sequence of calls to RAND_add and RAND_bytes

made by the program.
2. For each call to RAND_add, the number of bytes to be

added.
3. For each call to RAND_bytes, the number of bytes to

be extracted and the program’s process ID (pid) when
the call is made.

This analysis holds true even if a program’s behavior de-
pends on the value of previous PRNG output, for example
in the standard method for prime generation. When the
PRNG is considered part of the program, the entire system
is still deterministic given its initial state and its inputs.

4.2 The Effect of the Bug on SSL
The effect of this bug is contingent both on whether the

client or server is affected and on which cipher suites are
in use. If the client random number generator is broken,
a passive attacker can usually predict the traffic keys (no
matter what the cipher suite). In RSA mode, the attacker
can predict the PMS (see, for example, Wagner and Gold-
berg [3]) and in DHE mode he can predict the client’s DH
private key, which allows prediction of the PMS (Abeni,
Bello, and Bertacchini, demonstrate this attack on DHE_RSA

1These are wrappers around the ssleay functions below.



cipher suites for command-line clients and servers [1] affected
by the Debian bug). However, as a practical matter the
effect of this bug on clients is limited because most popu-
lar Web browsers do not use OpenSSL: Internet Explorer
uses Microsoft’s SChannel and Firefox uses NSS. Further-
more, Debian and other Linux distributions are not widely
used as Web-browsing platforms. The most popular Unix
browser based on OpenSSL is KDE’s Konqueror, whose us-
age share — across all Unix platforms, not just Debian —
is well under 0.05%.2 However, many popular non-Web
clients as well as command line Web clients such as wget

use OpenSSL and therefore are likely to be affected.
Servers, on the other hand, represent a serious concern.

OpenSSL is the dominant SSL implementation on server
platforms, and Debian-derived distributions are popular on
servers. There are two major avenues of attack: key gener-
ation and DH share generation.

RSA Key generation. If the server RSA keypair was gen-
erated on an affected version of OpenSSL, then the attacker
can directly recover the private key.

The simplest and most common way to generate long-
lived RSA keypairs for OpenSSL-based servers is to run the
openssl genrsa program, invoked either directly or through
a wrapper. This program uses the OpenSSL PRNG to gen-
erate the keys. As discussed in Section 4.1, each possible pid
and platform configuration gives rise to a PRNG stream and
thus to a unique RSA keypair. The attacker can pregenerate
all those keypairs (this takes hours to days) and whenever
one of the public keys matches he immediately knows the
corresponding private key. Generating all possible keypairs
is subtle; we give the details in Section 6.2.

Because the knowledge of the private key is all that dif-
ferentiates the server from other entities, any attacker who
knows the private key can impersonate the server. This
attack can continue even after the server has replaced his
key because the attacker still has a certificate/keypair and
many clients do not check certificate revocation lists (CRLs).
Moreover, if a static RSA cipher suite is used, the attacker
can passively monitor connections and recover the PMS and
therefore the traffic keys, thus gaining access to all the en-
crypted data as well as the ability to inject data of his choice.
As discussed above, this latter attack is not possible with
DHE cipher suites.

It’s very important to realize that both of these attacks
depend solely on the machine that the keypair was generated
on; if that machine was affected by the bug but the SSL
server itself is not (either because it is not a Debian machine
or because it has been patched), attacks are still possible.

DHE Key Generation. By contrast, if the operational
server is affected, then an attacker may be able to predict
the server’s DHE share even if the server’s RSA keypair was
securely generated. For a simple server that handles a sin-
gle connection and then restarts — for example, an IMAP or
POP server launched from inetd— then there would be a
small number of possible values for the server’s ephemeral
private key Xs. The attacker can determine which of these
possible keys is used for a connection by recognizing the
ServerRandom and ephemeral public key values that accom-
pany each. Unfortunately for the attacker, predicting these
random values for real-world Web servers is more compli-

2See http://marketshare.hitslink.com/report.aspx?
qprid=1&qpcustom=Konqueror.

cated than for the simple attack described by Abeni, Bello,
and Bertacchini [1].3

Consider the case of the most popular Web server, Apache,
which uses a “thundering herd” architecture with multiple
long-lived worker processes. Each worker process handles
multiple connections in sequence and, for each connection,
calls RAND_bytes one or more times, mixing the entropy
pool. Even with the Debian bug, the random values ob-
tained by the process for the first connection it handles will
be different from those obtained for the second and subse-
quent connections. What’s more, the pattern of RAND_bytes
invocations depends on the cipher suite and whether re-
sumption is used. Thus, though we know the initial state
of the server, we rapidly accumulate uncertainty about its
sequence of RAND_bytes invocations. Unless an attacker can
observe the entire set of connections from server startup,
predicting the sequence of random values quickly becomes
infeasible. Finally, each worker process has its own state
and the attacker cannot directly measure what worker pro-
cess is handling any given connection. Thus, even an at-
tacker who can observe all server activity still must do a
significant amount of work; we describe a full attack along
these lines in Appendix A. This affects not only attackers
who wish to recover a connection’s PMS but also those who
wish to fingerprint vulnerable servers using the predictable
ServerRandom values they emit.

In contrast to the case where the server’s key is weak, this
avenue of attack is possible only when the client and server
negotiate a DHE_RSA cipher suite. If the server’s random-
ness is weak but a RSA cipher suite is chosen, the resulting
connection is entirely secure, because it is the client that
supplies the premaster secret.4

5. REMOTELY MEASURABLE DATA
As with other studies of this type, we collected data by

remotely probing the server to determine its characteristics.
Thus, the data we can report is limited to what we can
collect via this mechanism.

As described above, servers can be affected by the bug
we study in several ways: the server software can be af-
fected, the server keypair can be weak, or both. Ideally we
would like to be able to measure the evolution of both prop-
erties over time. This would allow us not only to replicate
Rescorla’s 2003 study [16] but also to measure a form of
fixing that is related to but distinct from server software:
Whereas previous papers have focused on the response to
attack on servers, this paper illustrates the response to an
attack on the data sent by servers. Unfortunately, our abil-
ity to measure remotely does not allow this. Determining
the vulnerability of the server keypair is straightforward:
construct a list of the weak server keys and check to see
if the server’s certificate contains such a key. In addition,
when we determine that a server’s key is vulnerable, this
also gives us information about the machine on which the
key was generated (which will often be the server); the exact
set of keys is somewhat platform specific and so we can ex-

3This was acknowledged by Bello in private communi-
cation, responding to an initial writeup of our analy-
sis at http://www.educatedguesswork.org/2008/08/the_
debian_openssl_prng_bug_an.html.
4Note that this is contrary to the näıve expectation that a
protocol’s security guarantees are destroyed when one party
relies on predictable randomness.
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tract the word size, endianness, and base OpenSSL version;
see Section 6.2.

By contrast, remotely measuring the quality of the server
software’s PRNG (as opposed to the keypair) is not straight-
forward. We cannot directly examine the PRNG for the
reasons described in Section 4.2 and although some Apache
installations advertise the version of OpenSSL they are run-
ning, many Debian servers do not advertise this (it isn’t
entirely clear what the controlling factor is). Even if we
could examine the version name, because the error was in
the Debian fork of OpenSSL, the OpenSSL version number
is not diagnostic here. Thus, we cannot reliably determine
the status of the server itself.

As Murray [12] and Lee et al. [9] show, it is possible to
determine what parameters a server is willing to negotiate
by probing it using a client with a limited set of options. Be-
cause our interest is primarily limited to bug fix deployment,
our survey was less exhaustive (and less intrusive) but we
still measure a number of the same parameters, and in par-
ticular what cipher suite the server will select when offered
the default set from OpenSSL.

This bug also affected SSH servers, and it is possible to re-
motely determine whether they have weak keys [11] — source
code examination suggests that it may also be possible to
determine the status of the server but we have not yet tried
that. We initially developed SSH probing tools as well, but
ultimately decided to measure only SSL servers. Our pri-
mary reason was logistical: SSL server operators expect con-
nections to their servers from arbitrary sources. By contrast,
unexpected connections to SSH servers are often perceived
as an attack. Indeed, the only complaint we received in our
survey was from the operator of an SSH server that had
been inadvertently included on our probe list. In addition,
because any given SSH server is used only by a relatively
small number of users, it is less clear what a representative
sample would look like.

6. METHODOLOGY
In the remainder of the paper, we describe our survey of

SSL servers. Because only a small fraction of servers were
likely to run an affected version of Linux, we first needed to
collect a large set of servers to sample. Drawing up a list of
representative SSL servers is not easy. A random scan of the
IP space would be as likely to happen upon an unused “You
have successfully installed Apache” site as PayPal’s servers.
(Because the fraction of IPs serving content on TCP port 443
is low, such a scan would also be intrusive.) Furthermore,
while there exist lists, such as Alexa’s, of popular Websites,
the popularity of a site is a poor proxy for the popularity of
its associated secure SSL site, if there is one. Many popular
sites, such as the Drudge Report, serve a substantial amount
of traffic over HTTP and none over HTTPS. We chose to use
measured SSL usage as a selection procedure. Through the
UC San Diego Information Security Office, which routinely
monitors UCSD network usage, we were able to obtain a
list of all IP addresses to which a 1 KB or larger flow of
traffic on TCP port 443 had been detected in the 56-day
period ending 21:00 utc on Friday, May 16, 2008. This list
contained 59100 servers.

Because our list of SSL server addresses consists of servers
actually visited by a diverse user population of a large or-
ganization, we believe that it is more representative of SSL
as deployed on the Internet than a random scan would be.

We expect that the corpus of data we collected about these
servers will be of wider use.

6.1 Data Collection
Using this list as our starting point, we constructed a sim-

ple program which would attempt to contact each server on
the list (directly connecting the IP address with no DNS
lookup) and initiate an SSL handshake using the “openssl
s_client -connect” command. If the handshake did not
complete within 30 seconds, we marked the host as failed
and moved on.5 The results for each run were then stored
in raw form to a separate file for that host and day. The out-
put is simply the output of OpenSSL, which includes: the
negotiated SSL protocol version; the server certificate chain;
the selected cipher suite; the session ID; the computed mas-
ter key; and the start time of the connection.

Starting on the evening of Saturday, May 17, 2008, we
repeatedly surveyed each host, initially running our script
by hand and then, as we gained confidence, in a cron job.
The result was a complete set of connection output for each
host for each run. We did not attempt to restrict the host
list to those hosts exhibiting weak certificates, thus avoiding
the need to have a complete weak key list at the beginning
of the survey — which was convenient since generating the
key list is extremely time consuming.

The result of this process was a rather large data set —
each day’s data consumes approximately 200 MB and the
entire set, representing connections to each server in our set
on approximately a daily basis, is upwards of 30 GB

6.2 Generating Weak Keys
Analyzing the data requires identifying which servers were

using weak keys, which in turn requires a list of weak keys.
There is just 15 bits’ worth of process ID entropy, but other
parameters, described below, must also be accounted for.
Previous weak-key generation efforts have used getpid in-
terposition via LD_PRELOAD, but this approach does not scale.
We instead created a patch to OpenSSL 0.9.8h that allows
each of the relevant conditions to be simulated, and used the
patched version to generate our corpus of weak keys.

Because the binary representation in memory of certain
values is added to the entropy pool, not a canonical repre-
sentation, our key generation must account for the target
platform’s endianness and native word size. In addition, the
presence of a file called .rnd in the user’s home directory
affects the behavior of OpenSSL’s command-line utilities. If
it is present, its contents are added to the entropy pool. Ac-
cordingly, we must generate two sets of keys: ones assuming
the presence of .rnd, one its absence. (Because of the Debian
bug, the contents of the randomness file are not consulted;
all 1024-byte files produce the same result.) When .rnd is
missing, versions of OpenSSL before and after 0.9.8f have
different behavior that we must again account for.6 Debian-
derived distributions shipped versions with both behaviors,
so we must account for both.

5This took several iterations to get right. We had antici-
pated that OpenSSL would time out on its own, but this
only applies to failed TCP connects. It will stall indefinitely
once the TCP connect succeeded, which was an unpleasant
surprise. This sort of stall happened often enough that we
ended up having to parallelize our probes and use an alarm
to kill stalled probes.
6Earlier versions will add their struct stat to the pool
whether or not the stat call succeeds.



We generated keys for each of 32768 pids, on each of three
platforms (little-endian 32-bit, big-endian 32-bit, and little-
endian 64-bit), for each of three .rnd conditions (present;
missing, old behavior; missing, new behavior). This is a
total of 294,912 keys per key size.

We generated all 294,912 keys for every common keysize:
512, 768, 1024, 1536, 2048, 3072, 4096, and 8192 bits. In
addition, we generated all 294,912 keys for various oddball
keysizes we encountered in our survey, such as 1000 bits and
1023 bits. In the end, though, none of the odd-sized weak
keys matched a certificate in our survey.

6.3 Processing the Data
To reduce the data (30+ GB for 173 days) to manage-

able form, we created a map from IP-time pairs to certifi-
cates. By analyzing each certificate once, we could deter-
mine most host properties we are concerned with7 several
orders of magnitude more quickly.

Once we know the status of each host on each day, we
are still faced with the problem of how to analyze that data.
A major complication is the natural turnover of certificates:
we would expect to see hosts eventually get unaffected cer-
tificates even if administrators do not take explicit action to
request a new certificate, due to the ordinary software up-
grade and certificate expiry-and-replacement cycle: A new
key generated on an upgraded server will automatically re-
place the old weak key. Even if the server has not upgraded
(which Rescorla’s results [16] suggest is often the case), the
major CAs which dominate our survey attempted to detect
vulnerable keys and would refuse to reissue the certificate.
Thus, certificate expiration acts to force replacement of vul-
nerable keys; we would like to disentangle this effect from
deliberate fixing.

Biology and epidemiology have developed an extensive ar-
ray of survival analysis techniques designed to deal with
situations like this where members of a population gradu-
ally undergoes a transition from one state to another (tradi-
tionally transitioning from alive to dead, hence the morbid
name). The general idea is to look at the hazard function
h(t) which represents the probability of undergoing the tran-
sitional event at any period in time, and to compare the
hazard functions between different groups. Techniques are
also available for dealing with censored population members:
those who disappear from view before undergoing the event.
A good introduction to these techniques may be found in
Kleinbaum [5]. We used Thierry Thernau’s survival [17]
package for R [14].8

One difficulty here is determining what we treat as an “in-
dividual” for the purpose of survival analysis, the host or the
certificate. Unfortunately, neither is entirely satisfactory.
We observed a number of cases of multiple machines exhibit-
ing the same certificate (in the most extreme case, a single
Akamai certificate appeared on 241 distinct hosts). In some
cases, two hosts displaying the same certificate would fix on
different days or one would disappear without being fixed.
Thus treating machines as the basic unit is problematic.

We adopted the following strategy to deal with these in-
consistencies: we grouped all hosts displaying the same ini-

7Server cipher suite support is the notable exception.
8Note for non-statistician readers: different statistical pack-
ages often use subtly different algorithms even for well-
understood operations. Thus, it is important for complete-
ness to document the package used.

tial certificate into a single unit, called a host-cert (HC),
with an “event” assigned based on the final event observed
from the HC: If A upgraded at time 1 and B stopped re-
sponding still unupgraded at time 2, we reported the event
“Censored, 2”; on the other hand, if A upgraded at time 2
and the last contact with B was at time 1 but it was vulner-
able at that time, we reported the event as “Fixed, 2”. In
general, groups of hosts with the same certificate behaved
similarly, so other methodologies would likely have yielded
similar results.

Like our initial decision of whether a host is vulnerable,
our measurements of host certificate parameters (e.g., self-
signed, key size, etc.) are based on our initial contact with
a host. For instance, if a host had a vulnerable 1024-bit
key, then transitioned to a vulnerable 2048-bit key, and then
transitioned to a secure 1024-bit key, we would consider it
to be a 1024-bit host.

In 22 cases, we saw hosts which had previously exhibited
secure certificates suddenly start to display compromised
certificates (“spontaneous generation”). We ignored these
hosts.

For demographic information (e.g., cipher suite support),
we identify which units (hosts or HCs) we are working in.

7. SURVEY RESULTS
Our main survey contacted 59100 hosts. Of those, 51838

answered at one time or another, with an average of 48555
hosts answering on any given day. During the course of the
survey, we observed 751 vulnerable hosts (473 HCs). 507 of
these hosts (241 HCs) were fixed during the survey period,
with the remainder of the hosts either vulnerable on the final
day (n = 206) or not responding (n = 38).

7.1 Demographics
Certificate Churn. Even in the absence of security vul-
nerabilities, CA-issued certificates must typically be reis-
sued every 1 or 2 years. During the 173-day course of our
study, 17579 (34%) of the hosts changed their certificates.
As shown — for HCs — in Figure 4, vulnerable certificates
are changed at a significantly different rate (p < .001; log-
rank test) than other certificates. Qualitatively, this rate is
much faster at the beginning of the survey period and then
slows down and may be slightly slower (though we have no
statistical tests confirming that it becomes slower) than the
baseline out past 150 or so days.
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While the graph of churn of vulnerable certificates in Fig-
ure 4 and the graph of fixing of vulnerable certificates in
Figure 1 are similar-looking, they represent different tran-
sitional events. If a host’s certificate changes but the keys
in both the old and new certificate are weak, this repre-
sents churn (so it is represented by a drop in Figure 4) but
not fixing (so it is not represented by a drop in Figure 1).
There were 34 such cases. In 16 of these cases, a certificate
was renewed by the same CA and on the same weak key.
In 8 more, certificates were issued by a new CA but on the
same weak key. In 3 more, renewed certificates were issued
by the same CA on a new key, with both the old and new
keys weak. In 2 more, certificates were issued by a new CA
and on a new weak key. In 2 cases, we saw several overlap-
ping certificates on the same weak key. (In 4 of the cases
above, we eventually saw a further new certificate with a
good key.) In another 2 cases, self-signed certificates were
updated with new, still-weak keys. In the last, spectacular
case, a certificate was updated 55 times, with increasingly
many CN fields giving a crude form of name-based virtual
hosting; the first 10 certificates were all weak. We interpret
the evidence above to mean that while the CAs do some
checking (as discussed in Section 7.2), they either do not
always check or they miss some weak keys.

Key Lengths. The vast majority of the HCs (approxi-
mately 93%) displayed 1024-bit RSA keys. The remainder
of the were predominately 512-bit (2%) and 2048-bit (4%)
RSA keys with a scattering of other key sizes. This is more
or less as we expected: 1024 bits is the default key size
output by most popular key-generation tools, such as the
mkcert.sh tool included with Mod SSL.

The distribution we observe of key sizes roughly agrees
with the results of Lee et al.’s survey [9], which in the
November 2006 survey reported 88% 1024-bit keys, 4% 512-
bit keys, and 6% 2048-bit keys; both these surveys differ sub-
stantially from Murray’s in 2000 [12], which found 70% 1024-
bit keys, 23% 512-bit keys, and almost no 2048-bit keys.

Certificate Authorities. Only a small fraction of HCs
had self-signed certificates (2%). Most HCs (93%) displayed
certificates from CAs which had more than 100 certificates
in our total sample.9 This is strikingly different from re-
ports by some other researchers. In particular, Netcraft [13]
in January 2008 reported approximately one quarter of the
certificates in their survey as being self-signed. We attribute
this difference to our sampling methodology, which is biased
towards servers which are heavily used, because it is those
to which we will observe network traffic. As an additional
datapoint, Murray gathered his list of servers by querying a
search engine with various search terms and, in 2000, found
less than 3% self-signed certificates.

To test this hypothesis, we portscanned randomly chosen
machines on the Internet (using nmap’s -iR flag). Several
days of scanning recovered 20,214 hosts that accept connec-
tions on port 443; we then ran our survey tool against these,
obtaining 19,299 certificates. Of these, 8,417 (44%) were
self-signed. This seems to clearly indicate that sampling
methodology matters — if we want to talk about SSL servers
as a group we must first define what group we are interested
in. In particular, it appears that commonly used (and hence
“important”) servers are more likely to have third-party cer-

9Note: to determine this 100 threshold we counted all cer-
tificates we saw, not just the first one for a given HC.

tificates — thus allowing scalable authentication to arbitrary
users — than would be suggested by simple random sam-
pling.

Figure 5 shows the distribution of major certificate au-
thorities by the number of HCs showing that certificate.
The names here do not map 1-1 to X.509 issuerName val-
ues. Rather, we merged all CAs with the same brand name
into a single bin: e.g., “VeriSign Class 3 Secure Server CA”
and “VeriSign International Server CA — Class 3” are both
in the “VeriSign” bin. This actually underestimates the in-
fluence of VeriSign, because VeriSign, Thawte, and Equifax
are all owned by VeriSign and collectively they dominate the
market. However, because each brand offers a somewhat dif-
ferent user experience, we have chosen to break out the CAs
by brand. Note also that some of these CAs (e.g., Tor) have
fewer than 100 certificates in a given day’s data but have
more than 100 certificates in aggregate.
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Because vulnerability in this case was out of the control
of the user, we would expect the initial demographics of vul-
nerable certificates to be similar to those of non-vulnerable
certificates. We indeed find this for the distribution of key
lengths. But when we examine the distribution of CAs, as
seen in Figure 5, we find that the distribution is quite differ-
ent: VeriSign certificates are underrepresented in the pop-
ulation of vulnerable certificates. There are two plausible
hypotheses about this difference: either VeriSign customers
were less likely to use Debian and Debian-derived distribu-
tions, and were thus less likely to be affected, or VeriSign
customers upgraded faster and so significantly more had up-
graded by the time we started our survey. In Section 7.5 we
discuss some evidence against the latter possibility.



Cipher Suite Support. As discussed in Section 4.1, those
servers that have weak long-lived keys but support DHE con-
nections provide a higher degree of confidentiality against
passive analysis than those with weak long-lived keys that
support only RSA ciphersuites. Of the 746 hosts vulnerable
on the first day of our study, 357 (48%) negotiated DHE
with our OpenSSL client, indicating that they would likely
negotiate DHE with a compatible browser. These comprise
approximately one fifth of the market: Firefox will negoti-
ate DHE with RSA certificates; Safari offers it, but below
non-DHE suites that Mod SSL supports; and Internet Ex-
plorer does not support DHE_RSA at all.10 Compared to the
vulnerable servers, a smaller fraction of all the hosts we sur-
veyed on day one (30%) negotiated DHE with our client. By
contrast, Lee et al. reported 58% penetration for DHE_RSA;
we believe that some servers that support DHE neverthe-
less preferred another cipher suite from the list presented by
our client, and that this partly explains the discrepancy. To
verify this guess, we would have needed to make multiple
connections to each server with different lists of supported
cipher suites.

For the same reason, we do not have direct measurements
for the level of support of symmetric algorithms. However,
approximately 44% of the servers we surveyed on day one
negotiated AES with our client, and more may support it,
roughly consistent with Lee et al.’s report of 57% AES sup-
port. Amazingly, we found 18 hosts that negotiated an ex-
port cipher suite and 12 that negotiated single-DES.

Measuring Server Characteristics. Because the keys
generated by OpenSSL depend on the state of the machine
doing the key generation, we can remotely measure some
properties of the server (or, more properly, the machine that
generated the keys, though these are typically the same)
that are ordinarily difficult to obtain. The first property
of interest is the pid of the process that generated the key.
We naively expected that the users would usually generate
their keys shortly after boot, thus biasing the pid towards
small numbers. However, while our data shows evidence of
some biasing, the effect is not particularly strong, as shown
in Figure 6, which displays the process ID histogram.

Some researchers have suggested that cloud-based sys-
tems are particularly vulnerable to such attacks because
they start in a known state which is accessible to attack-
ers [2]. Our findings have negative implications for the fea-
sibility of such attacks: If keys are not usually generated
soon after boot, the kernel will have a chance to gather ad-
ditional entropy from interrupt timings.

We can also remotely determine the processor architec-
ture. Approximately 80% of the HCs we observed were x86
32-bit and 20% were x86 64-bit with a trivial fraction being
32-bit big-endian machines.

7.2 Overall Upgrade Rate
Over the course of our survey 30% of the hosts (49%

of HCs) initially exhibiting a vulnerable key remained vul-

10More specifically, Internet Explorer running on Windows
2000, Windows XP, and Windows Server 2003 will negoti-
ate DHE with DSS certificates, which are not deployed for
Internet-wide HTTPS; Internet Explorer running on Win-
dows Vista and Windows Server 2008 will in addition ne-
gotiate ECDHE with RSA certificates, but the version of
OpenSSL deployed on Debian-derived distributions ships
without any elliptic curve support.

nerable on the last day; the rest either transitioned to a
non-vulnerable key or stopped responding. As shown — for
HCs — in Figure 1, this was a relatively gradual process,
with some notable discontinuities on days 2, 4, 5, 33, and 92.
Examination reveals that the transitions on days 5, 33, and
92 were dominated by Equifax, USERTRUST and Thawte-
issued certificates respectively. In the case of day 33, the
hosts appear to be all operated by the same hosting provider;
for day 91, the hosts appear to all be servers at the same site
(www09, www10, etc.). There is no obvious pattern for days
2 and 4 and this may represent random chance, some as-yet
undetermined action by the CAs, or (since these events took
place about a week after the bug was disclosed) upgrading
spurred by publicity for the bug.

As is apparent from Figure 1, we see a quite different pat-
tern of fixing from that reported by either Ramos et al. [15]
or Rescorla [16]. Instead of a fast exponential decay fol-
lowed by almost no change, we see a very gentle curve with
substantial rates of fixing out to 5–6 months. One natural
explanation for the curve’s shape is the significant baseline
hazard of certificate expiration. We would expect this haz-
ard function to be constant because the certificate expiration
date is roughly randomly distributed. The roughly straight
“not vulnerable” line in Figure 4 provides some support for
this belief.

While it seems likely that the baseline certificate expi-
ration rate is a major factor in the long upgrade curve, we
suspect that other factors are relevant as well. As a heuristic
test, we removed all certificates whose expiration time was
less than 30 days from the upgrade time and plotted a new
survival curve. This still exhibits a substantial amount of
upgrading past 75 days. An alternative way to examine this
question is to compute the hazard ratio11: h(t)/h0(t) = eβ(t)

for certificates which are vulnerable versus those that are
not. As shown in Figure 7, which displays a spline fit of
β(t) (the dashed lines indicate two standard error confidence
bounds), the excess upgrading does not smoothly decrease,
as we expect from previous work, but rather increases up
to about day 45 and then decays afterwards. We note that
an eventual slowdown below the baseline rate is not unex-
pected: If certificates are changed ahead of schedule, then
we don’t see the corresponding scheduled replacements.
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Figure 7: Log hazard ratio for vulnerable versus
non-vulnerable certificates

Another potential contributor to this much longer than
expected updating is the unique nature of this vulnerability.
With ordinary vulnerabilities, the perceived (and according
to Ramos, actual) risk of compromise is very high imme-

11It is conventional to work in log units here.



diately after announcement and is a step function — either
your machine is compromised or it is not. By contrast, the
risk of having a weak RSA key due to passive attack is lin-
ear in the number of days it is used and, as indicated in
Section 4.2, upgrading the server certificate has only a very
small effect on active attack because most clients do not
check CRLs. Thus, it may be rational for an administrator
to delay upgrading their system and certificates for longer
than they would for an ordinary vulnerability.

7.3 Factors Affecting the Upgrade Rate
In addition to the gross upgrade rate, an important ques-

tion to ask is: Are there factors that predict whether or when
a vulnerable certificate/host will be upgraded? To compare
the hazard functions, we used the popular Cox Proportional
Hazards model, which assumed that the hazard functions
h(t) for each combination of predictors are roughly constant
for all values of time and attempts to compute the hazard
ratio.12 The advantage of the Cox model is that it is non-
parametric, i.e., it does not require an underlying analytic
model for the hazard function and it gives a single numeric
result for the increased risk. The disadvantage is that it does
not give a meaningful numeric result when the hazard ratio
is not constant (the “proportional hazards assumption”).

We considered a large number of candidate predictors
and fit the Cox proportional hazards model using the R
coxph function and the stepAIC [19] procedure for automatic
model selection. Due to the small size of the data set, we did
not consider interactions of predictors because many inter-
actions had zero counts. Chi-squared tests were consistent
with the proportional hazards assumption for all covariates
but key size and expiry during the study so we stratified on
those variables. Inspection shows some but not undue evi-
dence of time dependence of β(t) in the others. The results
are shown at the end of this section in Figure 12.

This procedure resulted in four predictors with potentially
significant effects: key size, expiry during the study, CA
type, and the number of hosts displaying a particular cert.
We discuss these predictors below.

Key Size. Figure 8 shows the rate of upgrading stratified
by key size. There are not enough 512- and 4096-bit keys
to draw any conclusions from, but 2048-bit keys are clearly
upgraded much faster than 1024-bit keys (p < .01; log-rank
test) This, too, is unsurprising; 1024-bit keys are standard
practice and only the extremely paranoid use 2048-bit keys.
We would expect those users to be more attentive to security
and more responsive to security issues of this type. Because
this covariate exhibits time-dependence, we do not have an
estimate of the hazard ratio.

Expiry During the Study. Figure 9 shows the rate of
upgrading stratified by whether the certificate expires before
the end of the study (including before the start of the study).
Interestingly, these HCs fix slower initially but then faster
after 100 days or so. This is roughly consistent with Figure 7,
which shows a similar fast pattern followed by slowdown.
Because this covariate exhibits extreme time-dependence, it
does not make sense to estimate the hazard ratio.

CA Type. Figure 10 shows the rate of upgrading strati-
fied by the type of issuer, “big CA” (> 100 total certificates

12More formally, for each predictor i, we fit a coefficient βi.
If X denotes the presence or absence of each predictor, then

we have h(t,X) = h0(t)e
Pp

i=0 βiXi .
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Figure 8: Upgrading rate by key size
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Figure 9: Upgrading rate by expiry time
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Figure 10: Upgrading rate by CA type

in our sample) “small CA” (between 2 and 99 certificates),
“Other” (1 certificate) or “self-signed”. Qualitatively, hosts
with self-signed certificates are significantly (p = .01) slower
to fix than those with non-self-signed certificates. This isn’t
an unexpected result, as low-value and test servers often use
self-signed certificates, whereas serious commercial organi-
zations generally need to run certificates from third party
CAs. There is no statistically significant difference between
the other categories, although given the small number of cer-
tificates in the “Other” category, this is potentially an issue
of insufficient statistical power.

Certificate Instances. As discussed in Section 6.3, we
saw a number of instances of the same certificate appear-
ing on multiple IP addresses. Because large services often
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Figure 11: Upgrading rate by certificate instances

coef exp(coef) se(coef) z p
CA.TypeOther -1.12 0.33 0.75 -1.49 0.13

CA.TypeSelf.Signed -0.89 0.41 0.33 -2.70 0.01
CA.TypeSmall.CA 0.14 1.15 0.22 0.63 0.53
Mult.HostsTRUE 0.57 1.77 0.26 2.23 0.03

Figure 12: Predictors of upgrading rate

operate multiple servers, this can be used as an (imperfect)
proxy for size. As Figure 11 shows, certificates that appear
on multiple hosts seem to be fixed faster. We have not in-
vestigated whether there is a dependency on the number of
copies beyond this.

Other Factors. Even if there are no between-group differ-
ences between CAs based on size, it’s possible that there are
within-group differences, for instance due to CA customer
population or notification strategies. Exploratory data anal-
ysis using both CA names and the binning strategy of Fig-
ure 5 doesn’t show any statistically significant results and
given the large number of factors and the concomitant risk
of data mining combined with the messiness of the data
when viewed qualitatively, we cannot say with confidence
that customers of one CA upgrade faster than others. We
also examined architecture, which did not have a significant
effect after controlling for other significant factors.

7.4 Sources of Error
Our data is subject to a number of sources of error. Most

importantly, because we are identifying hosts by IP address
rather than hostname, the data in this survey is affected by
renumbering, which may cause loss of contact with hosts or
host substitution. However, this can generally be detected
by examining the certificates, and as Figure 4 shows, we see
a fairly high degree of host stability.

The list of servers we surveyed may not be without bias.
It consists of the servers contacted, over approximately two-
month period, by users of UC San Diego’s campus network,
a large and diverse population of faculty, staff, and stu-
dents including UCSD’s residential undergraduate colleges.
It may, nevertheless, display some US-centrism or be skewed
towards those sites interesting to members of an academic
community.

Additionally, it is possible that due to limitations in our
key-generation code, we are missing some vulnerable keys.
First, because we did not have access to a 64-bit big-endian
machine running Debian, we were not able to check that we
can correctly generate keys for that platform; we believe that
Debian is not widely deployed on these machines. Second,

although we attempted to find all possible factors affect-
ing key generation, it is possible that there are other vari-
ations we missed. Users who use a non-default generation
method, either applying different command-line options to
openssl genrsa or bypassing that program altogether, will
obtain keys different to those we generated.

While the results of our survey are quite detailed, in retro-
spect it would have been useful to capture additional data.
In particular, had we used the -debug flag to OpenSSL’s
s_client, we could have captured the entire handshake in-
cluding the ServerHello, which would give us the ServerRan-
dom. Fortuitously, however, because the SSL session identi-
fier is randomly generated and is part of the output, we still
have a marker for the state of the server PRNG.

It would also have been nice to gather more information
about the server. For instance, we could have probed it to
determine which cipher suites it would accept. The current
data indicates only which suite was chosen, which is likely
to be just one of many it accepts. Those servers that agreed
to negotiate a DHE_RSA cipher suite with our survey client
would also negotiate a DHE_RSA with those browsers that
support it, which make up approximately one fifth of the
market, as we discuss in Section 7.1. In addition, because
we hang up after the SSL handshake, we do not gather any
HTTP-level information about the server. Although server
version strings are not particularly reliable, this might be
useful to have in the future.

7.5 Extrapolating The Missing Data
As mentioned in Section 1, the Debian OpenSSL vulnera-

bility was announced 4–5 days prior to our first survey. This
creates a potential source of error because we cannot directly
measure upgrading of hosts that occurred before our study
period. To try to get a handle on this, we looked at certifi-
cates issued in the period between the announcement and
our first survey. We were not able to obtain information for
all certificates, but VeriSign kindly provided us with the fate
of the predecessor for each VeriSign and RSA branded cer-
tificate in our data set with an issuance date within a day or
two of our study period (n = 366). Of those, less than 10%
were revoked and only 3 of the revoked keys were weak. We
have not checked the keys for the unrevoked certificates; it
is possible that some of them are weak and so this is an un-
derestimate. However, most of the changed certificates were
marked either as normally reissued or as a first certificate
in the system. Thus we believe that, for VeriSign at least,
there was not a large amount of fixing prior to our study. We
hope to expand the scope of this analysis in collaboration
with VeriSign and other CAs.

8. CONCLUSIONS
Much is known about how users and administrators re-

spond to software vulnerabilities, but comparatively little is
known about how they respond to cryptographic compro-
mise. Although anecdotal reports indicate that even when
keys are known to be compromised administrators will not
change them, there is no readily available empirical evi-
dence. The Debian OpenSSL vulnerability provided us with
a unique ability to remotely measure administrator response
to key compromise.

Using a survey of more than 50,000 SSL/TLS-enabled
Web servers, we have examined the rate of certificate up-
grading. We find that unlike other vulnerabilities which



have been studied and typically show a short, fast, fixing
phase followed by levelling off, certificates were replaced on
a slower cycle with substantial fixing extending well past five
months after the announcement. We also find that in some
cases certificate authorities continued to issue certificates to
weak keys long after the vulnerability was announce. In the
process of this research we have developed extensive tool-
ing and a new SSL survey data set that that allows us to
re-examine existing work on SSL server demographics. Our
dataset is available to other researchers interested in study-
ing questions of real-world SSL deployments.
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APPENDIX
A. ATTACKING APACHE WITH DHE

In this appendix, we show how an attacker who observes
every connection to an Apache SSL server can track the
entropy pools of the parent process and its children. This
allows the attacker to decrypt all traffic in DHE sessions the
server negotiates. (Ordinary RSA sessions remain secure.)
Only the entropy used in handling connections needs to be
weak for this attack to succeed; the server’s long-lived key
can be strong.

Compared to simple process-per-child servers, Apache in-
troduces a number of complicating factors. First, a sin-
gle worker process will handle multiple connections in se-
quence. Each connection will call RAND_bytes one or more
times, mixing the entropy pool. Even with the Debian bug,
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Figure 13: Apache child entropy-pool state search tree.

then, the random values obtained by the process for the
first connection it handles will be different from those ob-
tained for the second and subsequent connections. Nor can
an attacker compute the random values for the first k con-
nections for each pid, obtaining a table of size 32768 × k:
the pattern of RAND_bytes calls made by the process in han-
dling a connection is different depending on whether the
connection requires a full handshake or just a session resume
and whether the cipher suite negotiated in the handshake is
RSA or DHE_RSA. Starting from some initial known entropy
pool, one obtains a ternary tree; the cost of precomputation
is exponential in the depth. Second, initialization, including
the generation of cryptographic parameters, is carried out
in a parent process that forks off child processes to handle
connections. The entropy pool of a child process has both
parent and child pids mixed in, so an attacker may have
to precompute each of 215 · 215 values — though for lightly
loaded servers the child pids are likely to be near the parent
pids.13 Third, because Apache employs a “thundering herd”
architecture, an attacker will not a priori know which child
process will handle a particular connection.

Attacks against Apache servers are still possible, but they
require the attacker to observe and record all traffic to the
server from the moment it starts accepting connections.14

Prior to the attack, the attacker precomputes the entropy
pool for each possible first parent, second parent, and child
pid, along with the ServerRandom that would be sent by the
first connection; we discuss the computation and storage
this requires in Appendix A.3 below. Now the attacker pro-
cesses the first connection to the server. The ServerRandom
will be one of the values listed in the table. The attacker
has identified the parent pids and the pid of one of the chil-
dren. He will now track the contents of the entropy pool for

13In fact, in an additional perversity, initialization is car-
ried out in each of two parent processes as Apache forks
away from its controlling terminal and session. This does
not mean that the attacker must precompute (215)3 values,
however: The second process is created soon after the first,
and Debian’s kernel assigns pids sequentially.

14An attacker who can use a DoS bug to crash child pro-
cesses will have a somewhat easier time mounting the at-
tack, because it is the child processes whose entropy evolves
over time: the attacker will crash each child process, caus-
ing the parent to fork fresh new children; connections from
that point on will be vulnerable even if the attacker did not
observe earlier connections.

the child process he has discovered. Subsequent connections
will either be first connections to other children, which the
attacker will look up in his table, or second or later con-
nections to already-known children, for which the attacker
will appropriately update his local copy of that child’s en-
tropy pool. Crucially, all the values that affect the pattern
of RAND_bytes calls made by the server process are trans-
mitted in the clear as part of the SSL handshake. Figure 13
shows the evolution of the attacker’s knowledge.

We have implemented our attack on Ubuntu 7.10 (Gutsy)
running the default Apache2 MPM-Prefork package with
OpenSSL version 0.9.8e-5ubuntu3, which contains the De-
bian SSL vulnerability. Apache2 MPM-prefork, like Apache
1.3, uses processes instead of threads to handle requests.
While the tables we construct are specific to this version of
Apache and its default Ubuntu configuration, additional ta-
bles could be easily built for other common configurations.
The remainder of this section describes the details of our
attack.

A.1 Building ServerRandom Tables.
First, we created lookup tables to allow us to determine,

given a session ID or ServerRandom value, the pids of the
Apache parents and worker child. We constructed a simu-
lator for Mod SSL that takes as input three pids pid1, pid2,
and pid3, and executes the exact same calls to the OpenSSL
PRNG that Apache makes when initializing the server with
parent pids pid1 and pid2 and worker pid pid3. Once the
simulated worker process requests 28 bytes for the Server-
Random (after requesting 32 bytes for the session ID), we
record this value and the three pids in our table.

A second table is required to handle the case where the
first connection to a new child is a session resume, since in
this case the ServerRandom is the first value drawn from the
PRNG, not the second after the session ID. It is possible to
combine both tables by recording both the session ID and
ServerRandom in a single table; in a session resume, the first
28 bytes of the ServerRandom will be a prefix of what would
otherwise be the session ID.

A.2 Compromising DHE Sessions.
To track each child’s entropy pool as it evolves over mul-

tiple connections, we modify the simulator we used to gen-
erate the ServerRandom table so that simulates connections
of specified types in the sequence after generating the ini-
tial ServerRandom. Because the number of RAND_bytes calls



for blinding operations depends on the server’s public key,
this simulator must be tailored to the specific server we are
attacking.

We use this simulator as follows. We use ssldump15 to ob-
tain a parsed version of all of the connections to the server.
We extract the connection type and other values relevant
to our analysis from the dump using a Perl script. As we
step through the history of connections to the server, we
keep track of the worker processes we have identified as be-
ing active, and the sequence of connection types each has
encountered thus far.

For each new connection that we examine, we first check
if it is handled by a worker process that we already know
about. To do this, we use our simulator to increment the
state of each known worker process and then check if the
ServerRandom emitted matches the ServerRandom of the new
connection we are examining. If there is a match, we have
determined that the connection is handled by an existing
worker process that we are already tracking. If not, the
connection must have been handled by a new worker process;
we can use our table of ServerRandom values to find the new
process’ pid and start tracking its state.

As we sequentially examine sessions in the ssldump, we
can completely determine the PRNG state of every worker
process at each point, so for the DHE sessions we can deter-
mine the ephemeral Diffie-Hellman private key, compromis-
ing those sessions.

A.3 Resources Required for the Attack.
Our attack platform was a machine with a single 3.2 GHz

Intel Pentium 4 with 1 GB RAM. We performed a proof-of-
concept attack under controlled conditions, building a sub-
table of the full lookup table discussed above, with first par-
ent pid in the range [5000, 5835]; the second server pid either

15http://www.rtfm.com/ssldump/.

the next or next-but-one; and worker pids up to one hun-
dred after the second server pid. On our lightly-loaded test
machine, rebooted before each trial, this small table always
sufficed.

The table, containing approximately 160,000 entries, is
10 MB. We estimate that the full table of 235 entries16 would
take less than 4 TB.

Generating our small lookup table by näıvely simulating
each pid triple took 15 hours. Using this approach to gen-
erate the full table would take several million hours of com-
puter time. However, checkpointing the computation after
the parent initialization has completed can cut this time
down by several orders of magnitude. At 220 cost, this gives
a lookup table of entropy pool states for each pair (pid1,
pid2) of parent pids. One then uses the appropriate check-
point entry to derive the entropy pool of each child pid pid3.
This gives all (pid1, pid2, pid3) entries in the table without
needlessly repeating the most costly part of the computa-
tion. Our experiments show that the two parent initializa-
tions, which require RSA keypair generation and make hun-
dreds of PRNG calls, take 135 ms on average for each par-
ent, whereas the final worker process stage is much faster —
about 0.04 ms. This suggests a total cost for computing the
table by this method of

`
220×2×135 ms

´
+

`
235×0.04 ms

´
≈

460 hr, though the actual cost may be somewhat higher due
to IO overhead.

The checkpointed workload, like the näıve one, is highly
parallelizable. The basic subtask is to compute the table
entries for a particular parent pid pair (pid1, pid2) and all
possible child pids. This subtask takes less than 1.6 s and
is totally independent of any other subtask. It would take
a cluster of 20 machines just a day to compute the entire
table.

16This is any of 215 values for the initial server pid and child
pid, and a smaller 25 range for the second server pid.

http://www.rtfm.com/ssldump/
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