CS395T Lecture 14: Multi-View Stereo

Qixing Huang
Oct. 17th 2018
Image-Based Geometry Reconstruction Pipeline
Last Lecture: Multi-View SFM

Multi-View SFM
This Lecture: Multi-View Stereo
Multi-view Stereo for Visual Effects
Input Images

Fig. 1.3 Different MVS capture setups. From left to right: a controlled MVS capture using diffuse lights and a turn table, outdoor capture of small-scale scenes, and crowd-sourcing from online photo-sharing websites.
Volumetric Stereo

Space Carving

Multi-Baseline Stereo
Volumetric Stereo

Scene Volume V

Input Images (Calibrated)

Goal: Determine occupancy, "color" of points in V
Discrete formulation: Voxel Coloring

Discretized Scene Volume

Input Images (Calibrated)

Goal: Assign RGBA values to voxels in V photo-consistent with images
Voxel Coloring Solutions

1. \(C=2 \) (shape from silhouettes)
 - Volume intersection [Baumgart 1974]

2. \(C \) unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]

3. General Case
 - Space carving [Kutulakos & Seitz 98]
Reconstruction from Silhouettes \((C = 2) \)

Binary Images

Approach:
- *Backproject* each silhouette
- Intersect backprojected volumes
Volume Intersection

Reconstruction Contains the True Scene

- In the limit (all views) get \textit{convex hull}
Voxel Algorithm for Volume Intersection

Color voxel black if on silhouette in every image
Properties of Volume Intersection

• Pros
 – Easy to implement, fast
 – Accelerated via octrees [Szeliski 1993] or interval techniques [Matusik 2000]

• Cons
 – No concavities
 – Reconstruction is not photo-consistent
 – Requires identification of silhouettes
Voxel Coloring Solutions

1. C=2 (shape from silhouettes)
 • Volume intersection [Baumgart 1974]

2. C unconstrained, viewpoint constraints
 • Voxel coloring algorithm [Seitz & Dyer 97]

3. General Case
 • Space carving [Kutulakos & Seitz 98]
Voxel Coloring Approach
Voxel Coloring Approach

1. Choose voxel
Voxel Coloring Approach

1. Choose voxel
2. Project and correlate
Voxel Coloring Approach

1. Choose voxel
2. Project and correlate
3. Discard if inconsistent
Voxel Coloring Approach

1. Choose voxel
2. Project and correlate
3. Color if consistent
 (standard deviation of pixel colors below threshold)
Voxel Coloring Approach

1. Choose voxel
2. Project and correlate
3. Color if consistent
 (standard deviation of pixel colors below threshold)

Visibility Problem: in which images is each voxel visible?
Depth Ordering: Visit Occluders First!

Scene Traversal

Layers
Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images
Voxel Coloring Results

Dinosaur Reconstruction
72 K voxels colored
7.6 M voxels tested
7 min. to compute on a 250MHz SGI

Flower Reconstruction
70 K voxels colored
7.6 M voxels tested
7 min. to compute on a 250MHz SGI
Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

Reconstruction Reconstruction

Source: S. Seitz
Improvements

Unconstrained camera viewpoints
 • Space carving [Kutulakos & Seitz 98]

Evolving a surface
 • Level sets [Faugeras & Keriven 98]
 • More recent work by Pons et al.

Global optimization
 • Graph cut approaches
 > [Kolmogoriv & Zabih, ECCV 2002]
 > [Vogiatzis et al., PAMI 2007]

Modeling shiny (and other reflective) surfaces
 • e.g., Zickler et al., Helmholtz Stereopsis
Binocular Stereo
Binocular Stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 1

image 2

Dense depth map
Basic Stereo Matching Algorithm

• For each pixel in the first image
 – Find corresponding epipolar line in the right image
 – Examine all pixels on the epipolar line and pick the best match
 – Triangulate the matches to get depth information

• Simplest case: epipolar lines are corresponding scanlines
 – When does this happen?
Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information

- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?
Simplest Case: Parallel Images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images
Depth from Disparity

Disparity is inversely proportional to depth!

\[\text{disparity} = x - x' = \frac{B \times f}{z} \]

Disparity is inversely proportional to depth!
Stereo Image Rectification
Stereo Image Rectification

• reproject image planes onto a common
 • plane parallel to the line between optical centers
• pixel motion is horizontal after this transformation
• two homographies (3x3 transform), one for each input image reprojeciton

Rectification Example
Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Correspondence search

Left

Right

scanline

SSD
Correspondence search

Left

Right

scanline

Norm. corr
Effect of window size

- Smaller window
 + More detail
 - More noise

- Larger window
 + Smoother disparity maps
 - Less detail
Results with window search

Window-based matching Ground truth
Non-local constraints

• Uniqueness
 – For any point in one image, there should be at most one matching point in the other image
Non-local constraints

• Uniqueness
 – For any point in one image, there should be at most one matching point in the other image

• Ordering
 – Corresponding points should be in the same order in both views
Non-local constraints

• Uniqueness
 – For any point in one image, there should be at most one matching point in the other image

• Ordering
 – Corresponding points should be in the same order in both views

Ordering constraint doesn’t hold
Consistency Constraints

• Uniqueness
 – For any point in one image, there should be at most one matching point in the other image

• Ordering
 – Corresponding points should be in the same order in both views

• Smoothness
 – We expect disparity values to change slowly (for the most part)

MRF Formulation:

\[E(d) = E_d(d) + \lambda E_s(d) \]

- Pixel matching score
- Consistency Scores
Comparison

Window-Based Search:

Graph Cut:

Ground Truth
Stereo matching as energy minimization

- Graph-cuts can be used to minimize such energy

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
Active stereo with structured light

- Project “structured” light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

Kinect: Structured infrared light

Multi-Baseline Stereo
Same formulation with more images

- Change label from disparity to depth
- Change $E_d(d)$ by using more images
Same formulation with more images

- Change label from disparity to depth
- Change $E_d(d)$ by using more images
Same formulation with more images

- Change label from disparity to depth
- Change $E_d(d)$ by using more images
Same formulation with more images

- Change label from disparity to depth
- Change $E_d(d)$ by using more images
Stereo: Basic Idea

error vs depth
Multiple-Baseline Stereo Results

[Okutomi and Kanade’ 93]
Mesh Reconstruction
Merging Depth Maps

vrip [Curless and Levoy 1996]
- compute weighted average of depth maps

set of depth maps (one per view) merged surface mesh
VRIP

depth map 1

depth map 2

combination

signed distance function

isosurface extraction

\[
\text{depth map 1} + \text{depth map 2} \rightarrow \text{combination}
\]
Depthmap Merging

Depthmap 1

Depthmap 2
Merging Depth Maps: Temple Model

317 images (hemisphere)

input image

ground truth model

[Goesele et al. 06]
State-of-The-Art
Multi-View Stereo from Internet Collections

[Goesele et al. 07]
Challenges

• Appearance variation

• Resolution

• Massive collections

82754 results for photos matching notre and dame and paris
Law of Nearest Neighbors

206 Flickr images taken by 92 photographers
Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines
Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view
Local view selection

• Automatically select neighboring views for each point in the image
• Desiderata: good matches AND good baselines
Notre Dame de Paris

653 images
313 photographers
129 Flickr images taken by 98 photographers
merged model of Venus de Milo
56 Flickr images taken by 8 photographers
merged model of Pisa Cathedral
Accuracy compared to laser scanned model:
90% of points within 0.25% of ground truth
How can Deep Learning Help?