CS395T Lecture 14: Multi-View Stereo

Qixing Huang Oct. 17th 2018

Slide Credit: Yasutaka Furukawa

Image-Based Geometry Reconstruction Pipeline

Last Lecture: Multi-View SFM

This Lecture: Multi-View Stereo

Multi-view Stereo for Visual Effects

Input Images

Fig. 1.3 Different MVS capture setups. From left to right: a controlled MVS capture using diffuse lights and a turn table, outdoor capture of small-scale scenes, and crowd-sourcing from online photo-sharing websites.

Volumetric Stereo

Space Carving

Multi-Baseline Stereo

Volumetric Stereo

Goal: Determine occupancy, "color" of points in V

Discrete formulation: Voxel Coloring

Goal: Assign RGBA values to voxels in V photo-consistent with images

Voxel Coloring Solutions

- 1. C=2 (shape from silhouettes)
 - Volume intersection [Baumgart 1974]

- 2. C unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]

- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Reconstruction from Silhouettes (C = 2)

Approach:

- Backproject each silhouette
- Intersect backprojected volumes

Volume Intersection

Reconstruction Contains the True Scene

• In the limit (all views) get convex hull

Voxel Algorithm for Volume Intersection

Color voxel black if on silhouette in every image

Properties of Volume Intersection

Pros

- Easy to implement, fast
- Accelerated via octrees [Szeliski 1993] or interval techniques [Matusik 2000]
- Cons
 - No concavities
 - Reconstruction is not photo-consistent
 - Requires identification of silhouettes

Voxel Coloring Solutions

- 1. C=2 (shape from silhouettes)
 - Volume intersection [Baumgart 1974]

- 2. C unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]

- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Visibility Problem: in which images is each voxel visible?

Depth Ordering: Visit Occluders First!

Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images

Voxel Coloring Results

Dinosaur Reconstruction

72 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

Flower Reconstruction 70 K voxels colored 7.6 M voxels tested

7 min. to compute on a 250MHz SGI

Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Source: S. Seitz

Improvements

Unconstrained camera viewpoints

• Space carving [Kutulakos & Seitz 98]

Evolving a surface

- Level sets [Faugeras & Keriven 98]
- More recent work by Pons et al.

Global optimization

- Graph cut approaches
 - > [Kolmogoriv & Zabih, ECCV 2002]
 - > [Vogiatzis et al., PAMI 2007]

Modeling shiny (and other reflective) surfaces

• e.g., Zickler et al., Helmholtz Stereopsis

Binocular Stereo

Binocular Stereo

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 1

Dense depth map

Basic Stereo Matching Algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines

 When does this happen?

Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?

Simplest Case: Parallel Images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images

Disparity is inversely proportional to depth!

Rectification Example

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Correspondence search

Correspondence search

Effect of window size

W = 20

- -Smaller window
 - + More detail
 - More noise
- -Larger window
 - + Smoother disparity maps
 - Less detail

Results with window search

Data

Window-based matching

Ground truth

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

- Corresponding points should be in the same order in both views

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

- Corresponding points should be in the same order in both views

Ordering constraint doesn't hold

Consistency Constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

MRF Formulation:

$$E(d) = E_d(d) + \lambda E_s(d)$$
Pixel matching score Consistency Scores

Comparsion

Window-Based Search:

Ground Truth

Graph Cut:

Stereo matching as energy minimization

• Graph-cuts can be used to minimize such energy

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via Graph Cuts</u>, PAMI 2001

Active stereo with structured light

- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and Multi-pass</u> <u>Dynamic Programming.</u> *3DPVT* 2002

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Multi-Baseline Stereo

- Change label from disparity to depth
- Change *E*_d(*d*) by using more images

- Change label from disparity to depth
- Change *E*_d(*d*) by using more images

- Change label from disparity to depth
- Change *E*_d(*d*) by using more images

- Change label from disparity to depth
- Change *E*_d(*d*) by using more images

Multiple-Baseline Stereo Results

[Okutomi and Kanade' 93]

Mesh Reconstruction

Merging Depth Maps

vrip [Curless and Levoy 1996]

• compute weighted average of depth maps

set of depth maps (one per view) merged surface mesh

VRIP

signed distance function

Depthmap Merging

Depthmap 1

Depthmap 2

Merging Depth Maps: Temple Model

[Goesele et al. 06]

input image

317 images (hemisphere)

ground truth model

State-of-The-Art

Multi-View Stereo from Internet Collections

[Goesele et al. 07]

Challenges

• Appearance variation

Resolution

• Massive collections

82754 results for photos matching notre and dame and paris

Law of Nearest Neighbors

206 Flickr images taken by 92 photographers

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Notre Dame de Paris

653 images 313 photographers

129 Flickr images taken by 98 photographers

merged model of Venus de Milo

56 Flickr images taken by 8 photographers

merged model of Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

How can Deep Learning Help?