Lecture 17: CS395T Numerical Optimization for Graphics and AI — Proximal Gradient Descents

Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu

1 Introduction

1.1 Proximal Mapping

The proximal mapping of a (convex) function $h(\boldsymbol{x})$ is given by

$$\operatorname{prox}_{h}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{u}} \left(h(\boldsymbol{u}) + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{x}\|^{2}\right).$$

The following are some examples:

- When $h(\boldsymbol{x}) = 0$, then $\operatorname{prox}_h(\boldsymbol{x}) = \boldsymbol{x}$.
- When $h(\mathbf{x}) = Id_C$, where Id_C is the indicator function on C. Then

$$\operatorname{prox}_h(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{u} \in C} \|\boldsymbol{u} - \boldsymbol{x}\|^2.$$

• When $h(\mathbf{x}) = t \|\mathbf{x}\|_1$ for some positive t > 0, then $\operatorname{prox}_h(\mathbf{x})$ is a shrinkage operator defined as

$$\operatorname{prox}_{h}(\boldsymbol{x})_{i} = \begin{cases} x_{i} - t & x_{i} > t \\ 0 & |x_{i}| \le t \\ x_{i} + t & x_{i} < -t \end{cases}$$

1.2 Proximal Gradient Method

We are interested in minimizing an objective function of the following form:

$$f(\boldsymbol{x}) = g(\boldsymbol{x}) + h(\boldsymbol{x}).$$

Here $g(\mathbf{x})$ is a nice convex objective function, e.g., smooth and easy to optimize. $h(\mathbf{x})$ is also convex, but it maybe not that nice, e.g., non-differentiable and non-smooth. However, we assume optimizing $\operatorname{prox}_h(\mathbf{x})$ is inexpensive. One such example is

$$\underset{\boldsymbol{x}}{\operatorname{argmin}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 + \lambda \|\boldsymbol{x}\|_1$$

Proximal gradient methods admit the following form:

$$\boldsymbol{x}^{(k)} = \operatorname{prop}_{t_k h} \Big(\boldsymbol{x}^{(k-1)} - t_k \nabla g(\boldsymbol{x}^{(k-1)}) \Big),$$

where t_k is called the step-size, which is either a constant or determined by line-search.

We can understand the proximal update as follows:

$$\begin{aligned} \boldsymbol{x}^{(k)} &= \operatorname{prop}_{t_k h} \left(\boldsymbol{x}^{(k-1)} - t_k \nabla g(\boldsymbol{x}^{(k-1)}) \right) \\ &= \operatorname*{argmin}_{\boldsymbol{u}} h(\boldsymbol{u}) + \frac{1}{2t} \| \boldsymbol{u} - \boldsymbol{x}^{(k-1)} + t \nabla g(\boldsymbol{x}^{(k-1)}) \|^2 \\ &= \operatorname*{argmin}_{\boldsymbol{u}} \left(h(\boldsymbol{u}) + g(\boldsymbol{x}^{(k-1)}) + \nabla g(\boldsymbol{x}^{(k-1)})^T (\boldsymbol{u} - \boldsymbol{x}^{(k-1)}) + \frac{1}{2t} \| \boldsymbol{u} - \boldsymbol{x}^{(k-1)} \|^2 \right) \end{aligned}$$

In other words, $\boldsymbol{x}^{(k)}$ minimizes $h(\boldsymbol{u})$ and a local quadratic approximation of $g(\boldsymbol{u})$ in the neighborhood of $\boldsymbol{x}^{(k-1)}$.

Example I. When $h(\boldsymbol{x}) = 0$, Then proximal gradient method becomes gradient method:

$$\boldsymbol{x}^{(k)} = \boldsymbol{x}^{(k-1)} - t_k \nabla g(\boldsymbol{x}^{(k-1)}).$$

Example II. When $h(\boldsymbol{x}) = Id_C$, then

$$\boldsymbol{x}^{(k)} = \operatorname{proj}_{C} \left(\boldsymbol{x}^{(k-1)} - t_k \nabla g(\boldsymbol{x}^{(k-1)}) \right).$$

Example III. Iteractive soft-thresholding where $h(\mathbf{x}) = \|\mathbf{x}\|_1$, i.e., minimize $g(\mathbf{x}) + \|\mathbf{x}\|_1$:

$$\boldsymbol{x}^{(k)} = \operatorname{prox}_{t_k h}(\boldsymbol{x}^{(k-1)} - t_k \nabla g(\boldsymbol{x}^{(k-1)})),$$

where

$$\operatorname{prox}_{th}(u)_i = \begin{cases} x_i - t & x_i \ge t \\ 0 & |x_i| \le t \\ x_i + t & x_i \le -t \end{cases}$$

2 Proximal Gradient Algorithm

The proximal gradient iteration can be written as $\boldsymbol{x}^{(k)} = \boldsymbol{x}^{(k-1)} - t_k G_{t_k}(\boldsymbol{x}^{(k-1)})$ where

$$G_t(\boldsymbol{x}) = \frac{1}{t} \Big(\boldsymbol{x} - \operatorname{prox}_{th} \big(\boldsymbol{x} - t \nabla g(\boldsymbol{x}) \big) \Big).$$

from sub-gradient definition of prox

$$G_t(\boldsymbol{x}) \in \nabla g(\boldsymbol{x}) + \partial h(\boldsymbol{x} - tG_t(\boldsymbol{x})).$$

In other words, $G_t(\boldsymbol{x}) = 0$ if and only of \boldsymbol{x} minimizes $f(\boldsymbol{x}) = g(\boldsymbol{x}) + h(\boldsymbol{x})$.

To determine stepsize t in

$$\boldsymbol{x}^+ = \boldsymbol{x} - tG_t(\boldsymbol{x})$$

Start with some $t = \hat{t}$; repeat $t := \beta t$ (with $0 < \beta < 1$) until

$$g(\boldsymbol{x} - tG_t(\boldsymbol{x})) \leq g(\boldsymbol{x}) - t\nabla g(\boldsymbol{x})^T G_t(\boldsymbol{x}) + \frac{t}{2} \|G_t(\boldsymbol{x})\|^2.$$

The inequality is motivated from the convergence analysis, which will be described next.

3 Convergence of Proximal Gradient Method

Assumptions.

• $\nabla g(\boldsymbol{x})$ is Lipschitz continuous with constant L > 0

$$\|\nabla g(\boldsymbol{x}) - \nabla g(\boldsymbol{y})\| \le L \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall x, y$$

• optimal value f^* is finite and attained at x^* (not necessarily unique).

Claim. We show that $f(\boldsymbol{x}^{(k)}) - f(\boldsymbol{x}^{\star})$ decreases at least as fast as 1/k if

- if step size $t_k = 1/L$ is used
- if backtrack line search is used

Proof. To prove this we will start with some properties regarding $g(\mathbf{x})$:

• affine lower bound from convexity:

$$g(\boldsymbol{y}) \ge g(\boldsymbol{x}) + \nabla g(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}).$$

• quadratic upper bound from Lipschitz property

$$g(\boldsymbol{y}) \leq g(\boldsymbol{x}) +
abla g(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) + rac{L}{2} \| \boldsymbol{y} - \boldsymbol{x} \|^2.$$

Let v = y - x. The proof of this straight-forward using

$$g(\boldsymbol{y}) - g(\boldsymbol{x}) = \nabla g(\boldsymbol{x})^T \boldsymbol{v} + \int_0^1 (\nabla g(\boldsymbol{x} + t\boldsymbol{v}) - \nabla g(\boldsymbol{x}))^T \boldsymbol{v} dt.$$

A consequence of this is that the line search inequality

$$g(\boldsymbol{x} - tG_t(\boldsymbol{x})) \le g(\boldsymbol{x}) - t\nabla g(\boldsymbol{x})G_t(\boldsymbol{x}) + \frac{t}{2} \|G_t(\boldsymbol{x})\|^2$$
(1)

is satisfied for $0 \le t \le \frac{1}{L}$. This means back-tracking at \hat{t} terminates at $t \ge \min(\hat{t}, \beta/L)$.

If the line search inequality (1) holds, then for all z,

$$f(\boldsymbol{x} - tG_t(\boldsymbol{x})) \le f(\boldsymbol{z}) + G_t(\boldsymbol{x})^T(\boldsymbol{x} - \boldsymbol{z}) - \frac{t}{2} \|G_t(\boldsymbol{x})\|^2.$$
(2)

Using (2), we can obtain the progress in one iteration:

$$f(x^+) - f(x^*) \le \frac{1}{2t} (\|x - x^*\|^2 - \|x^+ - x^*\|^2)$$

Analysis with fixed stepsize. We will show that $f(\boldsymbol{x}^{(k)}) - f(\boldsymbol{x}^{\star}) = O(\frac{1}{k})$. In fact,

$$\begin{split} \sum_{i=1}^{k} (f(\boldsymbol{x}^{(i)}) - f(\boldsymbol{x}^{\star})) &\leq \sum_{i=1}^{k} \frac{1}{2t} \left(\| \boldsymbol{x}^{(i-1)} - \boldsymbol{x}^{\star} \|^{2} - \| \boldsymbol{x}^{(i)} - \boldsymbol{x}^{\star} \|^{2} \right) \\ &\leq \frac{1}{2t} \sum_{i=1}^{k} \left(\| \boldsymbol{x}^{(i-1)} - \boldsymbol{x}^{\star} \|^{2} - \| \boldsymbol{x}^{(i)} - \boldsymbol{x}^{\star} \|^{2} \right) \\ &= \frac{1}{2t} \left(\| \boldsymbol{x}^{(0)} - \boldsymbol{x}^{\star} \|^{2} - \| \boldsymbol{x}^{(k)} - \boldsymbol{x}^{\star} \|^{2} \right). \end{split}$$

Since $f(\boldsymbol{x}^{(i)})$ is non-increasing,

$$f(\boldsymbol{x}^{(k)}) - f^{\star} \le \frac{1}{2kt} \| \boldsymbol{x}^{(0)} - \boldsymbol{x}^{\star} \|^{2}$$

This means when $t = \frac{1}{L}$, $f(\boldsymbol{x}^{(k)}) - f^{\star} = O(\frac{L}{2k})$.

Analysis with line search. The derivation is quite similar:

$$\begin{split} \sum_{i=1}^{k} (f(\boldsymbol{x}^{(i)}) - f(\boldsymbol{x}^{\star})) &\leq \sum_{i=1}^{k} \frac{1}{2t_i} \left(\| \boldsymbol{x}^{(i-1)} - \boldsymbol{x}^{\star} \|^2 - \| \boldsymbol{x}^{(i)} - \boldsymbol{x}^{\star} \|^2 \right) \\ &\leq \frac{1}{2t_{\min}} \sum_{i=1}^{k} \left(\| \boldsymbol{x}^{(i-1)} - \boldsymbol{x}^{\star} \|^2 - \| \boldsymbol{x}^{(i)} - \boldsymbol{x}^{\star} \|^2 \right) \\ &= \frac{1}{2t_{\min}} \left(\| \boldsymbol{x}^{(0)} - \boldsymbol{x}^{\star} \|^2 - \| \boldsymbol{x}^{(k)} - \boldsymbol{x}^{\star} \|^2 \right). \end{split}$$

Since $f(\boldsymbol{x}^{(i)})$ is non-increasing,

$f(\boldsymbol{x}^{(k)}) - f^\star \leq rac{1}{2kt_{\min}} \ \boldsymbol{x}^{(0)} - \boldsymbol{x}^\star \ ^2.$	