Triangular Mesh/Mesh Simplification

Qixing Huang Feb. 23th 2017

Review: Course Structure

6

3D Reconstruction

3D Representations

3D Understanding

Review: 3D Representations

Review: Pointcloud to Implicit Surface

Radial Basis Function [Carr et al. 01]

Review: Implicit->Mesh

[Lorensen and Cline 87]

Polygon Mesh Processing

Polygon Mesh Processing

Mesh Simplification

Mesh Analysis (3D Understanding)

Mesh Parameterization

Mesh Deformation

Mesh Simplification

• Oversampled 3D scan data

~80k triangles

~150k triangles

• Overtessellation: E.g. iso-surface extraction

- Multi-resolution hierarchies for
 - efficient geometry processing
 - level-of-detail (LOD) rendering

• Adaptation to hardware capabilities

1999

Size-Quality Tradeoff

error

Problem Statement

- Given: *M* = (*V*,*F*)
- Find: M' = (V', F') such that

-|V'| = n < |V| and d(M,M') is minimal, or

- d(M,M') < eps and |V'| is minimal

Respect additional fairness criteria

- Normal deviation, triangle shape, scalar attributes, etc.

Mesh Decimation Methods

• Vertex clustering

Incremental decimation

• Resampling

• Mesh approximation

Mesh Decimation Methods

• Vertex clustering

Incremental decimation

• Resampling

• Mesh approximation

Cluster Generation

• Computing a representative

• Mesh generation

• Topology changes

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells

- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Hierarchical approach
 - Top-down or bottom-up

- Computing a representative
- Mesh generation
- Topology changes

Cluster Generation

- Computing a representative
 - Average/median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

Computing a Representative

Average vertex position

Computing a Representative

Median vertex position

Computing a Representative

Error quadrics

Error Quadrics

• Patch is expected to be piecewise flat

 Minimize distance to neighboring triangles' planes

Error Quadrics

• Squared distance of point *p* to plane *q*

$$p = (x, y, z, 1)^{T}, \quad q = (a, b, c, d)^{T}$$
$$dist(q, p)^{2} = (q^{T}p)^{2} = p^{T}(qq^{T})p =: p^{T}Q_{q}p$$
$$Q_{q} = \begin{bmatrix} a^{2} & ab & ac & ad \\ ab & b^{2} & bc & bd \\ ac & bc & c^{2} & cd \\ ad & bd & cd & d^{2} \end{bmatrix}$$

Error Quadrics

 Sum distances to planes q_i of vertex' neighboring triangles

$$\sum_{i} dist(q_i, p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}\right) p =: p^T Q_p p$$

• Point p* that minimizes the error satisfies:

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} p^* = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Comparison

- Cluster Generation
- Computing a representative
- Mesh generation

 Clusters p<-> {p₀,..., p_n}, q<-> {q₀,..., q_m}
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters p<-> { p_0 ,..., p_n }, q<-> { q_0 ,..., q_m }
 - Connect (p,q) if there was an edge (p_i, q_i)
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation

- Topology changes
 - If different sheets pass through one cell
 - Can be non-manifold

General Setup

• Decimation operators

• Error metrics

• Fairness criteria

General Setup

- Repeat:
 - Pick mesh region
 - Apply decimation operator
- Until no further reduction possible

Variant I --- Greedy Optimization

- For each region
 - evaluate quality after decimation
 - enqeue(quality, region)
- Repeat:
 - get best mesh region from queue
 - apply decimation operator
 - update queue
- Until no further reduction possible

Variant II --- Global Error Control

- For each region
 - evaluate quality after decimation
 - enqeue(quality, region)
- Repeat:
 - get best mesh region from queue
 - If error < eps</p>
 - Apply decimation operator
 - Update queue
- Until no further reduction possible

General Setup

• Decimation operators

• Error metrics

• Fairness criteria

• What is a "region"?

• What are the DOF for re-triangulation?

- Classification
 - Topology-changing vs. topology-preserving
 - Inverse operation -> progressive meshes [Hoppe et al....]

Select all triangles sharing this vertex

Remove the selected triangles, creating the hole

Fill the hole with new triangles

- Remove vertex
- Re-triangulate hole

 Combinatorial degrees of freedom

• Merge two adjacent vertices

- Define new vertex position
 - Continuous degrees of freedom

- Collapse edge into one end point
 - Special case of vertex removal
 - Special case of edge collapse
- No degrees of freedom

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

. . .

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

. . .

General Setup

• Decimation operators

• Error metrics

• Fairness criteria

Local Error Metrics

- Local distance to mesh
 - Compute average plane
 - No comparison to *original* geometry

Global Error Metrics

[Garland and Heckbert 97] 4k+ citations on Google Scholar

- Error quadrics
 - Squared distance to planes at vertex
 - No bound on true error

General Setup

• Decimation operators

• Error metrics

• Fairness criteria

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

. . .

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

. . .

Implementation – Half Edge Data Structure

Reading: https://doc.cgal.org/latest/HalfedgeDS/index.html

Comparison

- Vertex clustering
 - fast, but difficult to control simplified mesh
 - Topology changes, non-manifold meshes
 - Global error bound, but often not close to optimum
- Incremental decimation with quadratic error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality