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Parametric Representation

e Widely used in Graphics/CAD/Industrial
design

e What we will learn
— Hermite
— Bézier

— Bspline
— Many of their variants



Hermite curves

* A cubic polynomial

* Polynomial can be specified by the position of, and gradient
at, each endpoint of curve

 Determine: x=X(t) interms of x0, x0’, x1, x1’

dP,

dpP, P
t=1



The Hermite matrix: M,

* The resultant polynomial can be expressed in
matrix form:

X(t) =t™™Mq ( g is the control vector)

X(t):[t3 1 1]

We can now define a parametric polynomial for each
coordinate required independently, ie. X(t), Y(t) and Z(t)



Hermite Basis (Blending) Functions
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Hermite Basis (Blending) Functions

X ()= =37 +Dx, + (17 =21> +)x,"+(=28" + 3" )x, + (* =17 )x,"

The plot shows the
shape of the so-called
blending functions.

Note that at each end
only position is non-
zero, so the curve musi
touch the endpoints

Blending Functions for Hermite Curves
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Hermite curves can be hard to model

Note that the shape of the curve may not be intuitive from
the boundary constraints



Bézier Curves

* Hermite cubic curves are mainly designed to
be stitched into long curves
— Yet the shapes are hard to control

* More intuitive to only specify points.

* Pierre Bézier (an engineer at Renault)
specified 2 endpoints and 2 additional control
points to specify the gradient at the
endpoints.

* Strongly related to the Hermite curve



Bézier Curves

* Note the Convex Hull has been shown as a
dashed line — used as a bounding extent for
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Bézier Matrix

* The cubic form is the most popular
X(t) =t'M,q (M, is the Bézier matrix)

* With n=4 and r=0,1,2,3 we get:

-1 3 -3 1]g,]
Ta s 3 -6 3 0]gq
xi=l¢ 7 ¢ 1 S ola.
1 0 0] g
* Similarly for Y(t) and Z(t)



Bézier blending functions

Blending Functions for Bezier Curves
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Joining Bezier Curves

* G continuity is provided at the endpoint when
P>—P3=k (Q1— Qo)

* if k=1, C continuity is obtained

Poll -7 4 P30l -0 4 Par 36500 - t)+ Pgrt?




Bicubic patches

* The concept of parametric curves can be
extended to surfaces

* The cubic parametric curve is in the form of
Q(t)=s"M g where g=(q1,92,93,g4) : gicontrol
points, M is the basis matrix (Hermite or
Bezier,...), s"=(s3, s?, s, 1)



Bicubic patches

 Now we assume @i to vary along a parameter s,

* Qis,t)=s"M [qu(t),q2(t),q3(t),qa4(t)]
* gi(t) are themselves cubic curves, we can write
them in the form ... 26




Bézier example

x(s,t) :( Bi(s) Ba(s) Bs(s) Ba(s) )
s'™M

Replace x by y and z




Continuity of Bicubic Patches

* Hermite and Bézier
patches

— CO%continuity when
sharing boundary
control points

— Cl continuity when
sharing boundary
control points and
boundary edge vectors
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B-Spline Curves



Motivating Example
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Uniform Bspline

._|_
ci1(s) = po(l — s)2 + p12(1 — s)s + i > P22,
+
co(s) = il (2 —5)° +Pp22(2 — s)(s — 1) + p3(s — 1)°.

2

c(s) = poNo(s) + P1V1(s) + p2Na(s) + p3N3(s).



Basis functions
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Generalization to Bspline definition

* Control points
\
* Knotvectort={(t, t,...t) |

/)
.
1 ift, <t< lit1
N = - .
i0(t) { 0 otherwise
t—1t; tivra1 — 1
N; i (t) := Nip—1(t) + ] Nit1 g—1(t)

itk — bitvk+1 — tigt1



B-Spline Curve

* Bsplines are summarized from curves that stitch
Bezier segments together

e Start with a sequence of control points

* Select four from middle of sequence (p.,, Pi.1, Py Pis1)
— Bezier and Hermite goes between p, , and p;,,

— B-Spline doesn’t interpolate (touch) any of them but
approximates the going through p, ; and p,



Uniform B-Splines

* Approximating Splines

* Approximates n+1 control points
— Py, P, .., P,n>3

* Curve consists of n =2 cubic polynomial segments
- Q;, Q.- Q,

* tvariesalong B-splineasQ;:t <=t<t,,

* t (i =integer) are knot points that join segment Q, ; to Q

* Curve is uniform because knots are spaced at equal
intervals of parameter, t



Uniform B-Splines

* First curve segment, Q,, is defined by first four
control points

* Last curve segment, Q,,, is defined by last four
control points, P_ ., P__,P__. P_

* Each control point affects four curve segments



B-Spline Surfaces



Bspline Surfaces

* The same way to we generalize Bezier curves
to Bezier surfaces

plu,v) = ?_E. %Ni@(“]NM(“]PM
=0 §=



TSpline

[Sederberg et al 03]



Subdivision Surfaces



Problems with NURBS

* Asingle NURBS patch is
either a disk a tube or a
torus

* Must use many NURBS
patches to model complex
geometry

 When deforming a surface
made of NURBS patches,cra
cks arise at the seams



Subdivision

* “Subdivision defines a smooth curve or surfac
eaes the limit of a sequence of successive refi
nements”




Subdivision Rules

* How the connectivity changes

* How the geometry changes
— Old points
— New points




Subdivision Surfaces

* Generalization of spline curves / surfaces
— Arbitrary control meshes
— Successive refinement (subdivision)
— Converges to smooth limit surface

— Connection between splines and meshes




Subdivision Surfaces

* Generalization of spline curves / surfaces
— Arbitrary control meshes
— Successive refinement (subdivision)
— Converges to smooth limit surface

— Connection between splines and meshes




Example: Geri’s Game (Pixar)

* Subdivision used for
— Geri’s hands and head
— Clothing
— Tie and shoes




Example: Geri’s Game (Pixar)

Woody's hand (NURBS) Geri’s hand (subdivision)




Example: Geri’s Game (Pixar)

Sharp and semi-sharp features




Example: Games

* Supported in hardware in DirectX 11

Z>. |

NVIDIA.

Motivation




