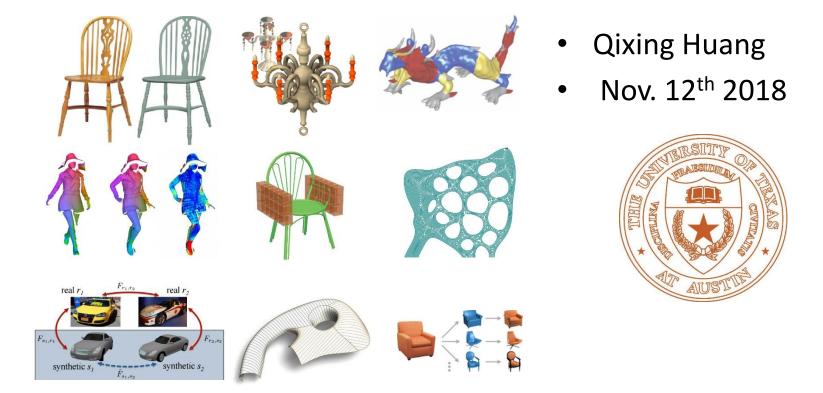
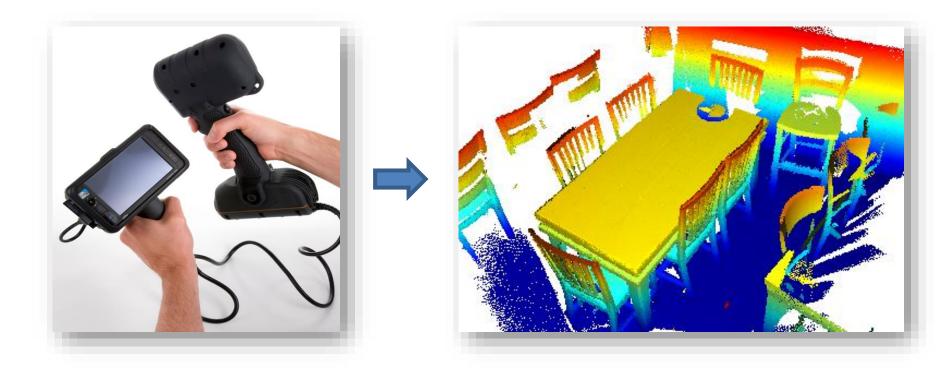
Data-Driven RGBD Reconstruction



Geometry Reconstruction



A Standard Approach

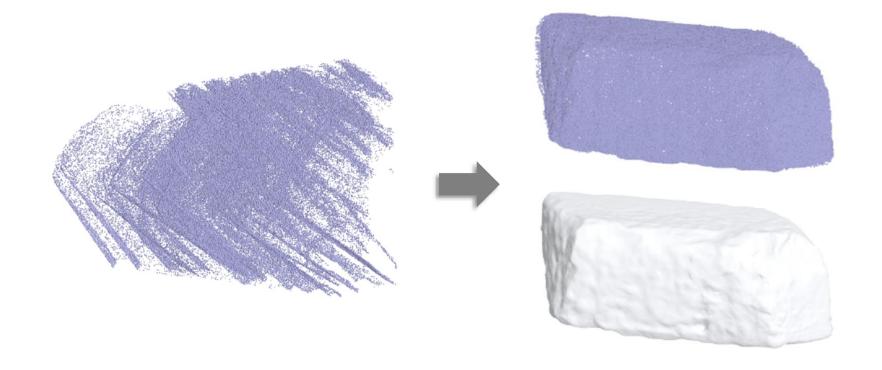
• Scanning

• Registration

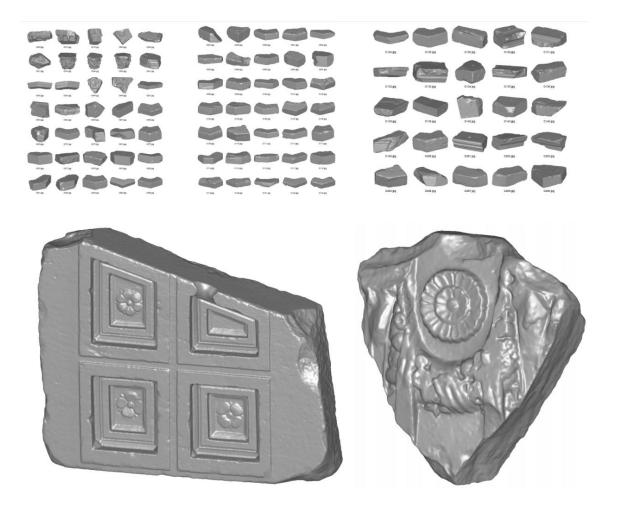
• Reconstruction

A standard pipeline

A standard pipeline



A standard pipeline

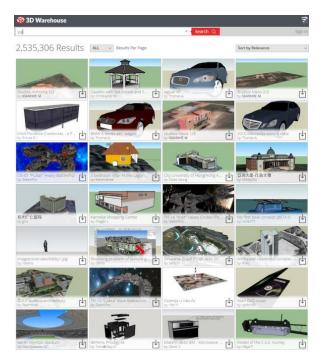


Limitation I – complete observation

Data-Driven Geometry Reconstruction

The Big Bang in internet 3D models

yobi3D shark



Q

Popular shark, sheep, bird, church, he

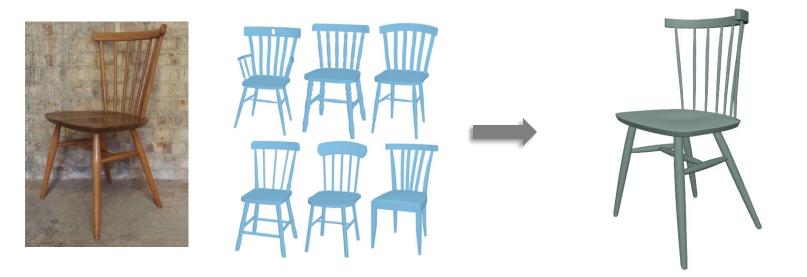
3D Warehouse

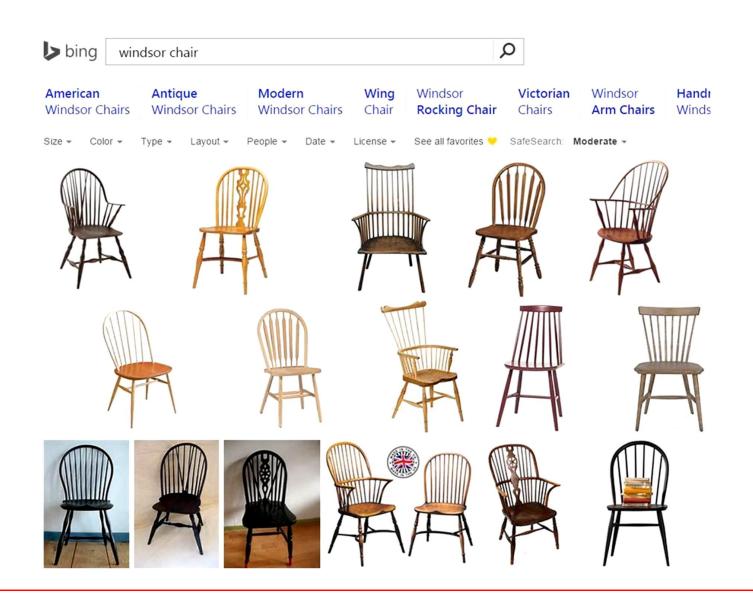
Yobi3D

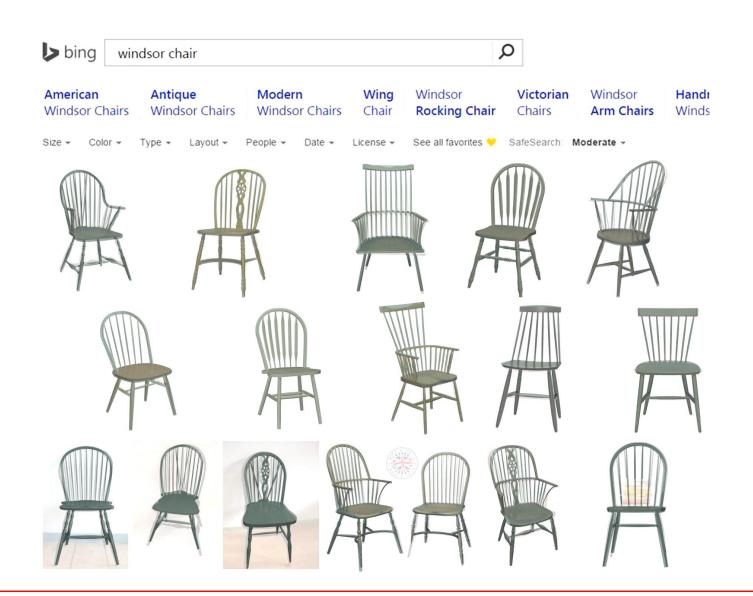
3M models in more than 4K categories

Image-based shape retrieval

Single-view image based shape modeling

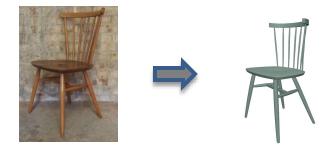






The benefit of data-driven geometry processing

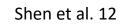
• Partial observation



Structural information

Classification



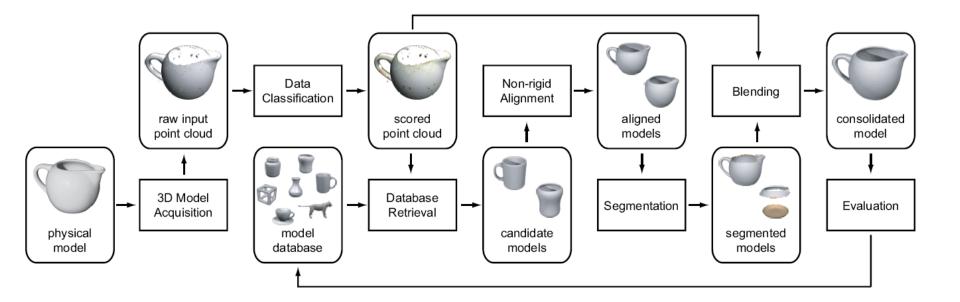


Nearest Neighbor

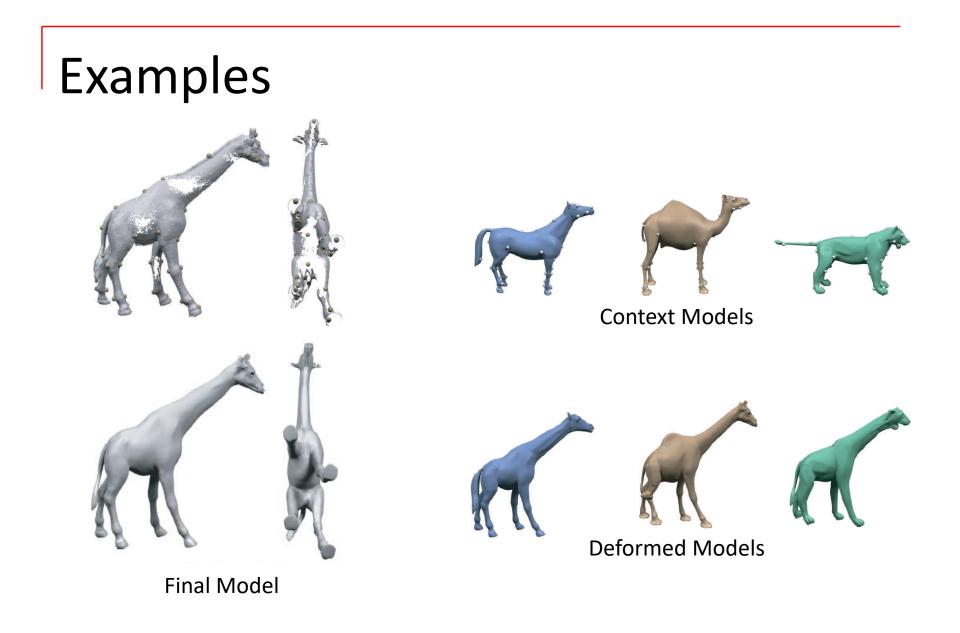
Parametric Methods

Nearest Neighbor

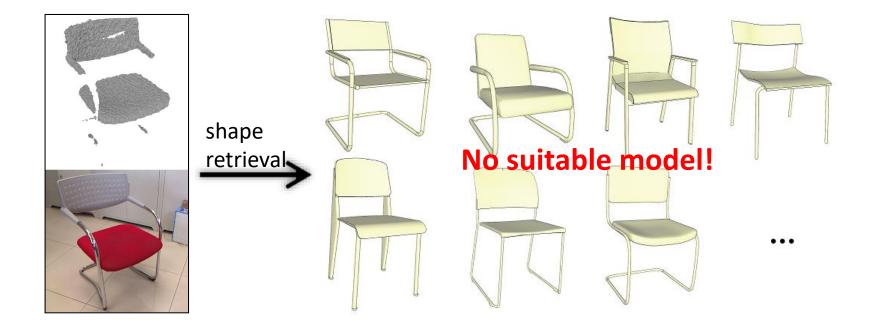
Example-Based Scan Completion



Example-Based 3D Scan Completion, SGP'05

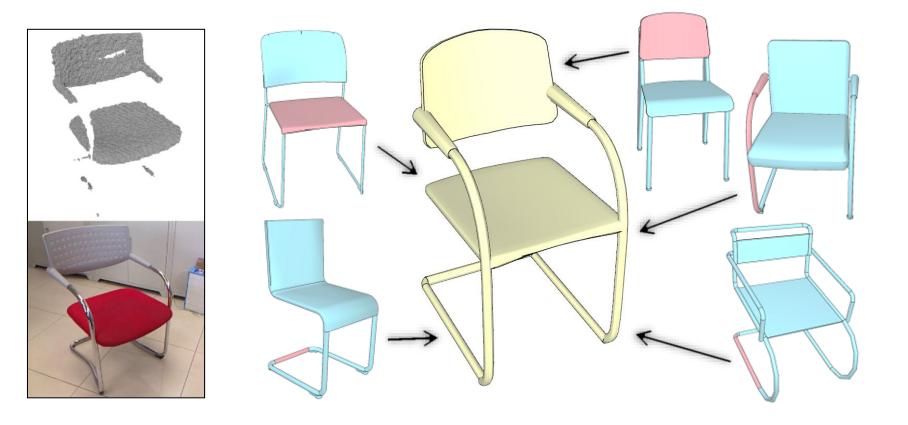


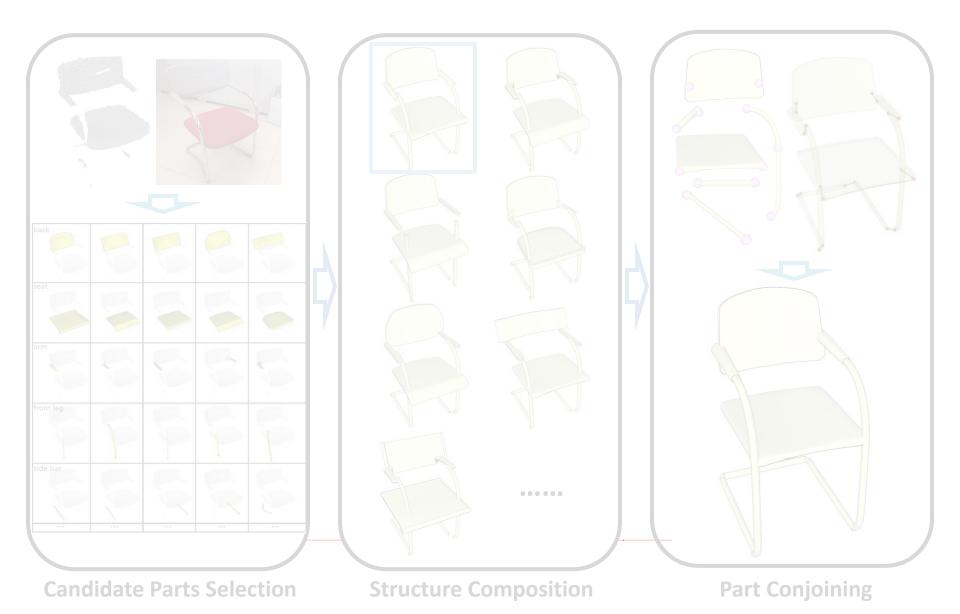
Part-based Shape Reconstruction [TOG'12]

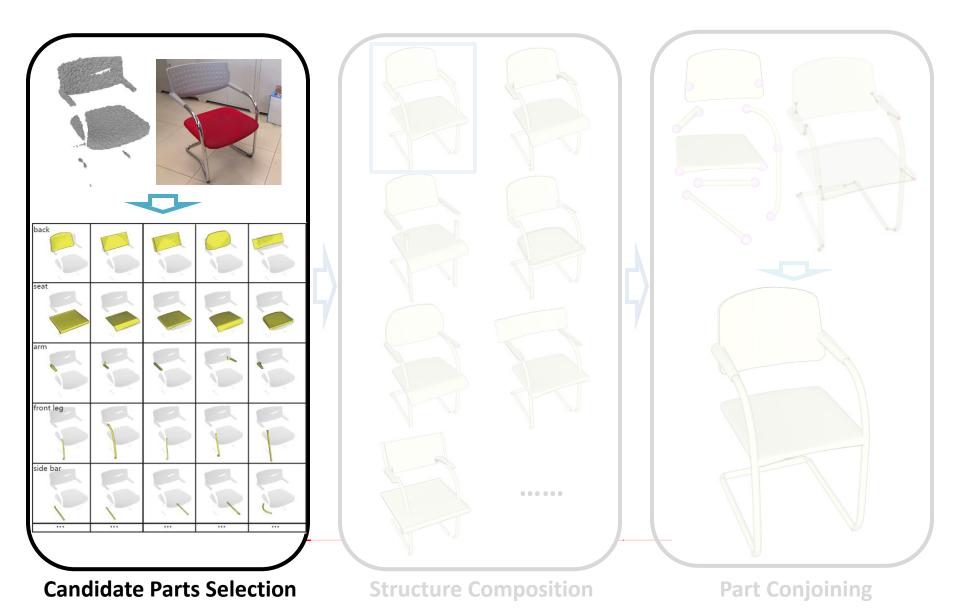


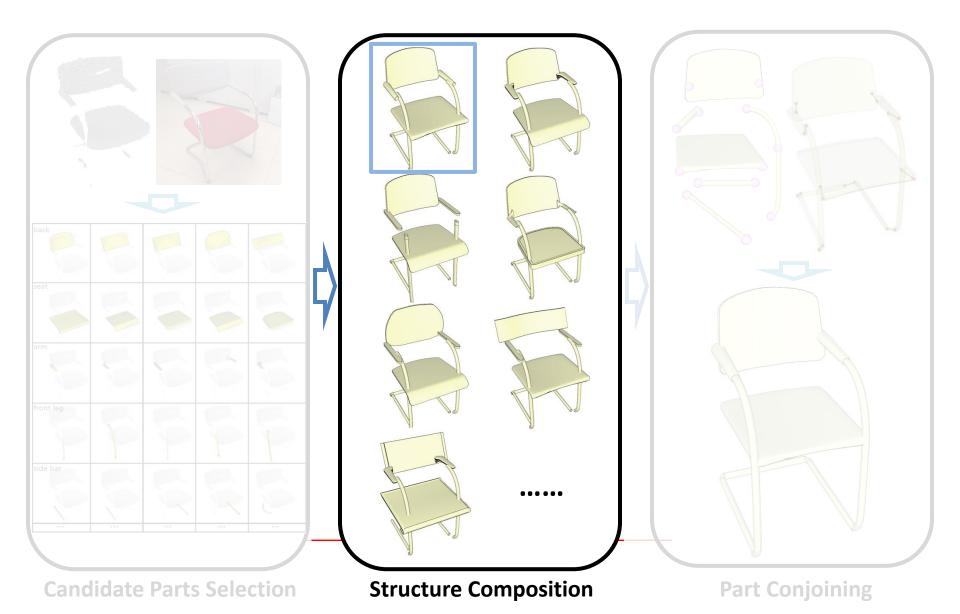
Structure Recovery by Part Assembly TOG'12

Recover the structure by part assembly





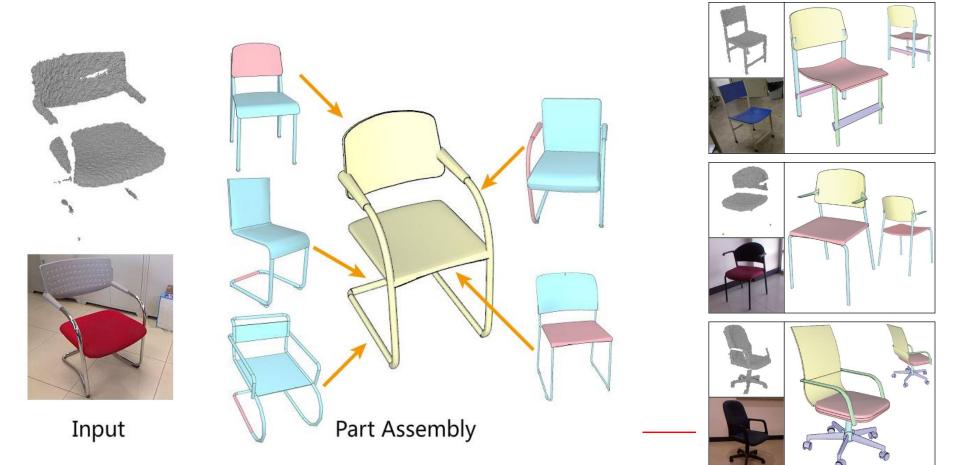






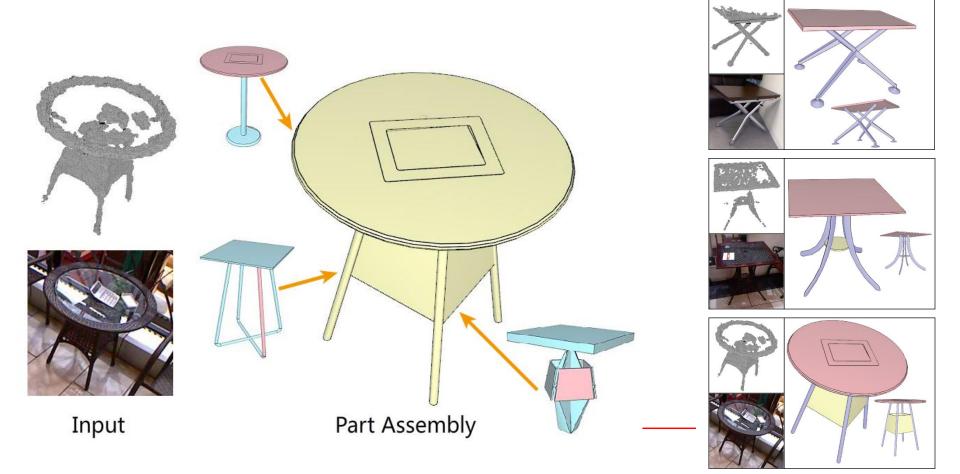
Results: Chairs

• 70 repository models, 11 part categories



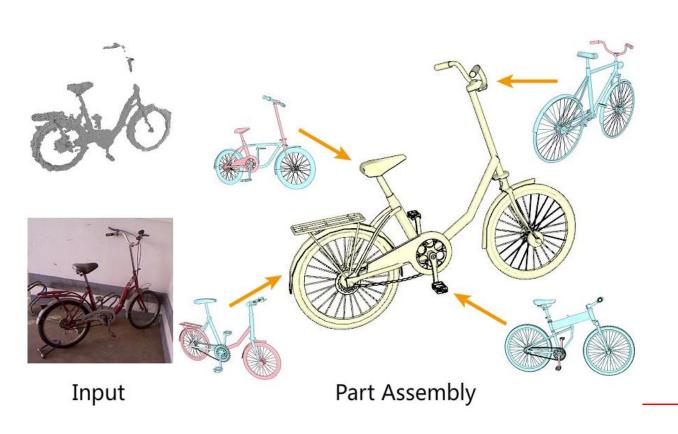
Results: Tables

• 61 repository models, 4 part categories



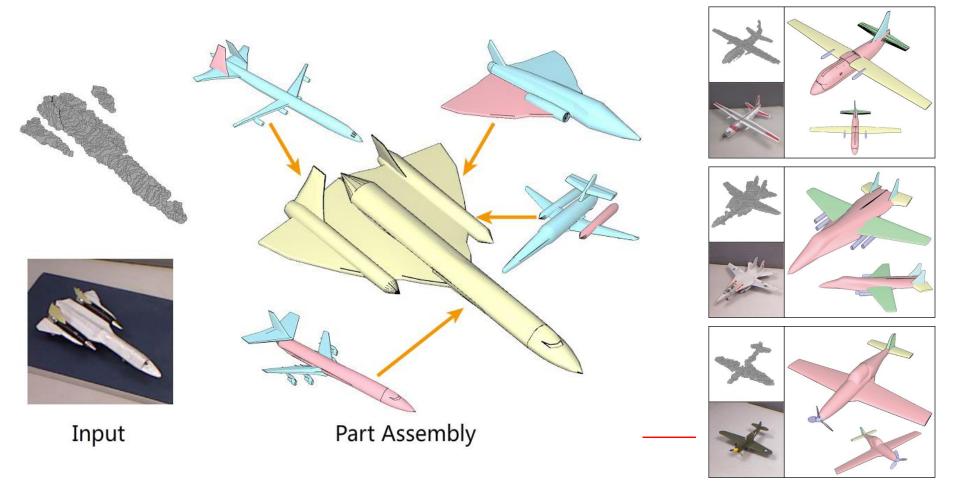
Results: Bicycles

• 38 repository models, 9 part categories



Results: Airplanes

• 70 repository models, 6 part categories



Discussion

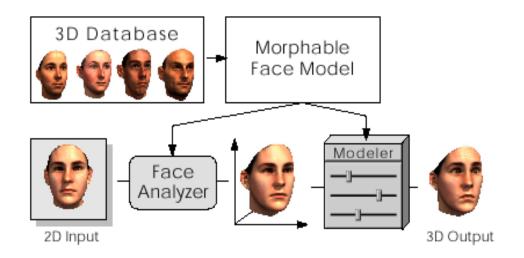
- Hard to make it fully automatic --- many parameters to tune
- More data -> better algorithm

• Easy to add user interaction

Parametric Methods

A Morphable model for the synthesis of 3D faces

• Start with a catalogue of 200 3D Cyberware scans



Build a model of *average* shape and texture, and principal *variations*

Morphable 3D face model

$$\mathbf{S}_{mod} = \sum_{i=1}^{m} a_i \mathbf{S}_i, \quad \mathbf{T}_{mod} = \sum_{i=1}^{m} b_i \mathbf{T}_i, \quad \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} b_i = 1.$$
$$\vec{a} = (a_1, a_2 ... a_m)^T \qquad \vec{b} = (b_1, b_2 ... b_m)^T$$

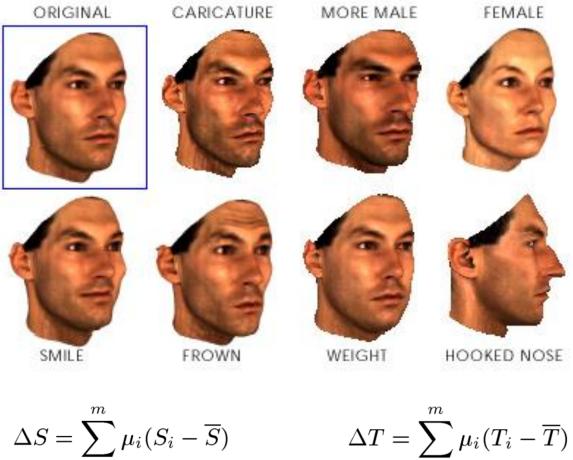
$$S_{model} = \overline{S} + \sum_{i=1}^{m-1} \alpha_i s_i , \ T_{model} = \overline{T} + \sum_{i=1}^{m-1} \beta_i t_i , \quad (1)$$

The probability for coefficients
$$\vec{\alpha}$$
 is given by

$$p(\vec{\alpha}) \sim exp[-\frac{1}{2}\sum_{i=1}^{m-1} (\alpha_i/\sigma_i)^2], \qquad (2)$$

Adding attributes

i=1

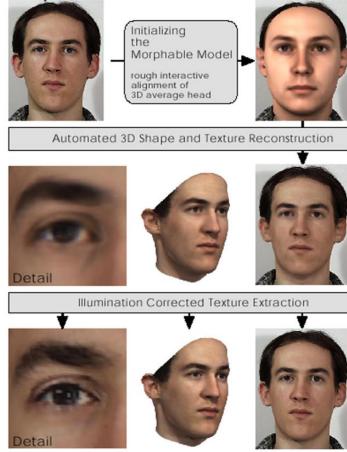


$$G_i - \overline{S})$$

i=1

Reconstruction from single image

2D Input



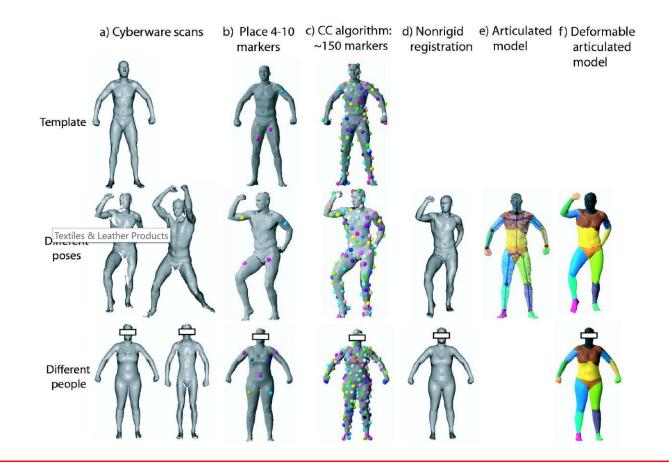
Phong illumination model

$$E_I = \sum_{x,y} \|\mathbf{I}_{input}(x,y) - \mathbf{I}_{model}(x,y)\|^2$$

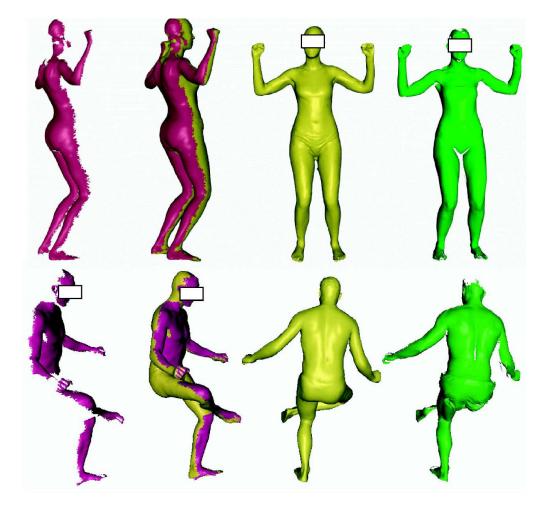
$$E = \frac{1}{\sigma_N^2} E_I + \sum_{j=1}^{m-1} \frac{\alpha_j^2}{\sigma_{S,j}^2} + \sum_{j=1}^{m-1} \frac{\beta_j^2}{\sigma_{T,j}^2} + \sum_j \frac{(\rho_j - \bar{\rho}_j)^2}{\sigma_{\rho,j}^2}$$

SCAPE: Shape completion and animation of people --- joint pose and shape model

[Anguelov et al 05]



SCAPE: Shape completion and animation of people --- joint pose and shape model



Data-Driven Shape Modeling

Modeling By Example [Funkhouser et al. 04]

Figure 6: Results of shape similarity queries where the query provided to the system is (top) the chair with the legs selected, and (bottom) the chair with the arms selected.

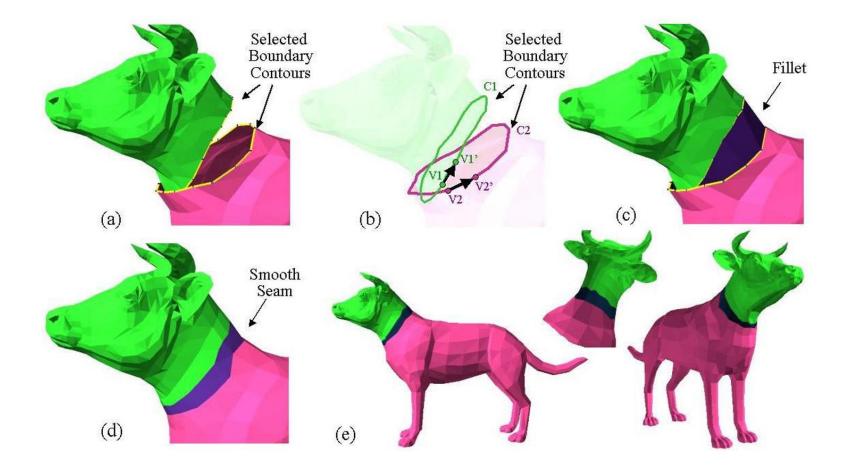
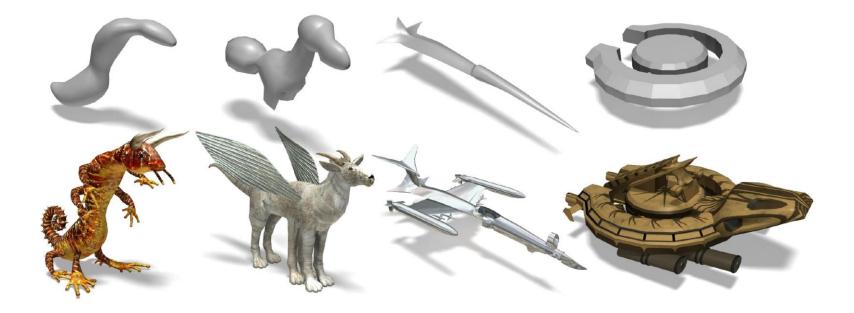


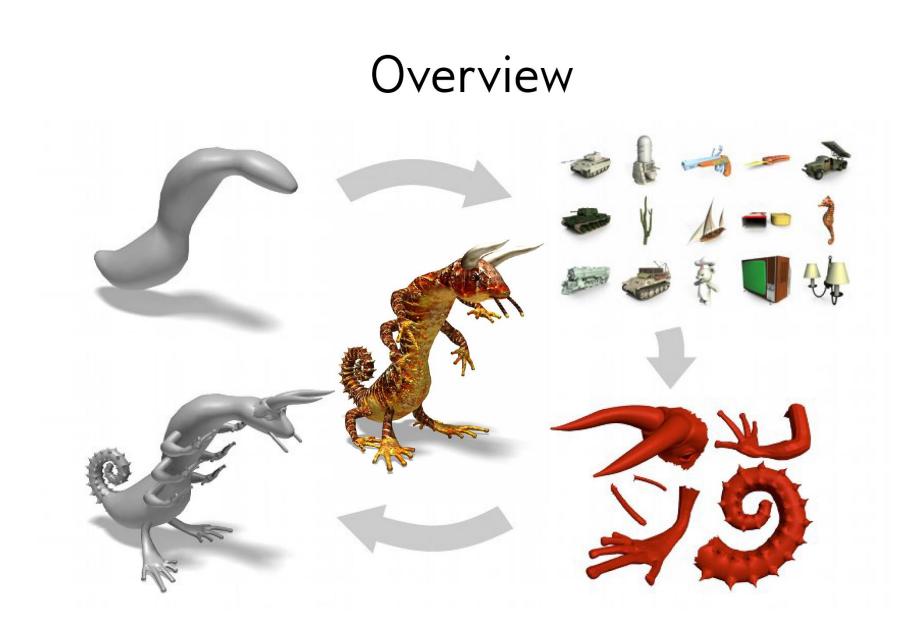
Figure 8: Attaching the head of a cow to the body of a dog: (a) a boundary contour is selected on each part (C1 and C2); (b) the pair of closest points (V1 and V2) is found and the local direction near those points is used to determine the relative orientation of the contours; (c) a fillet is constructed attaching the contours; (d) the mesh is smoothed in the region nearby the seams of the fillet. (e) the result is a smooth, watertight seam.

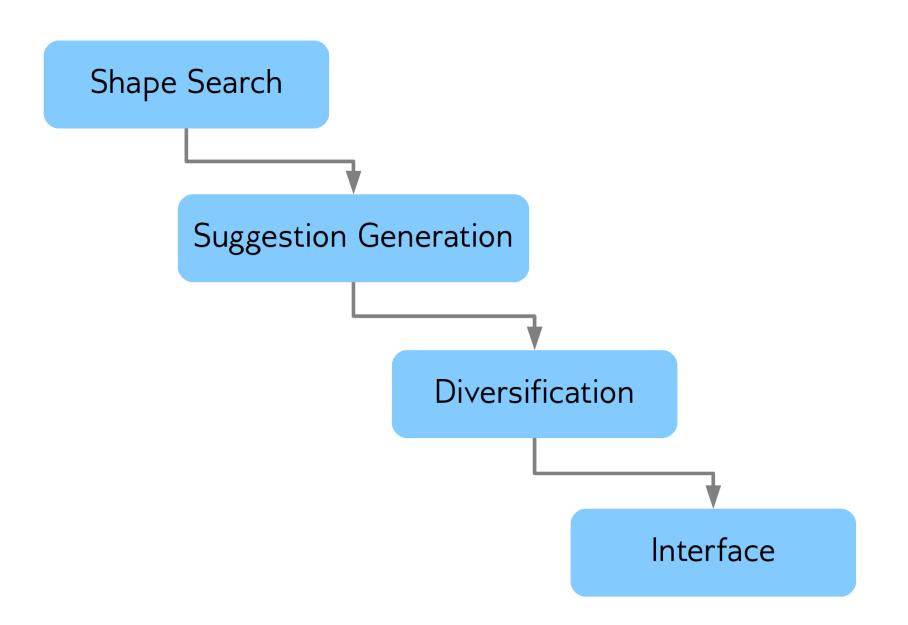
Data-Driven Suggestions for Creativity Support in 3D Modeling [Chaudhuri and Koltun' 11]

Basic idea

• Automatically suggest ways in which the user can extend a basic shape, to stimulate creative exploration

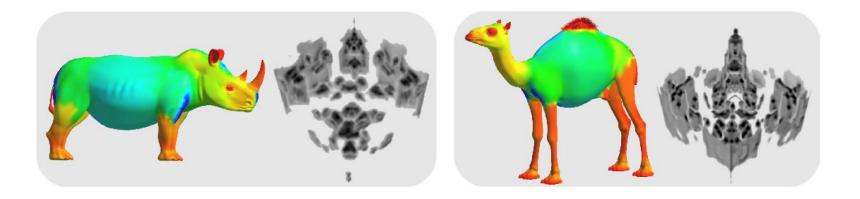




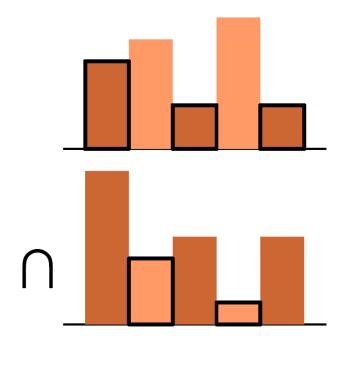


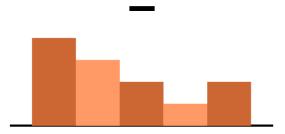
D^3 histogram

- Bin pairs of sample points on the shape
- Bins indexed by the distance between a pair of points, and the shape diameter (local thickness) of each point
- Comparison by histogram intersection and pyramid matching, for partial and approximate matches

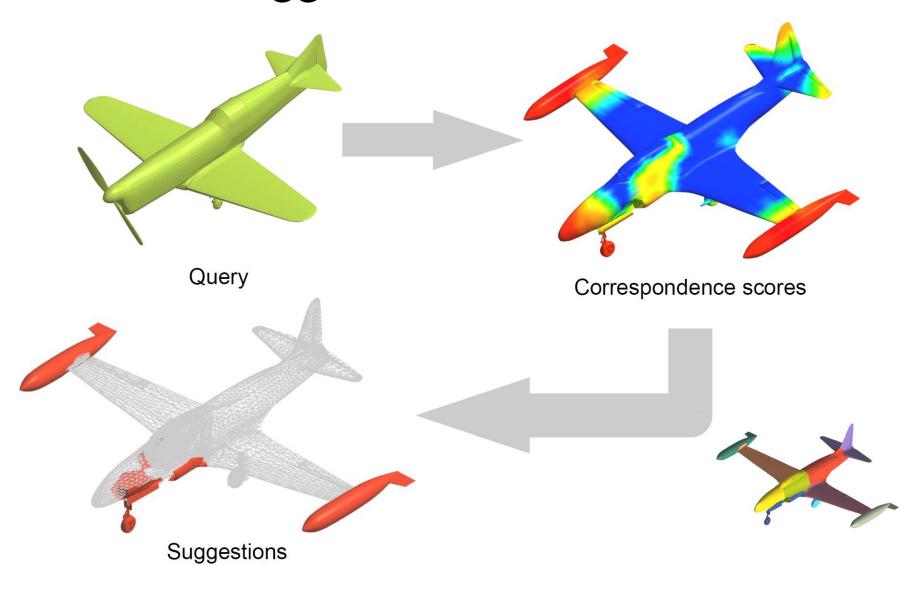


Histogram Intersection





Suggestion Generation



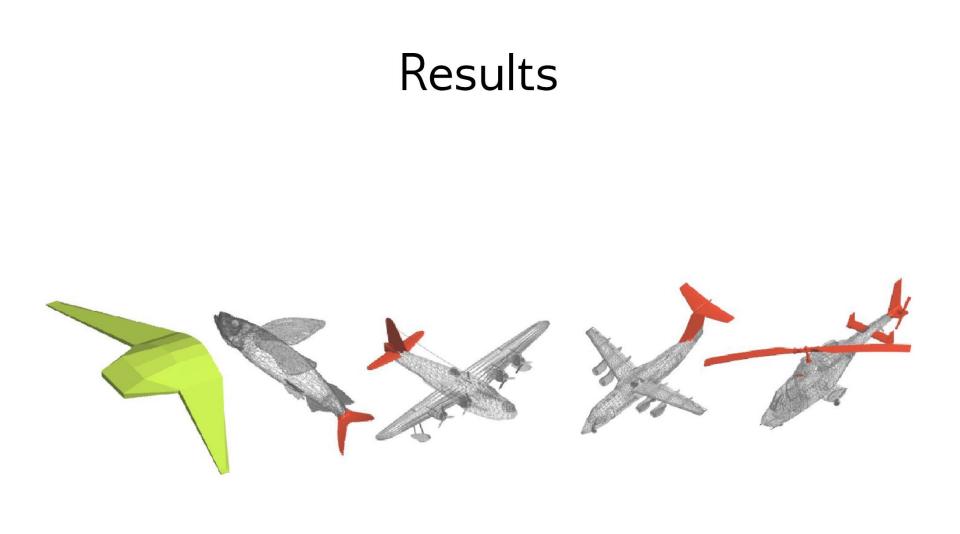
Segmentation

- Prior segmentation of database models based on shape diameter and approximate convexity
- No need for compatible segmentation of query

Diversification

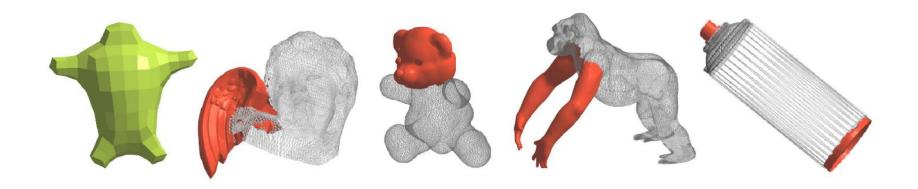
- **Problem:** Large databases contain many nearidentical shapes
 - If one is a good match, so are its twins
 - Most of the top-ranked options look the same
- Maximal Marginal Relevance (MMR) breaks up long runs of similar results in a ranked list [Carbonell and Goldstein '98]

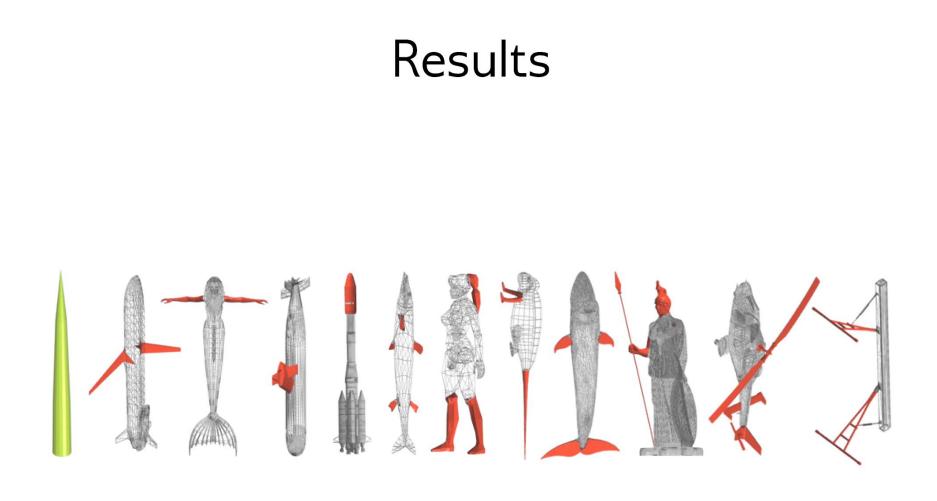
Results



Results

Results





Results: Creatures

Results: Aircraft

Exploratory Modeling with Collaborative Design Spaces [Talton et al. 09]

91 dimension tree-space [Weber and Penn 95]

130 dimension human-space [Allen et al. 03]

Density Estimation from data

$$\hat{f}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} K_i(\mathbf{x})$$
$$K_i(\mathbf{x}) = \mathcal{G}(\mathbf{x}; \mathbf{x}_i, \mathbf{\Sigma}_i) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \mathbf{x}_i)\right]$$

 \mathcal{N}

$$\Sigma_{s,t} = \sum_{i=1}^{N} \omega_i \left[(\mathbf{x}_i)_s - (\mathbf{x})_s \right] \left[(\mathbf{x}_i)_t - (\mathbf{x})_t \right]$$
$$\omega_i = \frac{\mathcal{G}(\mathbf{x}_i; \mathbf{x}, \alpha \| \mathbf{x} - \mathbf{x}_{d(k)} \|^2 \mathbf{I})}{\sum_{j=1}^{N} \mathcal{G}(\mathbf{x}_j; \mathbf{x}, \alpha \| \mathbf{x} - \mathbf{x}_{d(k)} \|^2 \mathbf{I})}$$

Sampling

Local sampling

$$rac{1}{arphi} \, \mathcal{G}ig(\mathbf{x};\mathbf{x}_0, \mathbf{\Sigma}_0ig) \cdot \hat{f}(\mathbf{x})$$

Constrained sampling

$$\hat{f}(\mathbf{x}_{1} | \mathbf{x}_{2}) = \frac{1}{N} \sum_{i=1}^{N} K_{i}(\mathbf{x}_{1} | \mathbf{x}_{2}) = \frac{1}{N} \sum_{i=1}^{N} G(\mathbf{x}_{1}; \mathbf{x}_{i_{1}|2}, \mathbf{\Sigma}_{i_{1}|2})$$
$$\mathbf{x}_{i_{1}|2} = \mathbf{x}_{i_{1}} + \mathbf{\Sigma}_{i_{12}} \mathbf{\Sigma}_{i_{22}}^{-1}(\mathbf{x}_{2} - \mathbf{x}_{i_{2}})$$
$$\mathbf{\Sigma}_{i_{1}|2} = \mathbf{\Sigma}_{i_{11}} - \mathbf{\Sigma}_{i_{12}} \mathbf{\Sigma}_{i_{22}}^{-1} \mathbf{\Sigma}_{i_{21}}.$$



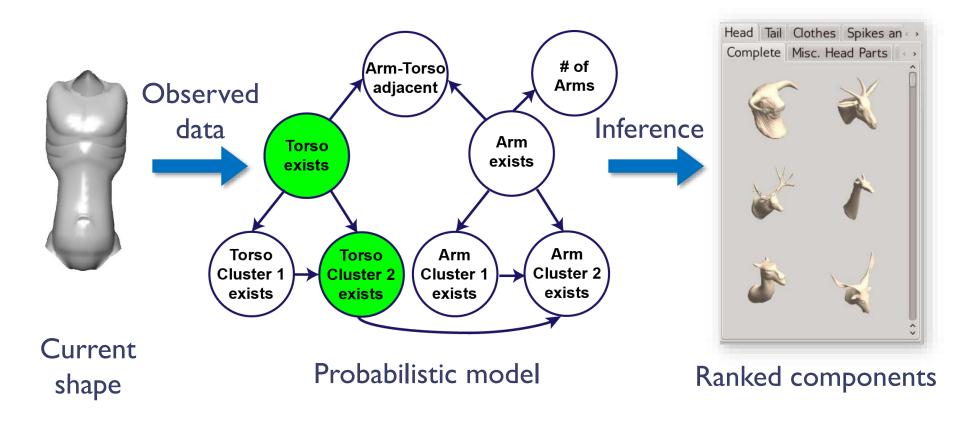
Figure 5: (*Left*) *Typical points sampled from the computed density functions of trees (top) and humans (bottom). (Right) Typical points chosen uniformly at random from these parametric spaces.*

Exploratory Modeling with Collaborative Design Spaces

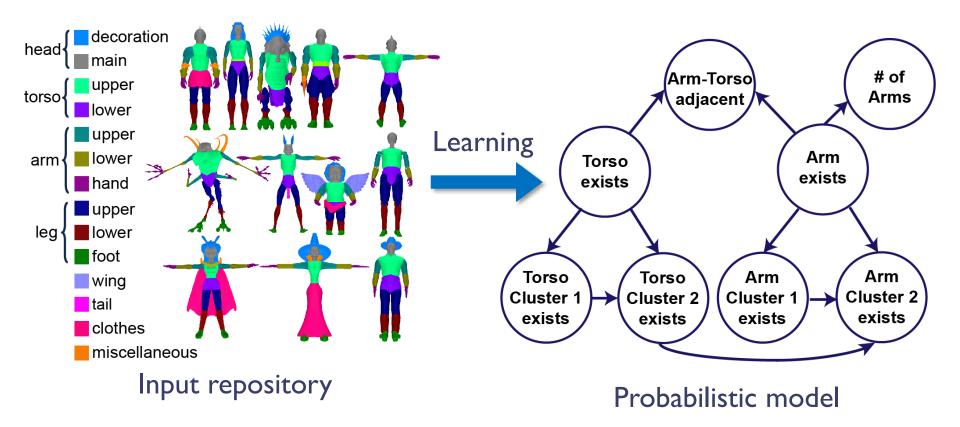
Jerry O. Talton Daniel Gibson Lingfeng Yang Pat Hanrahan Vladlen Koltun

Stanford University

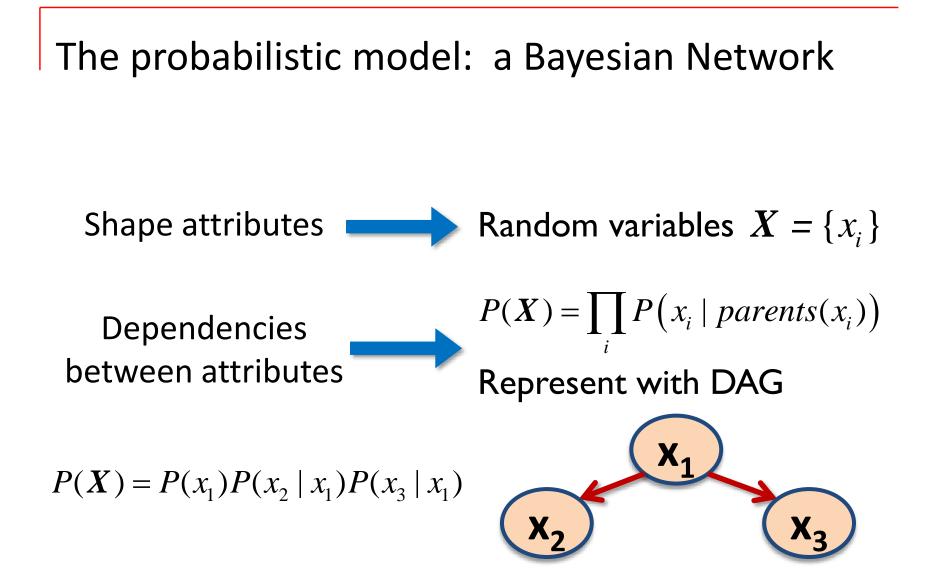
Probabilistic model for presenting relevant components



The model is learned from an input shape repository

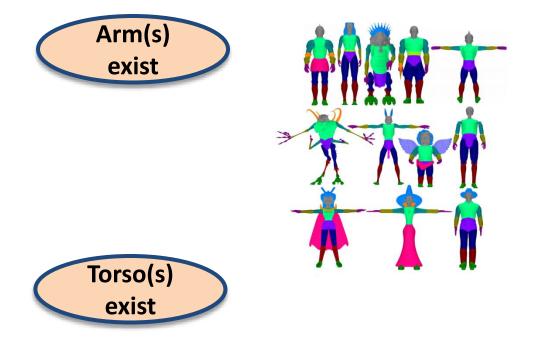


Formulation



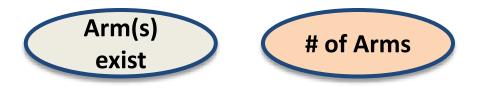
Random variables E_l

Existence of component from category l



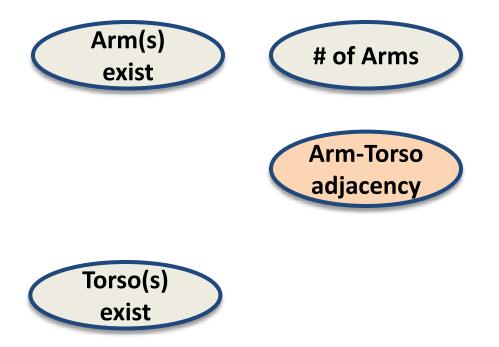
Random variables N_l

Number of components from category l



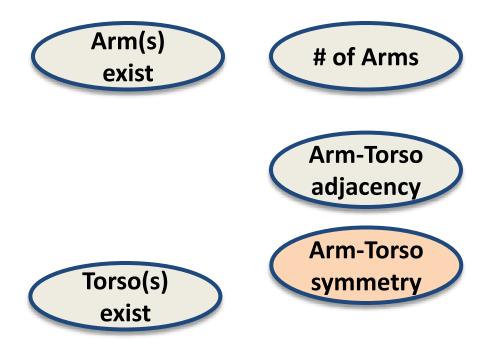
Random variables $A_{l,l'}$

Adjacency between components from categories *l* and *l*'



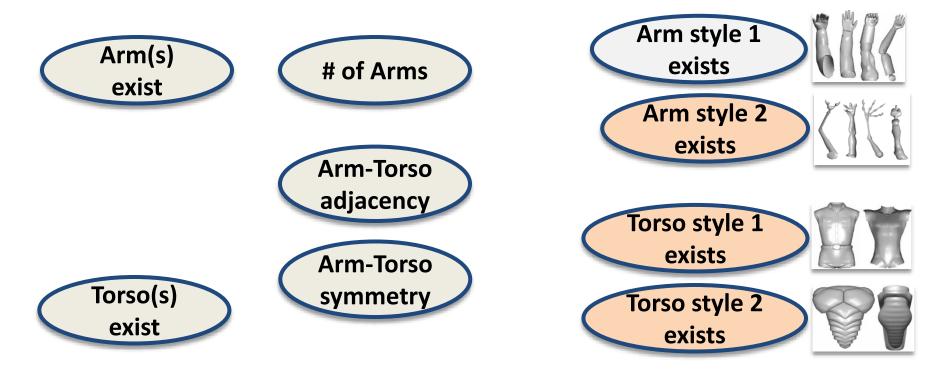
Random variables $R_{l,l'}$

Symmetry relation between components from categories l and l'

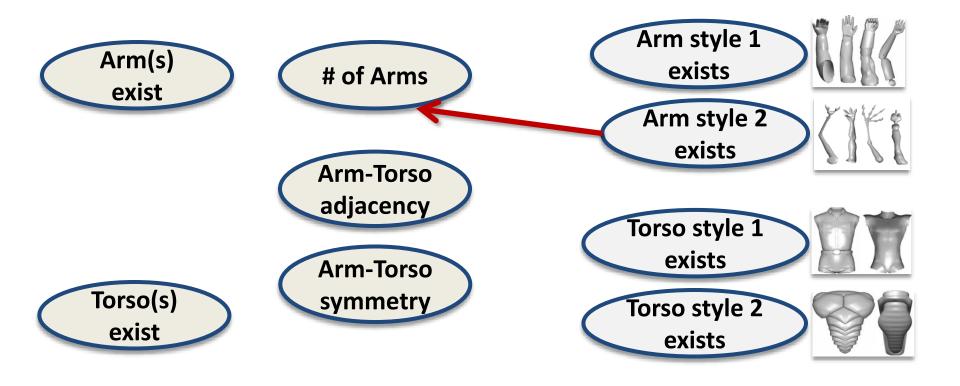


Random variables $S_{s,l}$

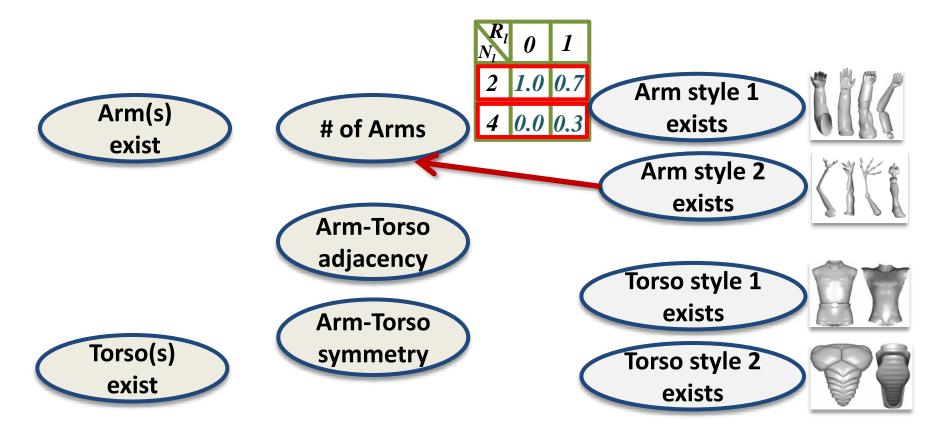
Existence of component from style cluster *s* of category *l*



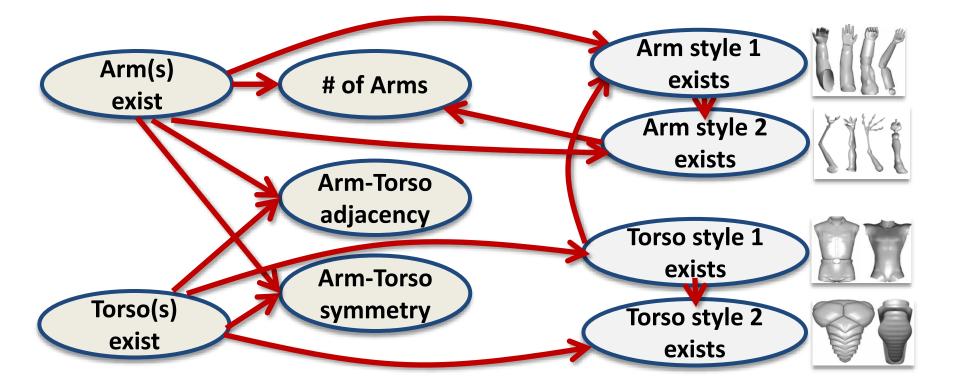
Dependencies between random variables



Conditional probability tables

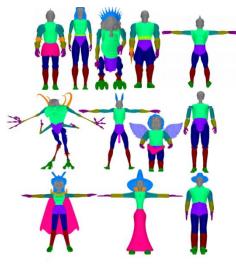


Dependencies between random variables



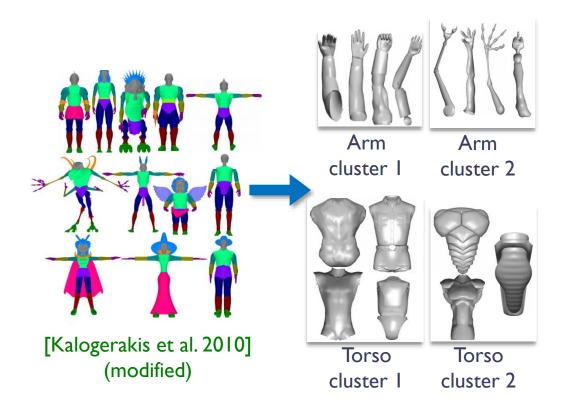
Learning

Learning the CPTs and the graph structure

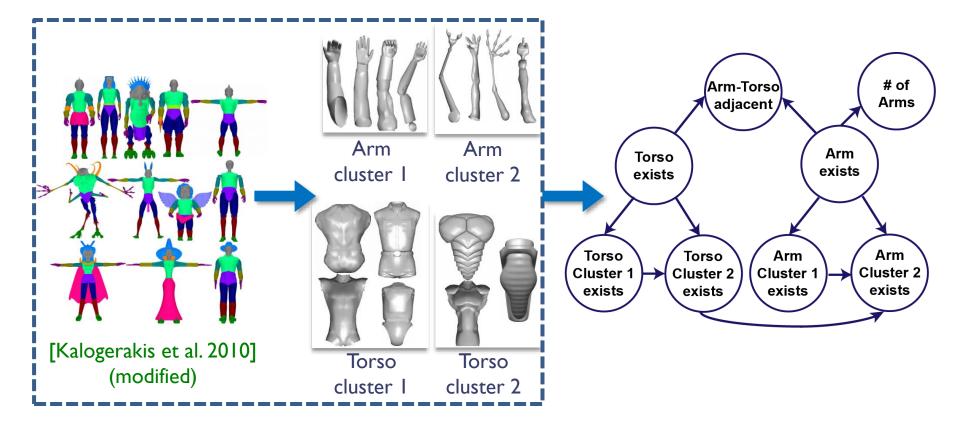


[Kalogerakis et al. 2010] (modified)

Learning the CPTs and the graph structure



Learning the CPTs and the graph structure



Structure and parameter learning

Maximize Bayesian Information Criterion

$$BIC = \log P(D \mid G, \mathbf{\theta}) - \frac{1}{2} v \log n$$

Structure and parameter learning

Maximize Bayesian Information Criterion

$$BIC = \log P(D | G, \theta) - \frac{1}{2} v \log n$$

Likelihood term
D: training data

- G: graph structure
- θ : CPT entries

Structure and parameter learning

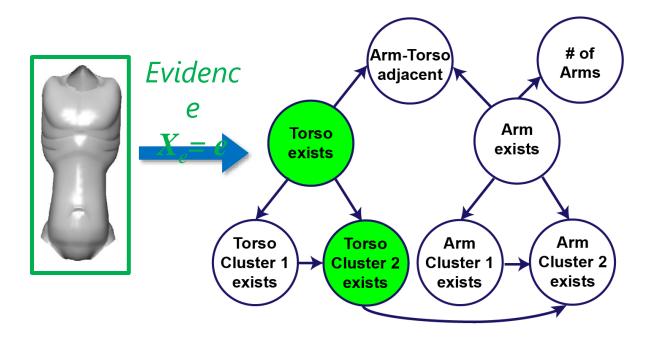
Maximize Bayesian Information Criterion

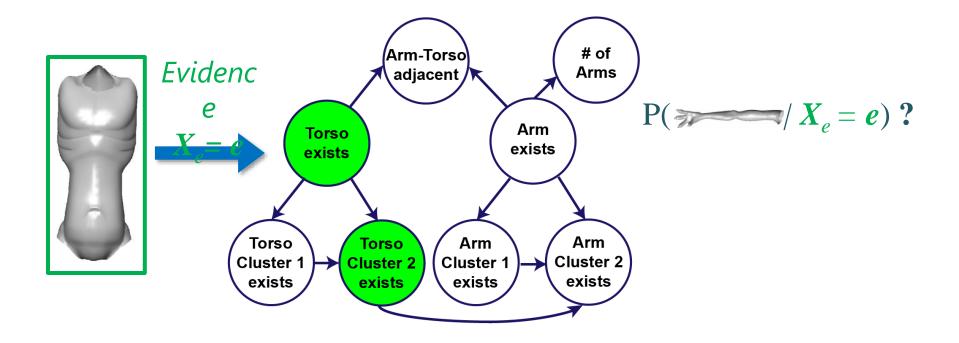
$$BIC = \log P(D | G, \theta) - \frac{1}{2} v \log n$$

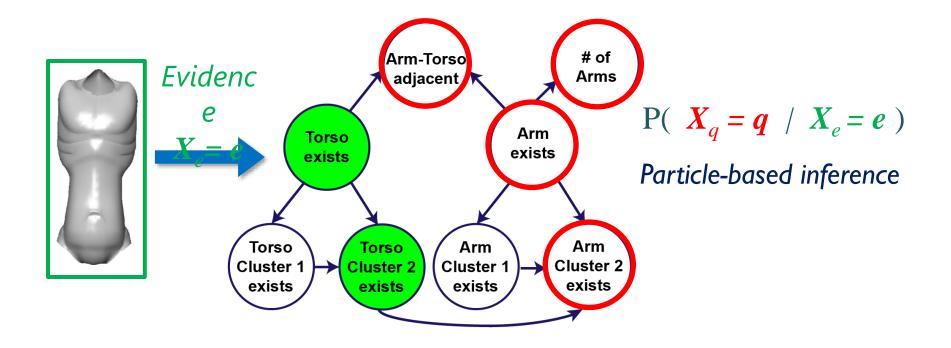
Penalize model complexity

- v: # of independent CPT entries
- *n*: # of training shapes

Optimized using local search heuristics (adding, removing and flipping edges)







Examples of shapes created by users

