Data-Driven Geometry Processing 3D Deep Learning II

Qixing Huang March 28th 2017

3D Surface Representations

Matching in Embedding Spaces [CVPR' 16]

Existing methods usually follow a two-step approach (e.g., SIFT flow)

Local descriptor computation

- Dense pixel labeling via MRF inference
 - Preserve descriptors
 - Preserve smoothness

Issues of such two-step approach

Partial similarity

Inefficient when matching multiple objects

Embedding --- establishing correspondences in the embedding space

Spectral embedding [Liu et al. 06]

Sensitive to 1) partial similarity, and 2) geometric and topological changes

Properties of the desired embedding space

Corresponding points are matched in the embedding space

Embedding preserves continuity

The benefits of object embedding

- Correspondences become nearest neighbor query
 - Efficiency for multiple object matching
 O(n) embeddings + O(n²) queries
 - Partial similarity

Fuzzy correspondences

The biggest message of deep neural networks

• Approximate any function given sufficient data

Focus on depth images

• Scanning devices generate depth images

- Complete shape embedding are aggregated from depth image embeddings
 - 3D convolution is not ready yet

Architecture

	0	1	2	3	4	5	6	7	8	9	10
layer	image	conv	max	conv	max	$2 \times conv$	conv	max	$2 \times conv$	int	conv
filter-stride	-	11-4	3-2	5-1	3-2	3-1	3-1	3-2	1-1	-	3-1
channel	1	96	96	256	256	384	256	256	4096	4096	16
activation	-	relu	lrn	relu	lrn	relu	relu	idn	relu	idn	relu
size	512	128	64	64	32	32	32	16	16	128	512
num	1	1	4	4	16	16	16	64	64	1	1

The input is a depth image

The output is a per-pixel descriptor (dim 16)

Convolution + Deconvolution

Training data

• 4 animation sequences (dense correspondences)

• 2500 shapes from Yobi3D (33 feature points)

Direct versus Indirect

• Descriptor learning (e.g., triplet loss [Schroff et al. 15])

 Classification loss (e.g., the second last layer of AlexNet)

We employ a classification loss

Classes are defined in terms of super-patches

We use multiple segmentations --- so the probability of two points belong to the same segment is related to their distance

We employ the classification loss

$$\{\mathbf{w}_i^{\star}\}, \mathbf{w}^{\star} = \operatorname*{arg\,min}_{\{\mathbf{w}_i\}, \mathbf{w}} \sum_{i=1}^M l(\mathbf{w}_i, \mathbf{w})$$

Evaluation on the FAUST dataset

Cumulative error distribution, intra-subject

Evaluation on the FAUST dataset

Cumulative error distribution, inter-subject

Multi-view 3D Models from Single Images With a Convolutional Network [ECCV' 16]

Fig. 5. Depth map predictions (top row) and the corresponding ground truth (bottom row). The network correctly estimates the shape.

Multi-view 3D Models from Single Images with a Convolutional Network

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

Department of Computer Science University of Freiburg {tatarchm, dosovits, brox}@cs.uni-freiburg.de

ECCV 2016

Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision [Yan et al. 16]

Figure 1: (a) Understanding 3D object from learning agent's perspective; (b) Single-view 3D volume reconstruction with perspective transformation. (c) Illustration of perspective projection. The minimum and maximum disparity in the screen coordinates are denoted as d_{min} and d_{max} .

$$\mathcal{L}_{vol}(I^{(k)}) = ||f(I^{(k)}) - \mathbf{V}||_2^2$$
$$\mathcal{L}_{proj}(I^{(k)}) = \sum_{j=1}^n \mathcal{L}_{proj}^{(j)}(I^{(k)}; S^{(j)}, \alpha^{(j)}) = \frac{1}{n} \sum_{j=1}^n ||P(f(I^{(k)}); \alpha^{(j)}) - S^{(j)}||_2^2$$

$$\mathcal{L}_{comb}(I^{(k)}) = \lambda_{proj} \mathcal{L}_{proj}(I^{(k)}) + \lambda_{vol} \mathcal{L}_{vol}(I^{(k)})$$

Encoder

Decoder

Learning Semantic Deformation Flows with 3D Convolutional Networks [Yumer and Mitra 2016]

Semantic Scene Completion from a Single Depth Image [Song et al. 17]

A Point Set Generation Network for 3D Object Reconstruction from a Single Image [Fan, Su, Guibas, 2017]

Input

Reconstructed 3D point cloud

Network Architecture

Distance Metrics

• Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

• Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

$$\phi: S_1 \to S_2 \text{ is a bijection}$$

Visual results

CD (Left) versus EMD (Right)

GRASS: Generative Recursive Autoencoders for Shape Structures [Li, Xu, Chaudhuri, Yumer, Zhang, Guibas, SIGGRAPH' 17]

Huge Variety of (Attributed) Graphs

 Arbitrary numbers/types of vertices (parts), arbitrary numbers of connections (adjacencies/symmetries)

• For linear graphs (chains) of arbitrary length, we can use a recurrent neural network (RNN/LSTM)

Key Insight

 Edges of a graph can be collapsed sequentially to yield a hierarchical structure

 Looks like a parse tree for a sentence!

Recursive Neural Network (RvNN)

- Repeatedly merge two nodes into one
- Each node has an n-D feature vector, computed recursively

$$p = f(W[c_1;c_2] + b)$$

Socher et al. 2011

Recursively Merging Parts

Different types of merges, varying cardinalities!

Training with Reconstruction Loss

 Learn weights from a variety of randomly sampled merge orders for each box structure

Results: Shape interpolation

Discussion