CS 395T Lecture 7: Two-View Geometry

Qixing Huang September 24th 2018

The problem

 \mathbf{x}_2

Given two views of the scene recover the unknown camera displacement and 3D scene structure

https://www.tripadvisor.com/Attraction_Review-g187147-d188679-Reviews-Notre_Dame_Cathedral-Paris_Ile_de_France.html https://commons.wikimedia.org/wiki/File:Notre_Dame_de_Paris_Cathédrale_Notre-Dame_de_Paris_(6094168584).jpg

Pinhole camera model-review

- 3D points $\mathbf{X} = [X, Y, Z, W]^T \in \Re^4$, (W = 1)
- Image points $\mathbf{x} = [x, y, z]^T \in \Re^3$, (z = 1)
- Perspective projection $\lambda_{\mathbf{X}} = \mathbf{X}$

$$\lambda = Z \ x = \frac{X}{Z} \ y = \frac{Y}{Z}$$

- Rigid body motion $\Pi = [R, T] \in \Re^{3 \times 4}$
- Rigid body motion + Projective projection

$$\lambda \mathbf{x} = \mathbf{\Pi} \mathbf{X} = [R, T] \mathbf{X}$$

Two views

 $\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + T$

Think about how you would solve this problem

Epipolar geometry $\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + T$ Invage /correspondences \mathbf{X}_1 \mathbf{x}_2 (R,T)

• Multiply both sides by the cross product of T [Longuet-Higgins '81]:

Essential matrix

Epipolar geometry

Properties (pay attention to geometric interpretations):

 $l_1 \sim E^T \mathbf{x}_2 \qquad l_i^T \mathbf{x}_i = 0 \qquad l_2 \sim E \mathbf{x}_1$ $E \mathbf{e}_1 = 0 \qquad l_i^T \mathbf{e}_i = 0 \qquad \mathbf{e}_2 E^T = 0$

Characterization of the Essential Matrix

$$\mathbf{x}_2^T \widehat{T} R \mathbf{x}_1 = \mathbf{0}$$

• Essential matrix $E = \hat{T}R$ Special 3x3 matrix

$$\mathbf{x}_{2}^{T} \begin{bmatrix} e_{1} & e_{2} & e_{2} \\ e_{4} & e_{5} & e_{6} \\ e_{7} & e_{8} & e_{9} \end{bmatrix} \mathbf{x}_{1} = \mathbf{0}$$

Theorem 5.1 (Characterization of the essential matrix). A nonzero matrix $E \in \mathbb{R}^{3\times 3}$ is an essential matrix if and only if E has a singular value decomposition (SVD): $E = U\Sigma V^T$ with

$$\Sigma = diag\{\sigma, \sigma, 0\}$$

for some $\sigma \in \mathbb{R}_+$ and $U, V \in SO(3)$.

Characterization of the Essential Matrix

- Space of all Essential Matrices is 5 dimensional
 - 3 Degrees of Freedom Rotation
 - 2 Degrees of Freedom Translation (up to scale!)
- Decompose essential matrix into R, T

$$\mathbf{x}_2^T \widehat{T} R \mathbf{x}_1 = \mathbf{0}$$

 Given feature correspondences, a straightforward approach is to find such Rotation and Translation that the epipolar error is minimized – nonlinear optimization

$$min_E \sum_{j=1}^n \mathbf{x}_2^{jT} E \mathbf{x}_1^j$$

Pose recovery from the Essential Matrix

Essential matrix

$$E = \widehat{T}R$$

Theorem 5.2 (Pose recovery from the essential matrix). There exist exactly two relative poses (R, T) with $R \in SO(3)$ and $T \in \mathbb{R}^3$ corresponding to a non-zero essential matrix $E = U\Sigma V^T$

$$(\widehat{T}_1, R_1) = (UR_Z(+\frac{\pi}{2})\Sigma U^T, UR_Z^T(+\frac{\pi}{2})V^T), (\widehat{T}_2, R_2) = (UR_Z(-\frac{\pi}{2})\Sigma U^T, UR_Z^T(-\frac{\pi}{2})V^T).$$

$$R_Z\left(+\frac{\pi}{2}\right) = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Estimating essential matrix

- The eight-point linear constraint
 - Essential vector

$$E = \begin{bmatrix} e_1 & e_2 & e_3 \\ e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 \end{bmatrix} \longrightarrow \mathbf{e} = [e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9]^T \in \mathbb{R}^9$$

- Vectorized correspondence

$$\mathbf{x}_{1} = [x_{1}, y_{1}, z_{1}]^{T} \in \mathbb{R}^{3} \text{ and } \mathbf{x}_{2} = [x_{2}, y_{2}, z_{2}]^{T} \in \mathbb{R}^{3}$$
$$\mathbf{\downarrow}$$
$$\mathbf{a} = [x_{2}x_{1}, x_{2}y_{1}, x_{2}z_{1}, y_{2}x_{1}, y_{2}y_{1}, y_{2}z_{1}, z_{2}x_{1}, z_{2}y_{1}, z_{2}z_{1}]^{T} \in \mathbb{R}^{9}$$

Linear constraint

$$\mathbf{a}^T \mathbf{e} = 0$$

Estimating essential matrix

- The eight-point linear constraint
 - Multiple correspondences

 $A\mathbf{e}=0.$

- More than 8 ideal correspondences
- Due to noise, choose the eigenvector of A^TA that correspondences to the smallest eigenvalue:

$$\min_{\mathbf{e}} \frac{\|A\mathbf{e}\|^2}{\|\mathbf{e}\|^2}$$

Projection to the space of essential matrices

Theorem 5.3 (Projection onto the essential space). Given a real matrix $F \in \mathbb{R}^{3\times3}$ with a SVD: $F = U \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3\}V^T$ with $U, V \in SO(3), \lambda_1 \geq \lambda_2 \geq \lambda_3$, then the essential matrix $E \in \mathcal{E}$ which minimizes the error $||E - F||_f^2$ is given by $E = U \operatorname{diag}\{\sigma, \sigma, 0\}V^T$ with $\sigma = (\lambda_1 + \lambda_2)/2$. The subscript f indicates the Frobenius norm.

There is a general theorem that is widely used in low-rank matrix recovery

$$\min_{X, \operatorname{rank}(X)=r} \|A - X\|_{\mathcal{F}}^2$$
$$X = U_r \Sigma_r V_r^T$$

The eight-point method

Algorithm 5.1 (The eight-point algorithm). For a given set of image correspondences $(\mathbf{x}_1^j, \mathbf{x}_2^j)$, j = 1, ..., n $(n \ge 8)$, this algorithm finds $(R, T) \in SE(3)$ which solves

$$\mathbf{x}_2^{jT}\widehat{T}R\mathbf{x}_1^j = 0, \quad j = 1, \dots, n.$$

1. Compute a first approximation of the essential matrix Construct the $A \in \mathbb{R}^{n \times 9}$ from correspondences \mathbf{x}_1^j and \mathbf{x}_2^j as in (6.21), namely.

 $\mathbf{a}^{j} = [x_{2}^{j}x_{1}^{j}, x_{2}^{j}y_{1}^{j}, x_{2}^{j}z_{1}^{j}, y_{2}^{j}x_{1}^{j}, y_{2}^{j}y_{1}^{j}, y_{2}^{j}z_{1}^{j}, z_{2}^{j}x_{1}^{j}, z_{2}^{j}y_{1}^{j}, z_{2}^{j}z_{1}^{j}]^{T} \in \mathbb{R}^{9}.$

Find the vector $\mathbf{e} \in \mathbb{R}^9$ of unit length such that $||A\mathbf{e}||$ is minimized as follows: compute the SVD $A = U_A \Sigma_A V_A^T$ and define \mathbf{e} to be the 9th column of V_A . Rearrange the 9 elements of \mathbf{e} into a square 3×3 matrix E as in (5.8). Note that this matrix will in general not be an essential matrix.

The eight-point method

2. Project onto the essential space

Compute the Singular Value Decomposition of the matrix E recovered from data to be

$$E = U diag\{\sigma_1, \sigma_2, \sigma_3\} V^T$$

where $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq 0$ and $U, V \in SO(3)$. In general, since E may not be an essential matrix, $\sigma_1 \neq \sigma_2$ and $\sigma_3 > 0$. Compute its projection onto the essential space as $U\Sigma V^T$, where $\Sigma = diag\{1, 1, 0\}$.

3. Recover displacement from the essential matrix Define the diagonal matrix Σ to be Extract R and T from the essential matrix as follows:

$$R = UR_Z^T\left(\pm\frac{\pi}{2}\right)V^T, \quad \widehat{T} = UR_Z\left(\pm\frac{\pi}{2}\right)\Sigma U^T.$$

3D structure recovery

$$\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + \gamma T$$

• Eliminate one of the scale's

$$\lambda_1^j \widehat{\mathbf{x}_2^j} R \mathbf{x}_1^j + \gamma \widehat{\mathbf{x}_2^j} T = 0, \quad j = 1, 2, \dots, n$$

• Solve LLSE problem

$$M^{j}\overline{\lambda^{j}} \doteq \begin{bmatrix} \widehat{\mathbf{x}_{2}^{j}}R\mathbf{x}_{1}^{j}, \ \widehat{\mathbf{x}_{2}^{j}}T \end{bmatrix} \begin{bmatrix} \lambda_{1}^{j} \\ \gamma \end{bmatrix} = 0$$

If the configuration is non-critical, the Euclidean structure of then points and motion of the camera can be reconstructed up to a universal scale.

Issues to take care of

- Infinitesimal viewpoint change
- Enough parallax

$$E = 0 \Leftrightarrow T = 0$$

- Positive depth constraint
 - Four potential solutions, i.e., E and –E, and each of leads to two solutions
- General position requirement

Explicit formulation of uncertainty

Constrained optimization

$$\hat{R}, \hat{T} = \arg\min\sum_{j=1}^{n} \sum_{i=1}^{2} \|w_i^j\|_2^2$$

subject to

$$\begin{cases} \tilde{\mathbf{x}}_{i}^{j} = \mathbf{x}_{i}^{j} + w_{i}^{j}, & i = 1, 2, j = 1, \dots, n \\ \mathbf{x}_{2}^{jT} \widehat{T} R \mathbf{x}_{1}^{j} = 0, & j = 1, \dots, n \\ \mathbf{x}_{1}^{jT} e_{3} = 1, & j = 1, \dots, n \\ \mathbf{x}_{2}^{jT} e_{3} = 1, & j = 1, \dots, n \\ R \in SO(3) \\ T \in \mathbb{S}^{2} \end{cases}$$

We will talk about how to solve this later