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Three View Geometry

e Cameras P, P/, P”” such that

r=PX z'=PX z2'=P'X

e Main new result: The Trifocal Tensor
— Defined for three views
— Plays a similar role to F for two views

— Unlike F, trifocal tensor also relates lines in three

views
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Lines: r=0 l=xx2 xz=I1x



Tri-linear Relation

* Back-projected lines passing through corresponding points
should all intersect
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33 coefficients: Tfifocal Tensor




Trifocal Tensor

* Tri-linear relation can be represented efficiently as tensor.
Easy to express line and point coincidence relations

— Line-line-line correspondence

VT, To, T3 =17 or U [T, Ty, T3]l (Ix) = OF




Trifocal Tensor

* Tri-linear relation can be represented efficiently as tensor.
Easy to express line and point coincidence relations

— Point-line-line correspondence

1T ' 1 / 1
l (E x'T;)l" =0 for a correspondence x <=1 <=1
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Trifocal Tensor

* Tri-linear relation can be represented efficiently as tensor.
Easy to express line and point coincidence relations

— Point-line-point correspondence

/T /
E x;T;) (2" x) = — 0! for a correspondence x <=1 «<— "

Ne




Trifocal Tensor

* Tri-linear relation can be represented efficiently as tensor.
Easy to express line and point coincidence relations

— Point-point-point correspondence

l/T(Z 2 T;)(x" <) = 033




More Views?



Problem Statement-Structure and
Motion Estimation

* Given: n matching image points :B;' over m views
* Find: the cameras P* and the 3D points X jsuch that z! = P'X,

Z dePZ

j €points 1Eviews

Minimizing reprojection error corresponds
to a maximum likelihood estimation (MLE) under
the assumption of zero mean Gaussian noise



Factorization



Factorization

e Factorize observations in structure of the
scene and motion/calibration of the camera

e Use all points in all images at the same time
— Projective factorization



Perspective factorization

* The camera equations

)\ijmij:Pina i:1,°",m,j:1,"',n.

* For a fixed image i can be written in matrix

form as
x;\;, = P'X

where x; = [x;1, - ,xim], X =[X1, -, X ]

A; = diag(Ni1, - 5 Aim).



Perspective factorization

* All equations can be collected for all j as

x=PX
where
[ A - P,
r— T2 A2 . P- P,
| Lnn _ P

In these formulas x are known, but A,, P and X are unknown

Observe that PX is a product of a 3mx4 matrix and a 4xn
matrix, i.e., it is a rank-4 matrix



Perspective factorization algorithm

 Assume that A; are known, then PX is known
* Use the singular value decomposition

PX =UxV"
* Inthe noise-free case

Y. = diag(o1,02,03,04,---,0)

and a reconstruction can be obtained by setting:

P = the first four columns of UX.
X = the first four rows of V'



Iterative perspective factorization

* When are unknown the following algorithm can be used:
— 1. Set );; = 1 (affine approximation)
— 2. Factorize PX and obtain an estimate of P and X
* If 05 is sufficiently small then STOP

— 3. Use x, P and X to estimate A, from the camera equations
(linearly)

— 4.Go to 2.

Questions: Does it converge?
Does it converge to the global optimal,
assuming that all measurements are clean



Bundle Adjustment

Global refinement of
recovered structure and motion



Bundle adjustment —
refining structure and motion

* Minimize reprojection error

Z ZdeZ

3 €points 1€views

e Maximum likelihood estimation

(if error zero-mean Gaussian noise)

* Huge problem but can be solved efficiently

(Bundle adjustment)



Bundle adjustment

* Developed in photogrammetry in 50’s




Non-linear least squares

* Linear approximation of residual e, —JA
e Allows quadratic approximation of sum-of-squares
(e, —JA) (e, —JA)
 Minimization corresponds to finding zeros of
derivatives

2J'JA-2]"¢e, =0
= A={1"3)'17e,
N

* Levenberg-Marquardt: extra-term to deal with singular
N (decrease/increase lambda if success/failure to

descent)
N'=J"J + Adiag(J'))



