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Motivation

= Align two shapes/scans
given initial guess for

relative transform

Slide credit: Niloy Mitra and Szymon Rusinkiewicz



Task classification



Three axis

b6

Pairwise vs multiple

Global vs local

Fully overlap vs partial overlap



Outline

* Pairwise registration
— Full overlap
— Partial overlap
— Global methods
— Learning-based

 Multiple registration
— Joint pairwise registration
— Simultaneous registration and reconstruction



ICP for pairwise registration

* |f correct correspondences are known, can
find correct relative rotation/translation

iﬁ - /\\\\f =

Construct error function:
b= Z(Rpi +t—q)°
i

Minimize (closed form solution in [Horn 87])

Slide credit: Niloy Mitra and Szymon Rusinkiewicz



ICP for pairwise registration

* Assume: Closest points as corresponding

P — C(sz)

N~ A

Slide credit: Niloy Mitra and Szymon Rusinkiewicz




ICP for pairwise registration

e ...and iterate to find alignment
* |terative Closest Points (ICP) [Besl and McKay 92]
e Converges if starting poses are close enough

Aﬁ_’ /\\\/—-

Slide credit: Niloy Mitra and Szymon Rusinkiewicz



From the optimization perspective

* The registration problem shall be formulated in a least
squares sense as follows. Compute the rigid body
transformation a * , which minimizes

Fla) = ZIF{H(_K?:}. D)

[

Here, d*(a(x!), ®) denotes the squared distance of a(x}) to ®

* |ICP is alternating minimization

— Always reduces the objective function
— Linear convergence



Reducing objective value does not
guarantee convergence

e f(x) =x*x

e x.=3+1/i

/




Gauss-Newton optimization

e Review of Gauss-Newton method

Given m functions r = (ry, ..., r,) (often called residuals) of n variables B = (84, ..., B,), with m 2 n, the
Gauss—Newton algorithm iteratively finds the value of the variables that minimizes the sum of squares[S]

T
S(B) = ri(B).
i=1
Starting with an initial guess [3{0} for the minimum, the method proceeds by the iterations
ﬁfs_l) = ﬁ{:s} - (JrTJr)_lJrTr (ﬁ{s)) 3

where, if r and B are column vectors, the entries of the Jacobian matrix are

or; (8%
(Jr)ij — T (:SB? ):

and the symbol T denotes the matrix transpose.

https://en.wikipedia.org/wiki/Gauss-Newton_algorithm



Gauss-Newton optimization

e Review of Gauss-Newton method

The Gauss—Newton algorithm can be derived by linearly approximating the vector of functions r;. Using
Taylor's theorem, we can write at every iteration:

x(8) ~r (89)) + 3. (BY) A
with A = B — ,3(“"}. The task of finding A minimizing the sum of squares of the right-hand side; i.e.,
2
min [ (8) +3: (8) A,

is a linear least-squares problem, which can be solved explicitly, yielding the normal equations in the
algorithm.

https://en.wikipedia.org/wiki/Gauss-Newton_algorithm



Convergence rate of Gauss-Newton method

* Quasi-quadratic convergence

|@isr - 2% = O(F(@*)llwx - 21| + e - 2717

Error of at the next iteration N

Error of the current iteration

Residual of the optimal solution



Point-2-plane distance

* Gauss-Newton leads to the following optimization problem
min Z[l’lz . (E+ C X X?;) —+ dz]Q

where c gives a linear parameterization of SO(3)

Using point-to-plane distance instead of point-to-point

allows flat regions slide along each other
[Chen and Medioni 91]



Squared distance function

2 2
——— x5 + 13

Geometry of the Squared Distance Function to Curves and Surfaces. Helmut Pottmann and Michael Hofer.



Practical considerations

* Nearest neighbor computation (Kdtree)

we

F E (66, 85) F (85, 90)




Squared distance field

[Pottmann et al. 06]
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Stable Sampling [Gelfand et al. 2003]

e Select samples that constrain all degrees of freedom
of the rigid-body transformation

TINMIIT T

Uniform Sampling Stable Sampling




Stable Sampling [Gelfand et al. 2003]
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Partial Overlaps



Registration under robust functions

* Use arobust norm under the point-2-plane distance metric

m1an(|(Rp£ +1 - f;,) n;|)

p1(1) = 1] p2(t) = 1°

1) =
pGM() O'2+f2



Optimization

 Still alternate between optimizing the
correspondences and optimizing the transformation

* Optimization strategy |: Gauss-Newton optimization
* Optimization strategy Il: reweighted least squares

mme [(Rp; +t — i) n;i)?

where

e = p(|(Rpi +t — f) nil)
" |(Rpi+t - fi)Tn;|?




Mean versus Median

median mean

N
min Z (x —xi)?
X
i=1

* Mean

* Median N
min Z X — x;|
X
i=1



Median computation

* Weighted average

N N
min E wilx = x;]? x* = Z WX
X :
=1

* Weighting
Wi = 1/|)ij‘r — X




Bi-directional pruning
[Mitra et al. 05]

high

low
input data warped model



Efficient variants of ICP Registration

Selection of points

Matching points

Weighting of pairs

Rejecting pairs

Error Metric and

Minimization

Efficient Variants of the ICP Algo

Szymon Rusinkiewicz

Mare

evoy

Stanford University

Abstract

The ICP (lterative Clasest Poing) algorithm is widely wsed for ge-
oumetric aligrment of three-dimensional models when an iniial
extimate of the relarive pece is known. Many variens of 1CP have
been proposed, affecting all phases of the algorithm from the se-
lection amd matcking of points To the minimization srategy. We
ennmerate and clossify many of these variants, and evalinte their
effect on the speed with which the cornect aligmment i reached.
In onder 1o improve comergence for rearly-fo meshes with small

Jeatures, such av inscribed surfoces, we introduce a new variant

Based on uniform sampling of the space of normals. We conclude
by proposing o combination of JOF variants optimized for high
speed We demonstrate an implementation that is able 1o align
two range images in a few tens of milliseconds, assuming
initial guess. This i i i
3D model acquisition and model-based tracking

1 Introduction — Taxonomy of ICP Variants

The ICP {originally Iterative Closest Point, though lierative Corre-
sponding Point is perhaps a better expansion for the abbreviation)
algorithm has become the dominant method for aligning three-
dimensional models based purely on the geometry, and sometirnes.
coloe, of the meshes. The algorithm is widely used for registering
the outputs of 3D scanners, which typically ealy scan an objeet
from one direction af a time. ICP starts with two meshes and
an initial guess for their relative body transform, and itera-
tively refines the transform by n.'p\..:hxlh enerating pairs of cor-
responding points on the mseshes and minmizing an error metric.
L.er.umbth initial alignment may be done by a variety of meth-
such as tracking scanmer position, identification and md.\.a-

ing of surface features [Faugeras 8, Stein 92, “spin-image" sur-
face signatures [Johnson 97a], computing principal axes of scars.
[Dorai 97], exhanstive search for coeresponding points [Chen 98,
Chen 99], or user input. In this paper, we assume that a rough ini-
tial .nhbnm..m is always available. In addition, we focus only on
aligning a single pair of meshes, and do not address the glohal reg-
istrationt peoblem [Bergevin 96, Stoddart 96, Pulli 97, Pulli 99].

Sinee the introduction of ICP by Chen and Medioni [Chen 91]
and Besl and McKay [Bes] 92), many variants have been intro-
duced on the basic [CP concepl. We may elassify these variants
as affecting one of six stages of the algorithm:

Selection of some set of points in one or both meshes.

. Matching these points 1o samples in the other mesh.
. Weighting the corresponding pairs appropriate

PR

. Rejecting centain pairs based on looking at each pair indi-
vidually or considering the entire set of pairs.

Assigning an error mel
6 M
In this paper, we will look at variants in each of these six cat-
egories, and examine their effects on the performance of ICP. Al-
though our main focus is on the speed of comvergence, we also

¢ basied om the point pairs.

mizing the error metric.

consider the accuracy of the final answer and the ability of ICP 1o

sach the correet solution given “difficult” geometry. Our conspar-
1s0ns suggest a combination of ICP variants that is able o align a
pair of meshes in a few tens of milliseconds, significanly faster
than most commonly-used ICP systems. The availsbility of such
a real-time ICP algorithm may enable significant new applications
in model-based tracking and 3D scanning.

In this paper, we first present the methodology used for com-
paring ICP variants, and introduce a number of test scenes used
throughout the paper. Next, we summarize several ICP variants in
each of the shove six categories, and compare their convergence
performance. As part of the comparison, we introduce the con-
cept of normal-space-directed sampling, and show that it improves
convergence in scenes involving sparse, small-scale surface fia-
tres. Fimally, we examine a combination of variants optimized

for high speed.

2 Comparison Methodology

Our goal is to compare the convergence characteristics of several
ICP variants. In order to limit the scope of the problem, and aveid
a combinatorial explosion in the number of possibilities, we adopt
the methodology of choosing a baseline combination of variants,
and examining performance as individual ICP sta i
The algorithm we will select as our haseline is essentially that of
[Pulli 99], incorporating the following features:

» Random a.lmphnb of points on both meshes.

» Matching each selected point to the closest sample in the
other mesh that has a normal within 43 degrees of the source
normal.

Uniform (constant) weighting of point pairs.

Rejection of pairs containing edge vertices, as well as a per-
centage of pairs with the largest point-to-point distances.

Point-to-plane error metric.

The elassic “select-match-minimize” iteration, rather than
some other search for the alignment transform.

We pick this algorithm because it has received extensive use in
a production environment [Levay 00], and has been found 1 be
robust for scanned data containing many kinds of surface features.

In addition, 1o ensure fair comparisons among varianis, we

make the following assumptions:

s The number of source points selected s always 2,000. Since
the meshes we will consider have 100,000 samples, this cor-
responds to a sampling rate of 1% per mesh if source points
are selected from both meshes, or 2% if points are selected
from only o mesh

Al meshes we use are simple perspective range images, as
opposed to general irregular meshes. since this enables com-
parisons between “closest point” and “projected point™ vari-
anis (see Section 3.2).

Surface normals are computed simply based on the four
nizarest neighbors in the range grid.



Global Matching



Global matching

Reassembling fractured surfaces
[Huang et al. 06]

Feature extraction + Feature matching



Global matching

Reassembling fractured surfaces
[Huang et al. 06]

Feature extraction + Feature matching Relative pose extraction



Relative poses/pair-wise matching in the
neural network era

FlowNetCorr

FlowNet: Learning Optical Flow with Convolutional Networks
[Fischer et al. 15]



Feature descriptors — Spin images

2-D points spin-image

Ap AD

2-D points spin-image

2-D points spin-image

4

https://www.ri.cmu.edu/publications/spin-images-a-representation-for-3-d-surface-matching/



Feature descriptors — integral invariants

Related to mean curvature and robust

Integral Invariants for Robust Geometry Processing. Pottmann et al., 09.



Other features

3D SIFT Patch features

A 3-Dimensional Sift Descriptor and Its Application to Action Recognition. Scovanner et al., 07. ACM MM
Salient Geometric Features for Partial Shape Matching and Similarity. Gal and Cohen-Or’ 06. ACM TOG



Global matching --- RANSAC

* How many point-pairs specify a rigid transform?
— In R%?
— In R3?
* Additional constraints?
— Distance preserving
— Stability?

NN

2




Software
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RANSAC

* Preprocessing: sample each object

* Recursion:
— Step |: Sample three (two) pairs, check distance constraints
— Step ll: Fit a rigid transform

— Step lll: Check how many point pairs agree. If above
threshold, terminates; otherwise goes to Step |

) D%




RANSAC --- facts

 Sampling
— Feature point detection

* Correspondences
— Use feature descriptors
— The candidate correspondencesm << O(n?)
— Denote the success rate P ¥4

* Basic analysis
— The probability of having a valid triplet p3
— The probability of having a valid triplet in N trials is 1-(1-p3)N



RANSAC+

 How many surfel (position + normal) correspondences specify
a rigid transform?

. | Constraints:
p P n’
1</nz ’ > 1. |lp1 — p2ll = [P} — PS5
d d =°p,

2 (R1) 2. /(ny,d) = /(n},d)
3. /(np,d) = /(nh,d')
4. /(ny,mp) = /(n,n))

t = P1tP> _ pitpo
2 2

R

[nla ny, d] _— [nlj_a n,29 d,]

Reduce the number of trials
from O(m3) to O(m?)

Success rate:



Hough transform for line fitting

* Line detection in an image
— what is the line?
— How many lines?
— Point-line associations?

* Hough Transform is a voting technique that can be used to
answer all of these questions

— Record vote for each possible line on which each edge
point lies

— Look for lines that get many votes.



Image space

—

m
Hough (parameter) space




Clustering




Rigid matching

* Rigid transform detection from feature

correspondences
A




Symmetry detection

Partial and Approximate Symmetry Detection for 3D Geometry, N. Mitra, L. Guibas, and M. Pauly,
SIGGRAPH’ 06



Spectral Approach



Distance preservation = Rigidity?

N

P ={p;} Q = {a;}

Ip; — pjll = l[¢(pi) — ¢(p;)| o(p;) =R -p; +t

det(R) = —1



Spectral approach

O: Inconsistent, 1: Consistent

Correspondences X
112 |3 |4 |5
1 1 1

1 1

Correspondences

|l | WIN|BF

\ 4

Correspondences Consistency matrix

A Spectral Technique for Correspondence Problems using Pairwise Constraints, M. Leordeanu and M. Hebert, ICCV 2005



Cligue extraction

112 |3 |4 |5 1 |3 |5 |2
1 |1 1 1 1 |1 |1 |1
2 1 1 3 |1 |1 |1
3 |1 1 1 g |1 |1 |1
permute
4 1 1 2 1
5 |1 1 1 4 1

Consistency matrix Consistency matrix



Algorithm

Step 1: Compute the maximum eigenvector v of C

e Step 2: Sort the vertices based on magnitude of v and initialize the
cluster

* Step 3: Incrementally insert vertices while checking the clique
constraint

* Step 4: Stop if the size of the cluster is small, otherwise accept the
cluster and go to Step 1



Geometric consistency
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Hybrid Method



Robust geometric matching

[Yang et al. 19]

Input:
Ccorrect
Reweighted non-linear least squares Spectral matching
Loss term: ?a;}cz w(c,d )zt e
1 Le c.c!
rre(c) = (IRp(q1) +t — p(g2)||” + | Bn(q1) — n(g2)|*) 2 . . ,
S tt =
Total objective term: SUbJEELTO ZC::CC
min r(R.D) (c) !nfiicators associated with
Rt ceC initial corres.

Can only tolerate 50% of incorrect correspondences Can tolerate more incorrect correspondences
Not a clean separation between inliers/outliers



Spectral matching + reweighted least squares

maximize Z -wq,(cj c’)afcﬂ?cf (5 — T'(R,t) (c) — T(R,t)(cl))
{z.},R,t
c,c'eC \
. 2
=1

subject to Z; Lo Correspondence pair score Regression error

ce
Optimization:
1. When R, t are fixed:

max Z (e ToTer  SUDbjECE tO Z :z;? — 1 —> Leading eigenvector computation
Le

Qeer = Wy (€, ) (8 = T(Rit) (€) = T(Rrt) ()
2. When {x_} are fixed:
. . . ! ,
min acrre(c), ac:=x. Z w~ (¢, ¢)x,
ceC c'eC

Reduces to the standard setting of reweighted non-linear least squares

Training details in the paper



Side-by-side comparison




Side-by-side comparison

Ground truth

Spectral matching



Side-by-side comparison

Spectral matching

Reweighted non-linear LS



Side-by-side comparison

Reweighted non-linear LS Spectral matching
+ Reweighted non-linear LS



Learning-based methods



Learning registration

[Wang and Solomon 19]

Dy

| DGCNN Transformer  Pointer t
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e * Transformer . -
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(a) Network architecture (b) Transformer module

Use transformers to build correspondences

Solve for the rigid transformation



From overlapping scans to non-overlapping
scans

Complete scene

Overlapping scans Small/no overlapping scans



Diverse applications

Estimated pose

+ loop closure correction

. Real pose
/
/

\
| \
|
= L;J
S TS i 25y
(a) (b)

Early detection of
loop closure

" b Pasd

Illii“““‘“lli
e = | | |
IIIIIIIIIl'l-I.

L i

/‘&\]

Reconstruction from Solving jigsaw puzzle
a few snapshots [Cho et al. 10]
[Furukawa and

Hernandez 15]




Challenges

e No or few features
to match

* Black-box deep
networks do not
work

* OQOverlapping ratios
vary

Small or No-overlaps



Human perception

Human body reconstruction from a pair of front and back scans



Key Idea: Completion + Relative pose
estimation

- -

Completion
- Module
RGB-D Scan #1
RGB-D Scan #2
Completion
Module

o —P .




Scene Completion



Combine depth/normal/color/learned
semantic class descriptors

Color

Depth

Normal

Semantic
descriptor




Scene completion from two inputs



A generic constraint

 The completed scene from each scan should contain the

other scan
SZ
S
\Constraint
S, ‘
)
Completion




Update the completed scenes using both
Input scans

— Allow the geometry of the second scan to move
when performing completion

Completion
L Transform Module
RGB-D Scan #1 Completed CubeMap #1
RGB-D Scan #2 Completed CubeMap #2 Relative Pose
— Transform Completion : -
\.’ Module




Qualitative Results --- Small overlap




Qualitative Results --- No overlap

G.T. Color Ours



Qualitative Results --- SUNCG

G.T. Scene  G.T. Color




Qualitative Results --- Matterport

G.T. Color

G.T. Scene

v
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Qualitative Results --- ScanNet




Understand the quality of the completions

Ground
Truth:

Predicted:

normal error (°)
depth error (m)

——suncg
——matterport|]
—scannet [

00

x coordinate (pixel) x coordinate (pixel)

Relative pose estimation in the presence of large outlier ratios



Representations for Completion

Cube-map Rep. Top-view Plane features

Top-view and plane features generalize better in far-away invisible regions



Representations for local registration

K b e Perpendicular

bowd Pparallel

“e---4+--o No Relation




Qualitative results

Super4PCS RobustGR ScanComplete Ours Topl Ours Top3 G.T. Scene G.T. Color



Multiple methods



Joint pairwise registration

iter 2

overlap graph

iter 3 final

Tam, Gary KL et al. 2012



Joint pairwise registration

minimize Z dz(S,-,T,-,S,-r,T,-r)
{T:} (i e
i,i’)e&
subjectto Ry =1I3,t1 = 0.

d*(Si, Ty, Sir, Tyr) +=

2
Z ((RIPU + 1t — RI’pI’_}’ - tj")T(Rf’ni’j"))
(Pijspirjr)€Ciir

Gauss-Newton method

Newton’s method



Joint pairwise registration - applications

e Surface reconstruction

* Graph/Depth-based SLAM

* Organizing shape collections




Joint pairwise registration - limitations

* Need to determine overlapping scans and
overlapping regions

— Potentially a quadratic number of pairs

* Slow convergence when there are a lot of scans



Simultaneous registration and
reconstruction



Simultaneous registration and
reconstruction

Huang et al. 2007, Huang and Anguelov 2010



Step | — Latent surface creation

* Fit planes to points associated with each cell




Step Il — Scan-surface alighment




Simultaneous registration and
reconstruction

{Risti} {(dk,nk)} =1 j

N N;
argmin ZZ( (Rip;; +ti) n,\ —dy, )
I3,

subjectto Ry =

* Fix the scans to optimize the latent surface

* Fix the latent surface to optimize the scan poses



Simultaneous registration and
reconstruction

PR >
2N A ? -
B <5 R
X g 7,
S T ™ N 7
> P & T &
N \\’\\\\\
” & W -

¢ &
of PP

|
ﬁ\g‘ ; 5 = ‘ =
§ =/ - ST = /T ”

(c) Iteration 3

1

(a) Initial Status (b) Iteration 1

Works for un-organized point sets

Efficient — no range query

(d) Iteration 10



Large-scale registration




Large-scale registration




Topics that are not covered

Non-rigid registration

— Will have a guest lecture on
this

Methods that are based on
probabilistic modeling

Other learning-based
methods
— Will talk about this later

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 7, JULY 2013

Registration of 3D Point Clouds and Meshes:
A Survey From Rigid to Non-Rigid

Gary K.L. Tam!, Zhi-Quan Cheng®, Yu-Kun Lai', Frank C. Langbein'. Yonghuai Liu®, David Marshall*,

Ralph R. Martin', Xian-Fang Sun' and Paul L. Rosin'

Abstract—3D surface registration transforms multiple 3D datasets into the same coordinate system so a5 to align overlapping
companents of these sets. Recent surveys have covered different aspects of either rigid or non-rigid registration, but seidom
discuss them as & whole. Our study serves two purposes: (i) to give a comprehensive survey of both types of registration,
focusing on 3D point clouds and meshes, and (ii) to provide & betier of from the of data
fiting. Registration is closely related to data fiting in that it comprises three core inferwoven companents: model selection,

] and Study of these (i) provides a basis for comparison of the noveltiss
of different techniques, {i) reveals the similarity of rigid and non-rigid registration in terms of problem representations, and (i)
shows how over-fitfing arises in non-rigid registration and the reasons for increasing inferest in infrinsic techniques. We further
summarise some praclical issues of registration which include inifislizations and and discuss some of our own
abservations, insights and foreseeable research trends.

Index Terms—Deiormation modeling, digital geomelry processing, surface registration, point clouds, meshes, 30 scanning

+

1 INTRODUCTION
SLKF-\[E registration transforms multiple 3D

datasets into the same coordinate system so as
to align overlapping components of these sets. The
datasets comprise measured points representing sur-
faces of 3D objects or scenes. Due to limitations of 3D
scanning technology, typically multiple datasets must
be captured from different viewpoints, each is asso-
ciated with a different coordinate system. To allow
them to be recombined to reconstruct the surfaces that
represent the original objects or scenes [1], these data
must be registered. Surface regisiration is thus an es-
sential component of the 3D acquisition pipeline and
is fundamental to computer vision, computer graphics
and reverse engineering. Registering templates to a set
of deforming surfaces provides cross-parametrizatio
and facilitates texture and skeleton transfer, shape
terpolation, and statistical shape analysis. Numerous
applications also benefit from the continual research
on correspondences and registration (e.g. features and
saliency), including symmetry detection and articu-
lated object matching, finding object correspondences,
fractured object bly, sub-part identification,
and skeleton and pose construction.

Surface registration may consider rigid or non-rigid
shapes. The former assumes that two (or more) sur-
faces are related by a rigid transformation. The lat-
ter allows deformation (e.g. morphing, articulation)

v K.L Tane, E-tail: knvok-leung. anrdiffac.i

between them. Rigid registration is a challenging
problem. Firstly, the data itself poses many difficul-
ties, which may include noise, outliers, and limited
amounts of overlap. Noise may take the form of
perturbations of points, or unwanted points close to a
3D surface. Outliers are unwanted points far from the
surface, which can seriously affect results if not dis-
carded. Limited overlap arises due to different parts
of the object being in view in each scan; typically the
number of scans is kept low for efficiency, with few
points in common between successive . Further
problems may arise due to self-occlusion when the
object is scanned from certain viewing angles. While
such problems can be mitigated by careful scanning,
they are hard to aveid completely. Secondly, varia-
tions in initial positions and orientations {and what
is known about them), as well as resolutions of data,
can also affect algorithm performance, and must be
taken into account when comparing rates of conver-
gence, methods of correspondence determination, and
approaches to optimization.

Non-rigid registration is even more difficult, as it
not only faces the above challenges but also needs
to account for deformation, so the solution space is
much larger. Unlike the rigid case, where a few corre-
spondences are sufficient to define one candidate rigid
transformation for hypothesis testing, both deforma-
tion and alignment in the non-rigid case, without
strong prior assumptlions, often require a lot more
reliable correspondences to define. Establishing mean-
ingful and natural correspondences, however, is a




