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Captured point cloud

Reconstructed model



Two approaches

* Implicit * Explicit
— Signed distance — Local surface
function estimation connectivity
estimation

— Mesh approximation
— Computation

geometry based

— Fast and efficient




Implicit-Based Methods



Surface Reconstruction from

Unorganized Points

[H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle
SIGGRAPH 1992]



Method Pipeline

* |nput:
— Cloud of points
— Orientation not required

* Qutput:
— Triangular mesh
— Possible boundary edges

e (Guarantees:
— Manifold



Implicit Surfaces : Regular value

« We would like to represent a function as the zero set of a function f: R® - R.

* We say that zero is a regular value of f if Vf(p) # 0 for all points such that f(p) = 0.



Implicit Function Theorem

f:R* >R .. g:R? >R

f(xz,y,9(x,y)) =0

Vf(ﬁ) — (ﬁra fya fz ?é 0)
(Pas Pys =) = (Pas Pys §(Pzs Py))



Computation of the Signed Distance
Function

* For each sample fit a tangent plane using its k-
Nearest Neighbours

* Define a coherent orientation for the tangent plane
of all sample points

* For any p € R? the signed distance function is given
by its closest (oriented) tangent plane.



Tangent Plane Fitting

Find a plane that fits, in the Least Squares
sense, to its K- Nearest Neighbours:

k
_min E (x; -1 — a)?
NES2,a€R £
i=1
Properties:

1) This plane passes trhough the baricenter of the
neighbours 0 = % K x;

2) The normal direction is given an eigenvector
of smallest eigenvalue of the covariance matrix

k
Z_ (xi—0)(x; — 0)"
=1




Computation of the Signed Distance
Function

* For each sample fit a tangent plane using its k-
Nearest Neighbours

* Define a coherent orientation for the tangent plane
of all sample points

* For any p € R? the signed distance function is given
by its closest (oriented) tangent plane.



Global Optimization

Riemannian Graph Energy Function

K- Nearest Neighbours

b:V—- {-1,1}

max Z ’wij(I),'(I’j
(i,)€EE

NP-hard!



Normal Propagation By Geometric
Proximity

Euclidean Minimum Spanning Tree

nNg =— —Ny

Take nj=—n;ifn;-n; <0



Normal Propagation By Geometric
Proximity

Geometric proximity is not a good criteria for normal propagation.



Riemmanian Graph

EMST is connected but not dense enough in edges.




Normal Propagation by Plane Parallelism

1) Construct a Riemmanian graph over the plane centers (0;’s) and edge
weights w;; = 1—|n; 'ﬂjl.

2) Propagate normals along the Minimun Spanning Tree of this graph.

ni

Ng — —MNo n




Normal Propagation by Plane Parallelism

Favorates normal proagation
along low curvature regions.




Normal Propagation by Plane Parallelism




Computation of the Signed Distance
Function

* For each sample fit a tangent plane using its k-
Nearest Neighbours

* Define a coherent orientation for the tangent plane
of all sample points

* For any p € R3 the signed distance function is given
by its closest (oriented) tangent plane



Sampling Assumptions

Y C M is p-dense

For any point in the surface the closest sample point in Xis at most p + § apart.




Signed Distance Function

k
L]

Compute f(p): o, /~

1) Find the closest center to p. \

3)Ifd(z,X) < p+ & then f(p) = ((p — 0;) - N)n.
Otherwise, f(p) is undefined.



Remark

O,
Zero Level
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Still it provides a good approximation to reconstruct the surface.



Surface Reconstruction: Marching
Cubes

1) Define a cube partition of the space. The
edge of each cube should be less than p + §.

2) Compute the signed distance function on
the cube vertices

3) Interpolate zero values (i.e., surface
intersections) at changing sign edges.

4) Find a trinagulation with vertices at zero
values.




Surface Reconstruction: Marching
Cubes
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Data Structure

Constant number of samples per
voxel if sampling is unifom.

Group samples by voxels =

NN . Complexities:
I 1) Riemmanian Graph construction: O(nk)
3. . * 2) MST: O(nlogn)

3) Normal Propagation: O(n)

. . 4) Distance Function Evaluation: 0(1)




Results




A Volumetric Method for Building

Complex Models from Range Images
[Brian Curless and Marc Levoy, SIGGRAPH 1996]

https://graphics.stanford.edu/papers/volrange/slides/



VYolumetric method

+ For a set of range 1mages, R, R,, ..., Ry, We construct
signed distance functions d;(x), d,(x), ..., dy(x).

* We combine these functions to generate the cumulative
function, D(x).

* We extract the desired manifold as the 1sosurface,
D(x) = 0.




Scan #1 Scan #2 Combination

Surfaces k‘ \’j \J

Isosurface
extractlon

Distance
Functions




Least squares solution

Jix)

Range surface #1

| A

SSN==a®

Range surface #2

o X




Error per point

N /7 N
E(f)=2.]d} (x. N1

S P
Error per range surface

Finding the fix) that minimizes £ yields the optimal surface.

This fix) is exactly the zero-crossing of the combined signed
distance functions.



Hole Filling Using Sensor Information

* |tis possible to fill holes in the polygonal mesh
directly, but such methods:

— Are hard to make robust
— Do not use all available information



Without space carving
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Other Print-Based Fitting Methods



Least Squares

* Fit a primitive to the data

* Minimizes squared distances between the
points and the primitive

o(xX)=a+ bx+cx”

w

m;nZ(jj —g(px.))z




Least Squares-- Example

» Primitive is a (univariate) polynomial
o) =(lxx ) e
minZ(f,- _ (Lpi.,pf,...)if)z =
0= Z2p;f (£ - Cr.px")

* Linear system of equations



Least Squares-- Example

* Resulting system

0=22p/(fi-(Lp.pl ) )=

/1 D, pf ---\/Co\ 4 1 \
2 3
p. b D c, P,
Il l l :2 -
Z,-: p. plop! c, Zf p;

\: RN, S,



Radial Basis Functions

* Represent approximating function as
— Sum of radial functions r
— Centered at the data points p,

f(x)= 2w, (lp. —x[)

B




Radial Basis Functions

)

e Solve ]‘] — Zwr_rml)f -p,

to compute weights w;
* Linear system of equations

r(0) t(jpo —pil) r(lpo —p:
r((p, —po|) r(0) t(jp, —p.)
t(p =pol) (p.-pf) O

~




Radial Basis Functions

* Solvability depends on radial function
* Several choices assure solvability

— 1(d)=d"logd (thin plate spline)

—d 1 h? |
- 1(d)=e (Gaussian)
* 1 1S a data parameter

/1 reflects the feature size or anticipated spacing
among points



Function Spaces!

* Monomial, Lagrange, RBF share the same
principle
— Choose basis of a function space

— Find weight vector for base elements by solving linear
system defined by data points

— Compute values as linear combinations

* Properties

— One costly preprocessing step
— Simple evaluation of function in any point



Function Spaces?

* Problems
— Many points lead to larger linear systems
— Evaluation requires global solutions

e Solutions

— RBF with compact support
* Matrix is sparse

* Still: solution depends on every data point, though
drop-off is exponential with distance

— Local approximation approaches



Partition of Unity



Shepard Interpolation

« Approach f(x) :Zi ¢Z(X)f_i

s
2 [x=x|
* Define f(p.)= /. = lim f(x)

X—=Pp;

A
»

with basis functions  ¢,(x)=




Shepard Interpolation

f(x) Is @ convex combination %@
because all ¢, € [0,1] and ¢.(x)=1
f(x) Is contained In the convex hull of data points
{p,}|>1=1f(x) e C” and Vf(p,)=0
=» Data points are saddles

global interpolation
=» every f(x) depends on all data points

Only constant precision, i.e. only constant functions are
reproduced exactly



Shepard Interpolation

Localization:

+ Set  f(x)=2 u(x)(x)f,

* with /J;-(X):< (I_HX_pr/R;—)V if HX—piH <R
0 else

for reasonable R. and v>1

=>Nno constant precision because of possible
holes in the data



Partition of Unity Methods



Partial of Unity Methods




Partial of Unity Methods

Subdivide domain into cells




Partial of Unity Methods

Compute local interpolation per cell




Partial of Unity Methods

Blend local interpolations?

W




Partial of Unity Methods
Subdivide domain into overlapping cells




Partial of Unity Methods

Compute local interpolations

/,




Partial of Unity Methods

Blend local interpolations




Partition of Unity Methods

* Weights should

— Have the (local) support of the cell

-JI



Partition of Unity Methods

* Weights should
— Sum up to one everywhere (Shepard weights)
— Have the (local) support of the cell

I NN I D D B S S - LB ]
I NN NN NN D I I S - NN N -
E - .- Il NN N I S - NN N -
LI | d Il NN N I S - I EEE N .



Moving Least Squares

* Compute a local LS approximation at x
* Weight data points based on distance to x

o o Ma+ bx + cx”
man(f, - g(pf))ze(”" - p,-”)




Moving Least Squares

* The set
f(x)=g,(x),8, :m;nZ(ﬁ ~g(,)) O(x - p)

IS @ smooth curve, Iff 6 IS smooth

k_ﬁ/




Moving Least Squares

* Typical choices for 6:
- Hd)=d"
_ 6’(d)= e—dz/;ﬁ

* Note: 6, =0(|x—p,) is fixed
* For each x

— Standard weighted LS problem
— Linear iff corresponding LS is linear



Fitting



Implicits

 Each orientable 2-manifold can be
embedded in 3-space

* |dea: Represent 2-manifold as zero-set of
a scalar function in 3-space

— Inside: f(x)<0
— On the manifold:
— Qutside: f(x)>0




Implicits from point samples

Function should be zero
In data points

- f(p,)=0

Use standard

approximation
techniques to find f

Trivial solution: f=(

Additional constraints are
needed



Implicits from point samples

* Constraints define inside |
and outside

» Simple approach (Turk, *
O’Brien) ¢ -
— Sprinkle additional + o

Information manually

— Make additional
information soft T e
constraints



Implicits from point samples

« Use normal information \.
« Normals could be —e
computed from scan

* Or, normals have to be
estimated A



Estimating normals

 Normal orientation
(Implicits are signed)

— Use inside/outside
Information from scan

 Normal direction
by fitting a tangent
— LS fit to nearest neighbors
— Weighted LS fit

— MLS fit .\/



Estimating normals

« General fitting problem
mH}Z(‘l p.n) 6(la—p,) %

— Problem is non-linear
because n IS constrained
to unit sphere

<7



Estimating normals

* The constrained minimization problem
: 2
ﬁn\nll <q—pr.,n> o
nji= .

IS solved by the eigenvector corresponding to
the smallest eigenvalue of the following co-
variance matrix

Z_(q—p,)-(q—pf)T 0

which is constructed as a sum of weighted outer
products.



Implicits from point samples

» Compute non-zero N
anchors in the *K °
distance field

* Use normal
iInformation directly as ,.—*
constraints .

f(p, +n,)=1 A

+]1—e



Implicits from point samples

« Compute non-zero 2 ~\.+0-5 +1.5
anchors In the “ o
distance field

« Compute distances at
specific points +1
— Vertices, mid-points, -
etc. in a spatial A
subdivision Ple “\

—e o

+1

2.5 0.5 +2



Computing Implicits

* Given N points and normals P;,1,
and constraints f(p,)_ Ojf(c,)_ d.

* Let pr'-l—N = cr’
 An RBF approximation

(x)= 2 w,0(lp, —x])

l
leads to a system of linear equations



Computing Implicits

* Practical problems: N > 10000
 Matrix solution becomes difficult

 Two solutions
— Sparse matrices allow iterative solution
— Smaller number of RBFs



Computing Implicits

. Sparse matrices | A0 r.-p. ) Apo-pi) -
v, —pof) A0) A(lp, —p.||)
QQ‘I’TPOH) (p.—p, ) &(0)

—Needed: d>c—>r(d)=0,r'(c)=0

CI | IC

— Compactly supported RBFs




Computing Implicits

« Smaller number of RBFs

« Greedy approach (Carr et al.)
— Start with random small subset

— Add RBFs where approximation quality is not
sufficient

S



RBF Implicits - Results

Image courtesy: Greg Turk



Multi-Level Partition of Unity



Overview

Goal:

— Use multi-level partition of unity (MPU) implicit surface to
construct surface models

3 Key Concepts:

— Piecewise quadratic functions used as local estimates

— Weighing functions that blend these local shape functions.
— Octree subdivision that adapts based on shape complexity.
Flexibility

— Accurate representation of sharp features (edges, corners)
* Adaptive approximation based on required accuracy

— Determines space/time complexity



Advantages of Implicit Functions

e Edit surfaces using standard implicit modeling
operations: shape blending, offsets, deformations




Method Summary: Setup

e Given: set of points with normals to indicate surface
orientation

e Partition of unity: set of weighing functions that sum
to one at all points in the domain

* MPU implicit: adaptive error-controlled
approximation of signed distance function from
surface

— Surface is zero-level of the distance function.



Method Summary: Algorithm

* To create implicit representation:
— Octree-based subdivision of bounding box for entire point set

— At each cell, fit a piecewise quadratic function (local shape
function)

* Signed distance function: O near points, positive inside, negative
outside

— |If shape function isn’t accurate enough, subdivide further until
desired accuracy is achieved

— In common boundary between cells, shape functions are
blended together according to weights from partition of unity
functions

* Global implicit of function is given by blending of local
shape functions at the leaves of the octree



Partition of Unity

* Generate weight functions:

— For approximation: use quadratic B-spline b(t)

wi(z) = b (3%};‘3‘5')

— For interpolation: use inverse-distance singular weights

w;(x) = [(R: — |z _Ci)+]2’ where (a), — {a a >0

R;i|x — ¢ 0 else

* For interpolation: use inverse-distance singular weights

() C U; supp(w;)



Partition of Unity

* Blend local functions using smooth, local weights that add up
tol
— Partition of unity functions

'w%(x)

Zi:gbi =1on () Cbz(:ﬂ) — Zn (:l:‘)

71=1 Wy

* Define set of local shape functions V,
* Approximation of a function defined on domain

QieVi f(x)~ Z 0i(2)Qi(x)



Adaptive Octree

* Octree-based subdivision. Each cell has center c and diagonal
length d

* Define the support radius for the cell’s weight function: R = ad

— Bigger alpha -> smoother interpolation/approximation, slower
computation

— Time complexity quadratic on alpha

* Must have at least N, points in the sphere to estimate shape
function

— If not enough, iteratively increase radius

R=R+ )R
a=075  A=01 =




Adaptive Octree

* Local max-norm approximation error estimated based on
Taubin distance

f—  max Q(ps)|
pi—cl<R |VQ(pi)]

* If erroris larger than a threshold €0, subdivide the cell

..................................




Algorithm: Pseudocode

MPUapprox(x.&,)

d=|le—x||;
EvaluateMPUapprox(x,g,) if (d > R) then
SwQ =8 = return,
root - >MPUapprox(x, &) end if
returnsS. ,/Sw; if (Q is not created yet) then
i’ Create Q and compute &;
end if
SwQ = E ’wz(CE)Q@ (:c) if (e>¢g,) then
if (Nochilds) then
- ' Create childs;
w — QUzCr) end if
for each child
child->MPUapprox(Xx,§,);
f(ll?) ~ SwQ _ sz(x)Q’&<x) end for
~ — else
Sw Z w?(x) 8o = Swo +W(d.R) * Q(x);
w = 3w +w(d,R);

end if



Local Shape Functions — Details in the
paper

* General 3D quadric

— Larger parts of the surface: unbounded, more than one
sheet B

* Bivariate quadratic polynomial in local coordinates
— Local smooth patch C

* Piecewise quadric surface to fit sharp features

— Edges, corners



Representation power

Eye from Stanford’s reconstruction of Michalangelo’s David (scanned at 1Imm
resolution). Right: The eye is reconstructed as an MPU implicit with relative accuracy
104



Robustness

f=-0.075,a=0.75 f=-0.075,0=1.0

Offsetting of a knot model. The distance function to the knot is approximated by w=f(x,y,z)



Projection-based Approaches



Projection

* |dea: Map space to surface
e Surface is defined as fixpoints of mapping

Vol



Surface definition

* Projection procedure (Levin)

— Local polyonmial approximation
* |Inspired by differential geometry

— “Implicit” surface definition /'/‘—'

— Infinitely smooth &
— Manifold surface



Surface definition

* Projection procedure (Levin)

— Local polyonmial approximation
* |Inspired by differential geometry

— “Implicit” surface definition /'/‘—'

— Infinitely smooth &
— Manifold surface



Surface definition

Constructive definition

Input point
Compute a local
reference plane

Compute a local
polynomial over
the plane

Project point r=G(0)
Estimate normal



Local reference surface

 Find plane H,

— mln q p??
q.|n|=1"

_o(d)=e""
« ) is feature size/
point spacing
— H . is independent
of 7's distance

— Manifold property

—<q, >+D

)" 0la-p))

Weight function
based on distance to
q. notr

L —e—®

//'

f



Local Reference Plane

« Computing reference plane
— Non-linear optimization problem

* Minimize independent variables:

— Over n for fixed distance Hr _q”
— Along n for fixed direction n

— ¢ changes - the weights change
— Only iterative solutions possible



Local reference plane

* Practical computation
— Minimize over n for fixed q
« Eigenvalue problem

— Translate q so that
r=q+h—qh

- Effectively changes ‘1‘ — qn

— Minimize along n for
fixed direction n

« Exploit partial derivative



Rejecting the point
* MLS polyonomial over H,

~ min Z‘ ((q — p?_,n> — G(pf

Gell,

— LS problem
— l":Gr(O) {.

— Estimate normal

) élla-v)

/oo



Spatial data structure

Regular grid based on support of 6

— Each point influences only 8 cells

Each cell Is

an octree

— Distant octree cells
are approximated
by one point in

/.r/*__.

/

"

center of mass




Defining point-set surfaces

[Amenta and Kil 05]




Poisson Surface Reconstruction



Poisson surface reconstruction

* Michael Kazhdan, M. Bolitho, and H.
Hoppe, SGP 2006

e Source Code available at:
http://www.cs.jhu.edu/~misha/

* Implementation included in Meshlab

* Relevant works

— Poisson mesh editing [SIGGRAPH
2004, SGP 2004]

— Poisson image editing [SIGGRAPH
2003]



http://www.cs.jhu.edu/~misha/

Poisson surface reconstruction

* Indicator Function

— reconstruct the surface by solving for the indicator
function of the shape

— Assume normal as inputs

1 if peM
A0S e

Indicator function

M



Problem

 Fit the indicator function to a set of oriented normal
— Fitting should be robust

Oriented points Indicator function

M



Gradient Relationship

 There is a relationship between the normal field and
gradient of indicator function

\\I I/ O ““““ & .. O
3 7 N X
[N N -«
-~ \I 11\\ O ‘ ............ *'
- b ) -
. ) o 4
: 0
// : I
1S R
Oriented points Indicator gradient

Vim



Integration

* Represent the points by a vector field

* Find the functionX whose gradient best
approximatesV/ :

minZHV;( —\7”



Integration

* Represent the points by a vector field

* Find the functionX whose gradient best
approximatesV/ :

minZHV;( —\7”

* Applying the divergence operator, we can
transform this into a Poisson problem:

V-(Vy)=VV o Ay=VV



Implementation

e Given the Points:

— Set octree
— Compute vector field

— Compute indicator function

— Extract iso-surface



Implementation: Adapted Octree

e Given the Points:

— Set octree




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Define a function space




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Define a function space

/




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Define a function space




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Define a function space

/




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Splat the samples i




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Splat the samples




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Splat the samples




Implementation: Vector Field

e Given the Points:

— Compute vector field

* Splat the samples

ifd

e

LI




Implementation: Vector Field

 Given the Points:

* Compute divergence

(O,




Implementation: Vector Field

e Given the Points:

* Solve Poisson equation

L

[T ] |

[




Implementation: Vector Field

e Given the Points:

— Extract iso-surface

o ] |

[T |

L]




Summary

0
\\\ 4 ) X L
3 e 0 "L g
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Oriented points  Indicator gradient Indicator function Surface
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Michelangelo’s David

e 215 million data points from 1000
scans

e 22 million triangle reconstruction
e Compute Time: 2.1 hours
e Peak Memory: 6600MB




David — Chisel marks




David — Drill Marks




David — Eye




Scalability — Buddha Model

Time (s) / Peak Memory (MB)

900

800

700

600

500

400

300

200

100

0

=~ Time Taken
~#- peak Memory Usage

100,000 200,000 300,000 400,000 500,000

Triangles

600,000 700,000 800,000



Stanford Bunny

FFT Reconstruction Poisson Reconstruction



VRIP Comparison

VRIP Poisson Reconstruction



Neural Implicits

e We will cover this later



Meshing



Algorithms

* Primal methods

— Marching Squares (2D),
Marching Cubes (3D)

— Placing vertices on grid
edges

* Dual methods
— Dual Contouring (2D,3D)
— Placing vertices in grid cells

Slide Credit: Tao Ju



Dual Contouring (2D)

* For each grid cell with a
sign change
— Create one vertex

* For each grid edge with a
sign change
— Connect the two vertices

In the adjacent cells with a
line segment

Slide Credit: Tao Ju



Dual Contouring (2D)

* For each grid cell with a
sign change
= g g
— Create one vertex

* For each grid edge with a
sign change
— Connect the two vertices N N n

in the adjacent cells with a
line segment

Slide Credit: Tao Ju



Dual Contouring (2D)

* Creating the vertex within a cell

— Compute one point on each grid edge with a sign
change (by linear interpolation)

* There could be more than two sign-changing edges, so
>2 points possible

— Take the centroid of these points

n n n n
—
¢ O
Be [ B[]

Slide Credit: Tao Ju



Dual Contouring (3D)

* For each grid cell with a
sign change
— Create one vertex (same
way as 2D)
* For each grid edge with a
sign change

— Create a quad (or two
triangles) connecting the
four vertices in the adjacent
grid cubes

— No look-up table is needed!

Slide Credit: Tao Ju



Duality

* The two outputs have a dual structure

— Vertices and quads of Dual Contouring correspond
(roughly) to un-triangulated polygons and vertices
produced by Marching Cubes

Marching Cubes Dual Contouring
Slide Credit: Tao Ju



Slide Credit: Tao Ju

Primal vs. Dual

* Marching Cubes
— v Always manifold
— % Requires look-up table in 3D
— % Often generates thin and tiny poly

* Dual Contouring
— % Can be non-manifold
— v No look-up table needed
— v Generates better-shaped polygon

Dual Contouring



Slide Credit: Tao Ju

Primal vs. Dual

* Marching Cubes
— v Always manifold
— % Requires look-up table in 3D
— % Often generates thin and tiny polygon
— X% Restricted to uniform grids

* Dual Contouring
— %X Can be non-manifold

- L]
DC on a Quadtree (2D)

BiEsINE
......

— v No look-up table needed
— v Generates better-shaped polygon £
— v Can be applied to any type of §£ic

uniform grid &

IImEE

DC on et
octree (3D )NgZH



