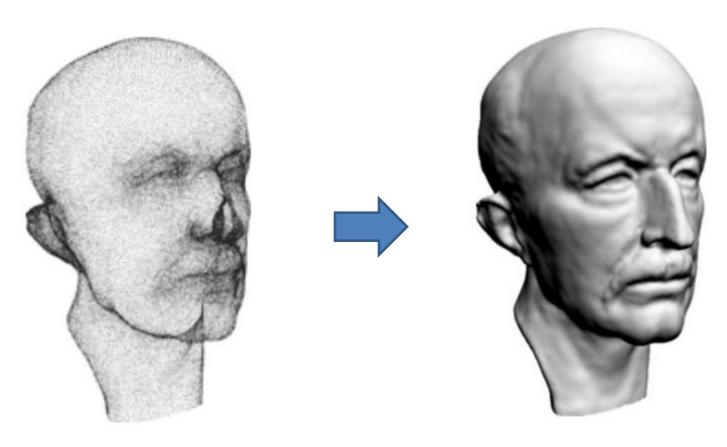
GAMES Surface Reconstruction

Qixing Huang July 23th 2021

Goal



Captured point cloud

Reconstructed model

Two approaches

Implicit

- Signed distance function estimation
- Mesh approximation
- Fast and efficient

Explicit

- Local surface connectivity estimation
- Computation geometry based

Implicit-Based Methods

Surface Reconstruction from Unorganized Points

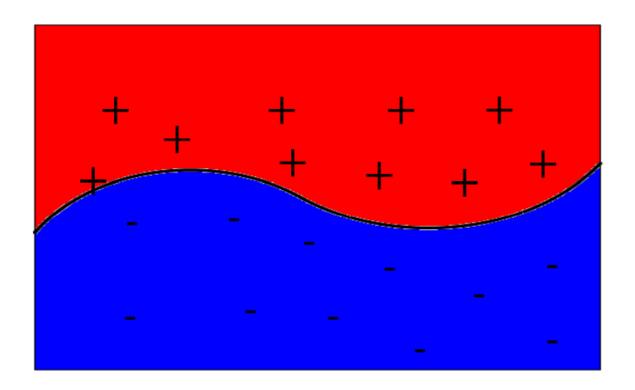
[H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle SIGGRAPH 1992]

Method Pipeline

- Input:
 - Cloud of points
 - Orientation not required
- Output:
 - Triangular mesh
 - Possible boundary edges
- Guarantees:
 - Manifold

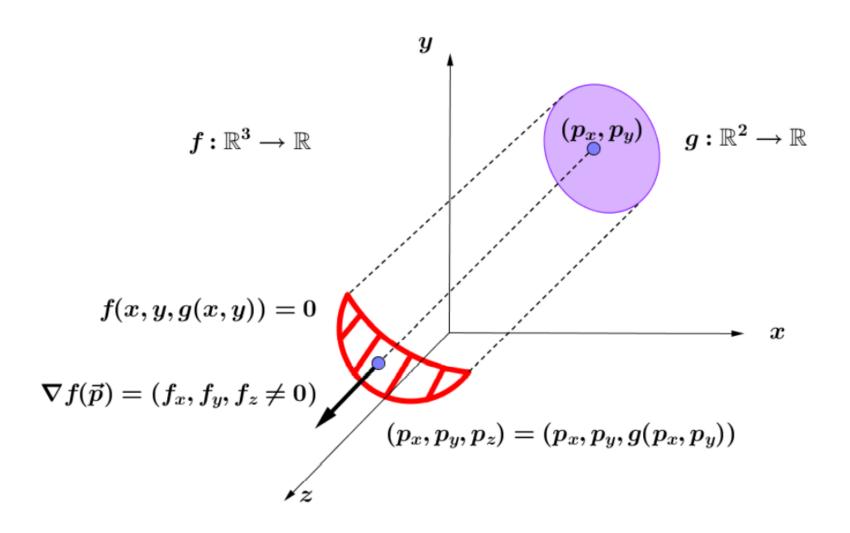
Implicit Surfaces: Regular value

• We would like to represent a function as the zero set of a function $f: \mathbb{R}^3 \to \mathbb{R}$.



• We say that zero is a regular value of f if $\nabla f(p) \neq 0$ for all points such that f(p) = 0.

Implicit Function Theorem



Computation of the Signed Distance Function

 For each sample fit a tangent plane using its k-Nearest Neighbours

 Define a coherent orientation for the tangent plane of all sample points

• For any $p \in \mathbb{R}^3$ the signed distance function is given by its closest (oriented) tangent plane.

Tangent Plane Fitting

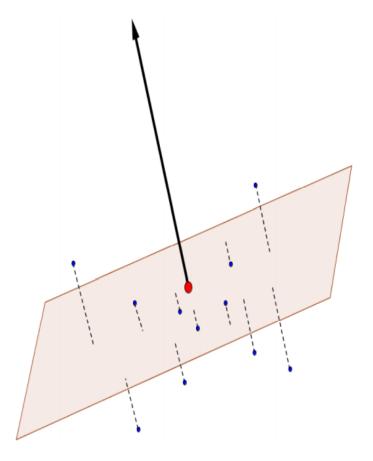
Find a plane that fits, in the Least Squares sense, to its K- Nearest Neighbours:

$$\min_{\vec{n} \in S^2, a \in R} \sum_{i=1}^k (x_i \cdot \vec{n} - a)^2$$

Properties:

- 1) This plane passes trhough the baricenter of the neighbours $o = \frac{1}{k} \sum_{i=1}^{k} x_i$
- 2) The normal direction is given an eigenvector of smallest eigenvalue of the covariance matrix

$$\sum_{i=1}^{k} (x_i - o)(x_i - o)^T$$



Computation of the Signed Distance Function

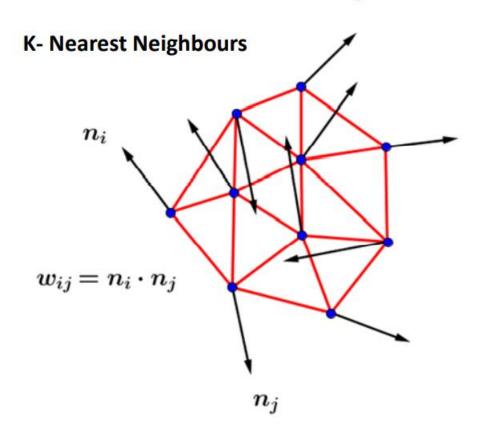
 For each sample fit a tangent plane using its k-Nearest Neighbours

 Define a coherent orientation for the tangent plane of all sample points

• For any $p \in \mathbb{R}^3$ the signed distance function is given by its closest (oriented) tangent plane.

Global Optimization

Riemannian Graph



Energy Function

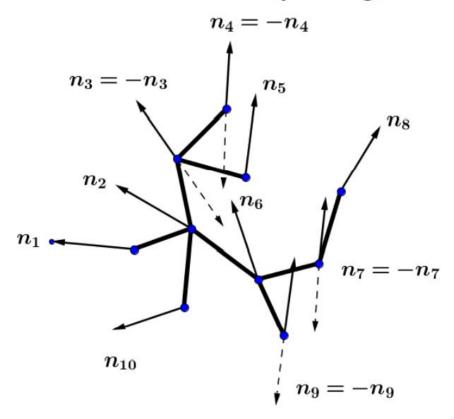
$$\Phi: V {\rightarrow} \{-1,1\}$$

$$\max \sum_{(i,j) \in E} w_{ij} \Phi_i \Phi_j$$

NP-hard!

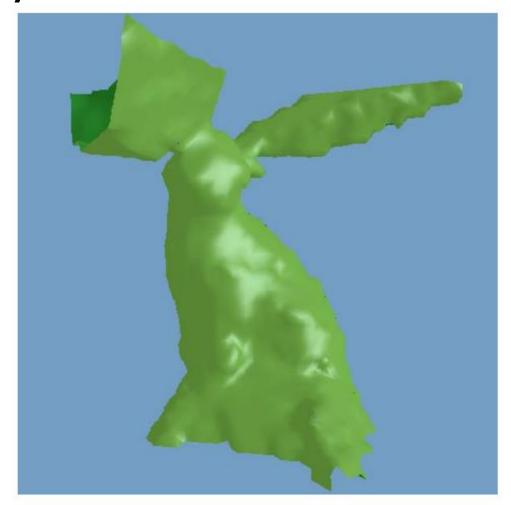
Normal Propagation By Geometric Proximity

Euclidean Minimum Spanning Tree



Take
$$n_j = -n_j$$
 if $n_i \cdot n_j < 0$

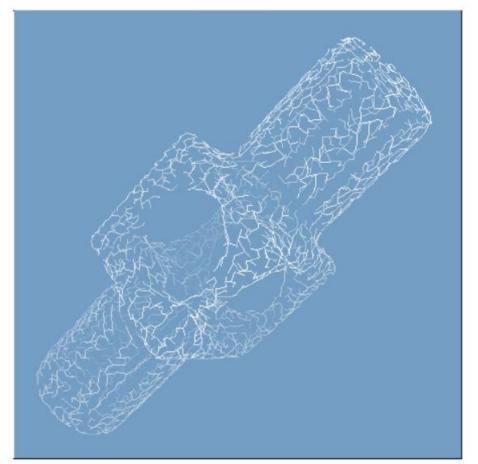
Normal Propagation By Geometric Proximity

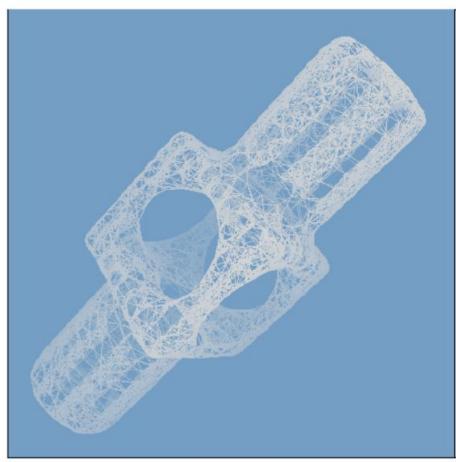


Geometric proximity is not a good criteria for normal propagation.

EMST

Riemmanian Graph

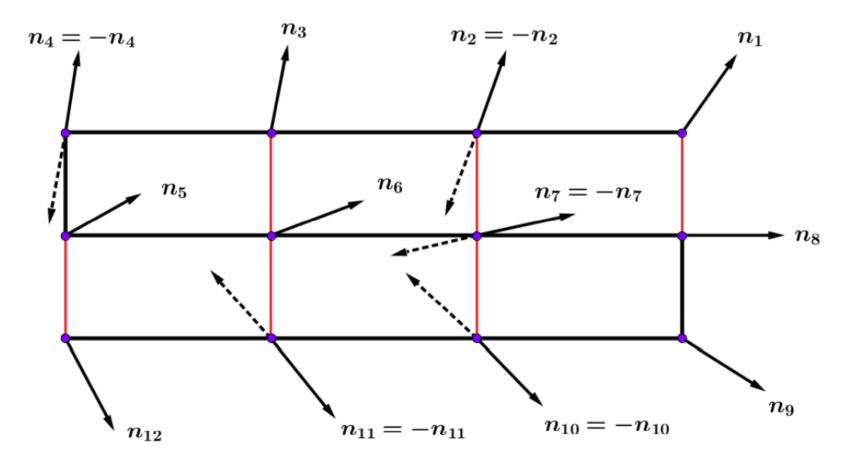




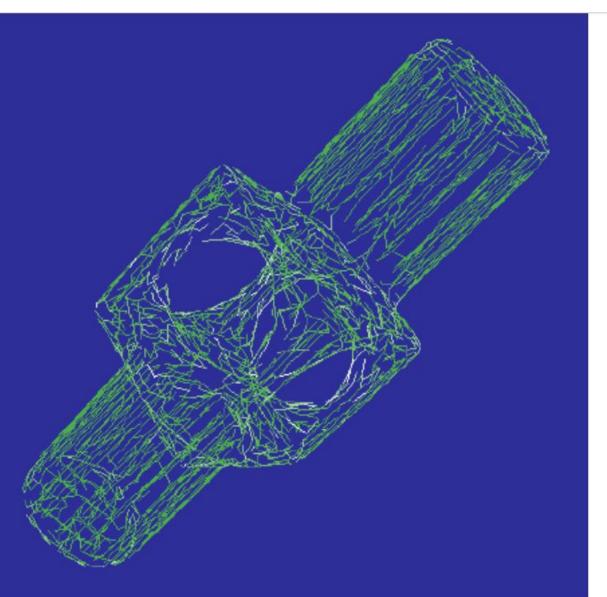
EMST is connected but not dense enough in edges.

Normal Propagation by Plane Parallelism

- 1) Construct a Riemmanian graph over the plane centers (o_i 's) and edge weights $w_{ij} = 1 |n_i \cdot n_j|$.
- 2) Propagate normals along the Minimun Spanning Tree of this graph.

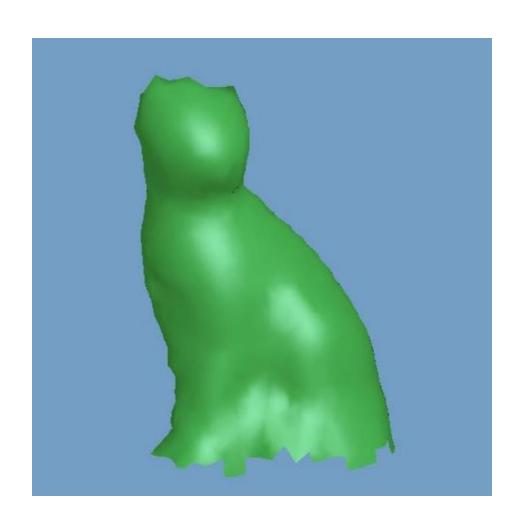


Normal Propagation by Plane Parallelism



Favorates normal proagation along low curvature regions.

Normal Propagation by Plane Parallelism



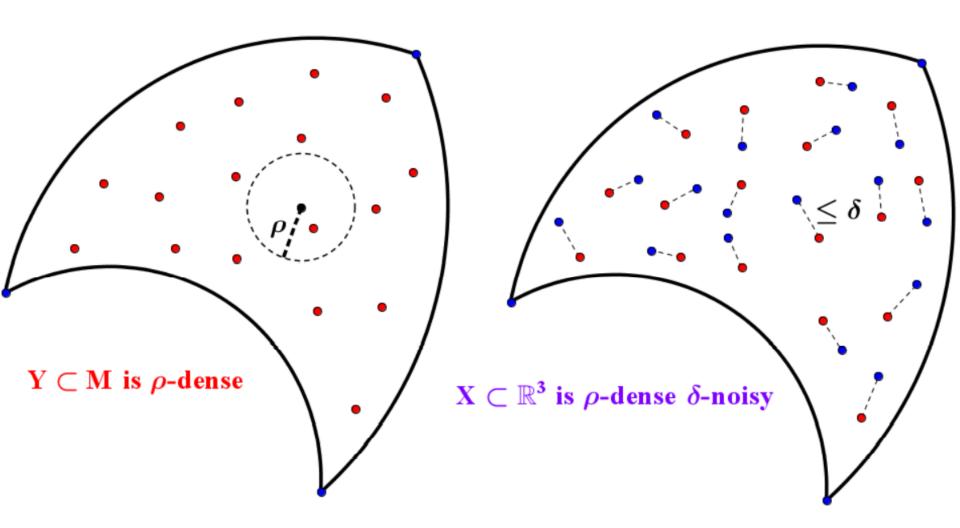
Computation of the Signed Distance Function

 For each sample fit a tangent plane using its k-Nearest Neighbours

 Define a coherent orientation for the tangent plane of all sample points

• For any $p \in \mathbb{R}^3$ the signed distance function is given by its closest (oriented) tangent plane

Sampling Assumptions

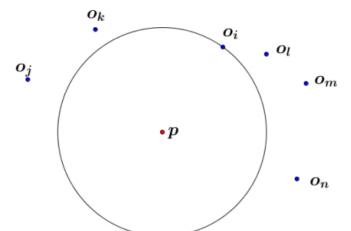


For any point in the surface the closest sample point in **X** is at most $\rho + \delta$ apart.

Signed Distance Function

Compute f(p):

1) Find the closest center to p.

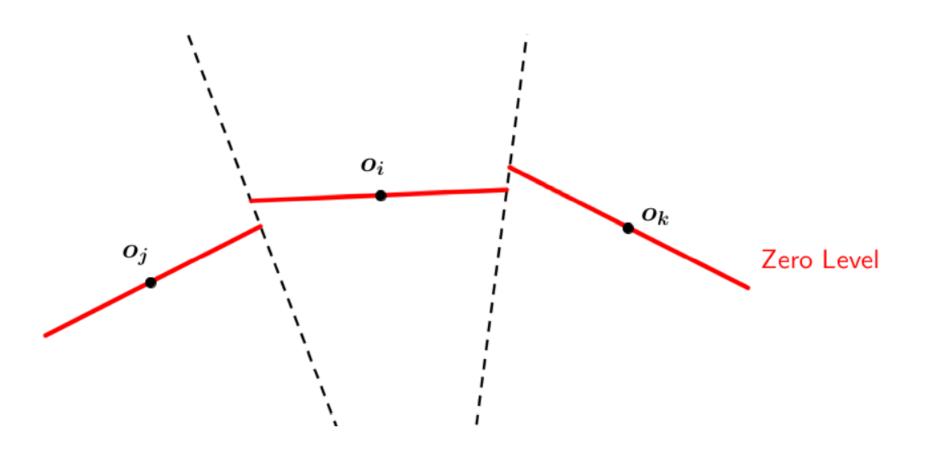


2) Computed the signed distance to the plane.

ne plane.
$$\vec{n}_{o_i}$$
 $((p-o_i)\cdot \vec{n})\vec{n}$

3) If $d(z, X) < \rho + \delta$ then $f(p) = ((p - o_i) \cdot \vec{n})\vec{n}$. Otherwise, f(p) is undefined.

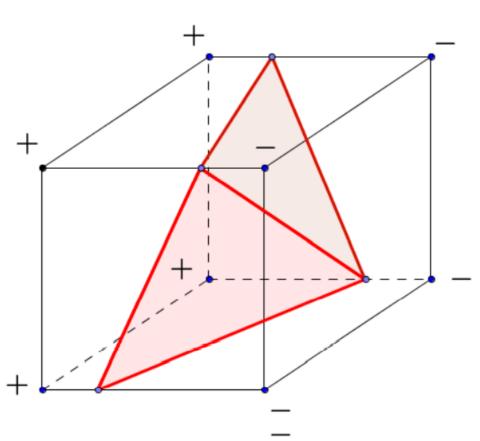
Remark



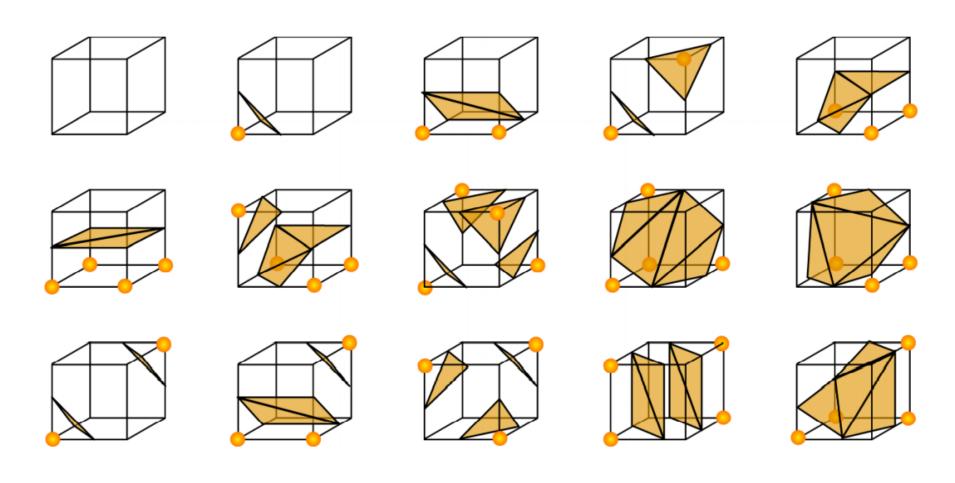
Still it provides a good approximation to reconstruct the surface.

Surface Reconstruction: Marching Cubes

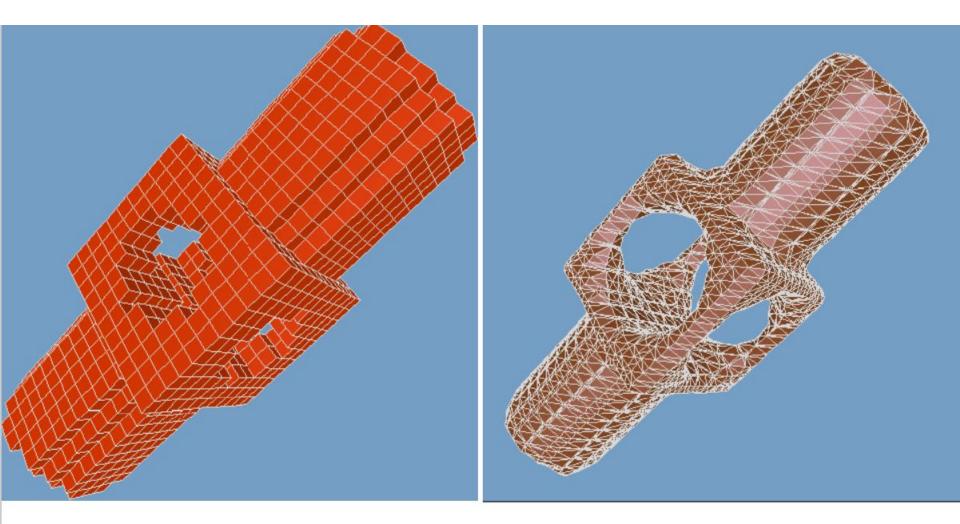
- 1) Define a cube partition of the space. The edge of each cube should be less than $\rho + \delta$.
- 2) Compute the signed distance function on the cube vertices
- 3) Interpolate zero values (i.e., surface intersections) at changing sign edges.
- 4) Find a trinagulation with vertices at zero values.



Surface Reconstruction: Marching Cubes



Surface Reconstruction: Marching Cubes



Cubes visited Triangle Mesh

Data Structure

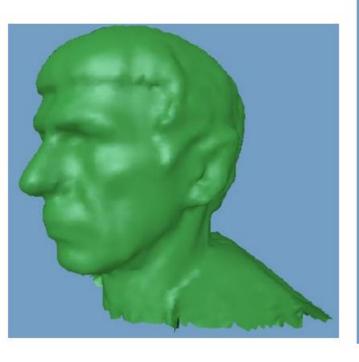
Group samples by voxels

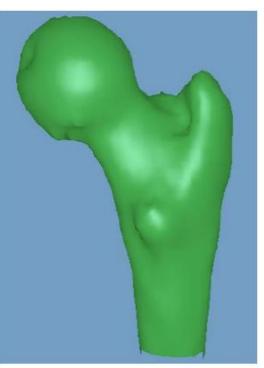
Constant number of samples per voxel if sampling is unifom.

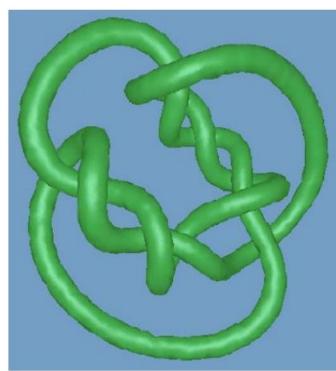
Complexities:

- 1) Riemmanian Graph construction: O(nk)
- 2) MST: $O(n \log n)$
- 3) Normal Propagation: O(n)
- 4) Distance Function Evaluation: O(1)

Results





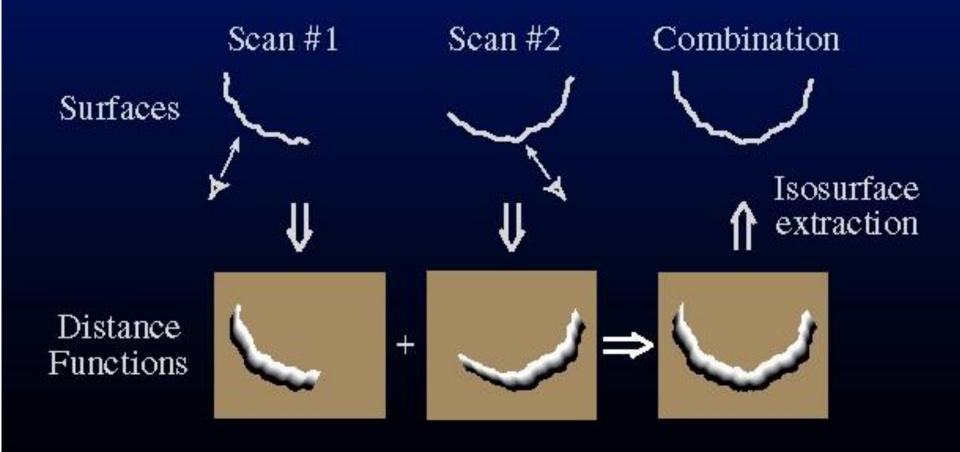


A Volumetric Method for Building Complex Models from Range Images

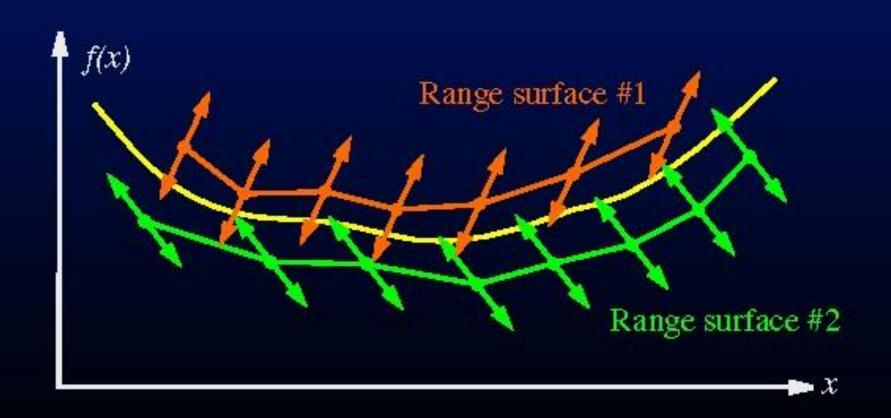
[Brian Curless and Marc Levoy, SIGGRAPH 1996]

Volumetric method

- For a set of range images, R_1 , R_2 , ..., R_N , we construct signed distance functions $d_1(\mathbf{x})$, $d_2(\mathbf{x})$, ..., $d_N(\mathbf{x})$.
- We combine these functions to generate the cumulative function, D(x).
- We extract the desired manifold as the isosurface,
 D(x) = 0.



Least squares solution



$$E(f) = \sum_{i=1}^{N} \int_{0}^{\infty} d_i^2(x, f) dx$$
Error per point

Error per point

Error per point

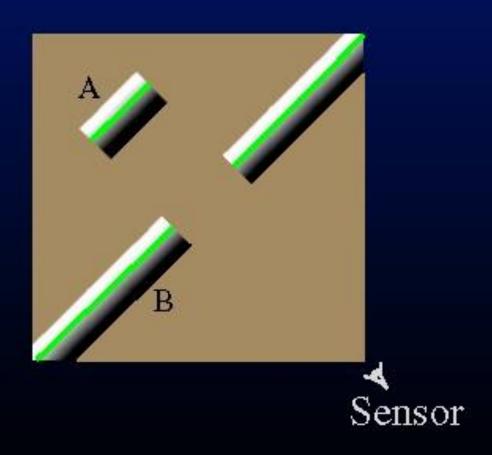
Finding the f(x) that minimizes E yields the optimal surface.

This f(x) is exactly the zero-crossing of the combined signed distance functions.

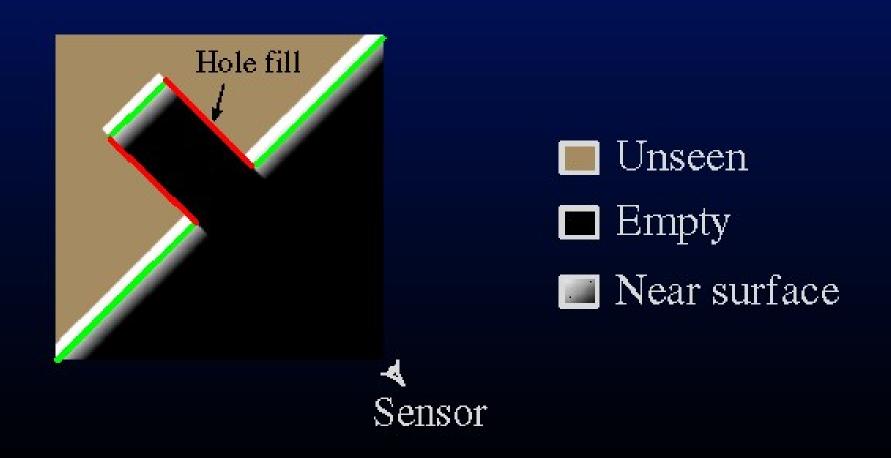
Hole Filling Using Sensor Information

- It is possible to fill holes in the polygonal mesh directly, but such methods:
 - Are hard to make robust
 - Do not use all available information

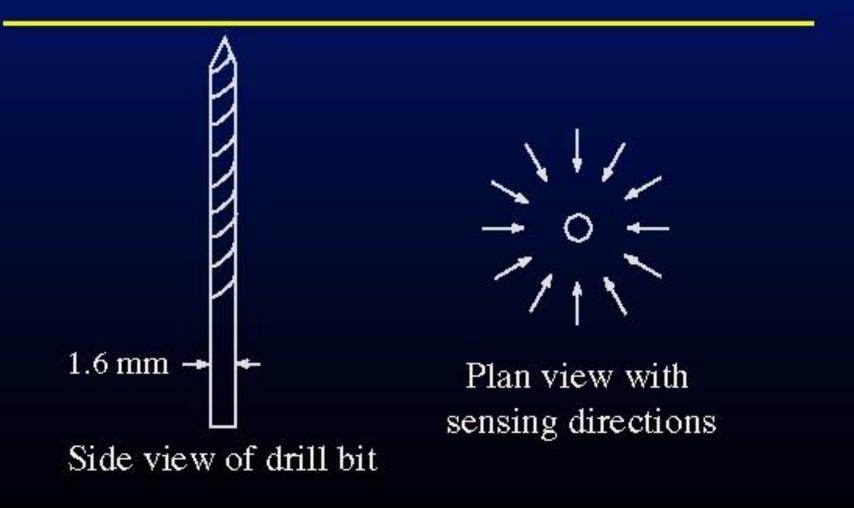
Without space carving



With space carving

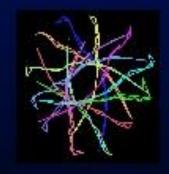


Drill bit



Plan view

Unorganized points



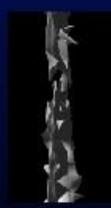
Range surfaces

Zippered mesh

Volumetric mesh

Side view

Photograph of painted drill bit



mesh

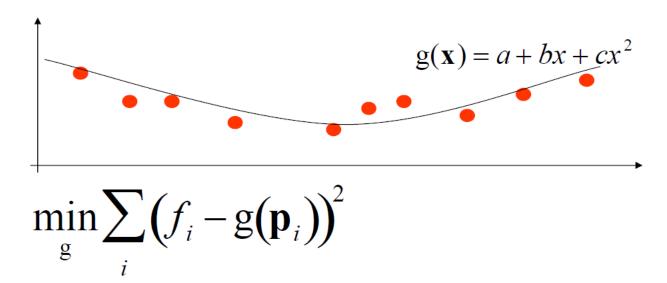
Zippered Volumetric mesh

...to hardcopy

Other Print-Based Fitting Methods

Least Squares

- Fit a primitive to the data
- Minimizes squared distances between the points and the primitive



Least Squares-- Example

Primitive is a (univariate) polynomial

$$g(x) = (1, x, x^{2}, \dots) \cdot \mathbf{c}^{T}$$

$$\min \sum_{i} (f_{i} - (1, p_{i}, p_{i}^{2}, \dots) \mathbf{c}^{T})^{2} \Rightarrow$$

$$0 = \sum_{i} 2p_{i}^{j} (f_{i} - (1, p_{i}, p_{i}^{2}, \dots) \mathbf{c}^{T})$$

Linear system of equations

Least Squares-- Example

Resulting system

$$0 = \sum_{i} 2p_{i}^{j} \left(f_{i} - \left(1, p_{i}, p_{i}^{2}, \ldots \right) \mathbf{c}^{T} \right) \Leftrightarrow$$

$$\sum_{i} \begin{pmatrix} 1 & p_{i} & p_{i}^{2} & \ldots \\ p_{i} & p_{i}^{2} & p_{i}^{3} \\ p_{i}^{2} & p_{i}^{3} & p_{i}^{4} \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_{0} \\ c_{1} \\ c_{2} \\ \vdots \end{pmatrix} = 2 \sum_{i} f_{i} \begin{pmatrix} 1 \\ p_{i} \\ p_{i}^{2} \\ p_{i}^{2} \\ \vdots \end{pmatrix}$$

Radial Basis Functions

- Represent approximating function as
 - Sum of radial functions r
 - Centered at the data points p_i

$$f(\mathbf{x}) = \sum_{i} w_{i} r(\|\mathbf{p}_{i} - \mathbf{x}\|)$$

Radial Basis Functions

• Solve
$$f_j = \sum_i w_i r \left(\left\| \mathbf{p}_i - \mathbf{p}_j \right\| \right)$$

to compute weights w_i

Linear system of equations

$$\begin{pmatrix}
\mathbf{r}(0) & \mathbf{r}(\|\mathbf{p}_{0} - \mathbf{p}_{1}\|) & \mathbf{r}(\|\mathbf{p}_{0} - \mathbf{p}_{2}\|) & \cdots \\
\mathbf{r}(\|\mathbf{p}_{1} - \mathbf{p}_{0}\|) & \mathbf{r}(0) & \mathbf{r}(\|\mathbf{p}_{1} - \mathbf{p}_{2}\|) & w_{1} \\
\mathbf{r}(\|\mathbf{p}_{2} - \mathbf{p}_{0}\|) & \mathbf{r}(\|\mathbf{p}_{2} - \mathbf{p}_{1}\|) & \mathbf{r}(0) & \vdots & \ddots & \vdots
\end{pmatrix} = \begin{pmatrix}
f_{0} \\
w_{1} \\
w_{2} \\
\vdots \\
\vdots
\end{pmatrix}$$

Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
 - $r(d) = d^2 \log d$ (thin plate spline)
 - $r(d) = e^{-d^2/h^2}$ (Gaussian)
 - h is a data parameter
 - h reflects the feature size or anticipated spacing among points

Function Spaces!

- Monomial, Lagrange, RBF share the same principle
 - Choose basis of a function space
 - Find weight vector for base elements by solving linear system defined by data points
 - Compute values as linear combinations
- Properties
 - One costly preprocessing step
 - Simple evaluation of function in any point

Function Spaces?

- Problems
 - Many points lead to larger linear systems
 - Evaluation requires global solutions
- Solutions
 - RBF with compact support
 - Matrix is sparse
 - Still: solution depends on every data point, though drop-off is exponential with distance
 - Local approximation approaches

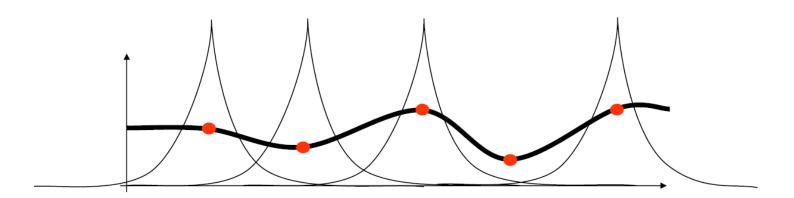
Partition of Unity

Shepard Interpolation

• Approach $f(\mathbf{x}) = \sum_{i} \phi_{i}(\mathbf{x}) f_{i}$

with basis functions $\phi_i(\mathbf{x}) = \frac{\|\mathbf{x} - \mathbf{x}_i\|^p}{\sum_{j} \|\mathbf{x} - \mathbf{x}_j\|^{-p}}$

• Define $f(\mathbf{p}_i) = f_i = \lim_{\mathbf{x} \to \mathbf{p}_i} f(\mathbf{x})$



Shepard Interpolation

- $f(\mathbf{x})$ is a convex combination of ϕ_i , because all $\phi_i \in [0,1]$ and $\sum_{i=1}^{n} \phi_i(\mathbf{x}) \equiv 1$
- f(x) is contained in the convex hull of data points
- $|\{\mathbf{p}_i\}| > 1 \Rightarrow f(\mathbf{x}) \in \mathbb{C}^{\infty}$ and $\nabla f(\mathbf{p}_i) = \mathbf{0}$
 - → Data points are saddles
- global interpolation
 - \rightarrow every f(x) depends on all data points
- Only constant precision, i.e. only constant functions are reproduced exactly

Shepard Interpolation

Localization:

• Set
$$f(\mathbf{x}) = \sum_{i} \mu_{i}(\mathbf{x}) \phi_{i}(\mathbf{x}) f_{i}$$

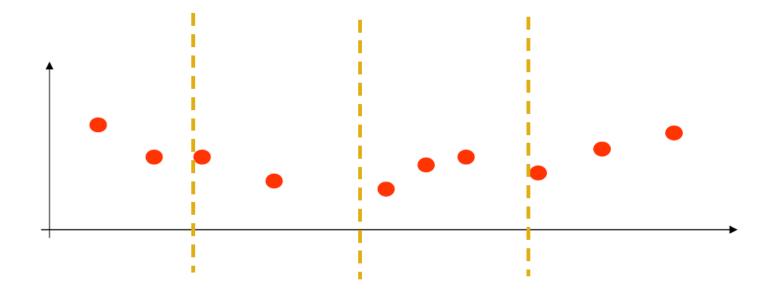
• with
$$\mu_i(\mathbf{x}) = \begin{cases} (1 - \|\mathbf{x} - \mathbf{p}_i\| / R_i)^{\nu} & \text{if } \|\mathbf{x} - \mathbf{p}_i\| < R_i \\ 0 & \text{else} \end{cases}$$

for reasonable R_i and $\nu > 1$

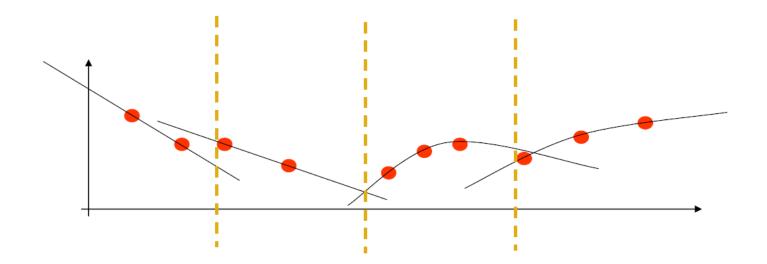
→no constant precision because of possible holes in the data

Partition of Unity Methods

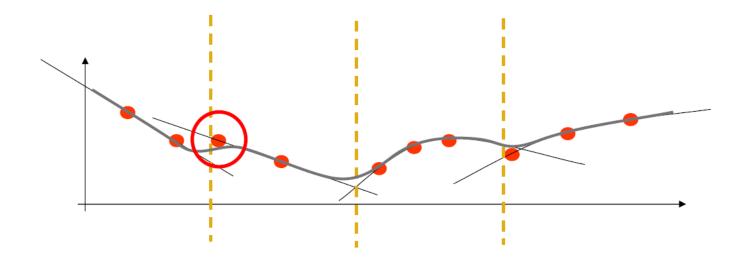
Subdivide domain into cells



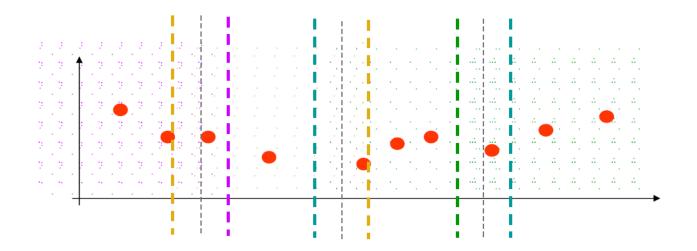
Compute local interpolation per cell



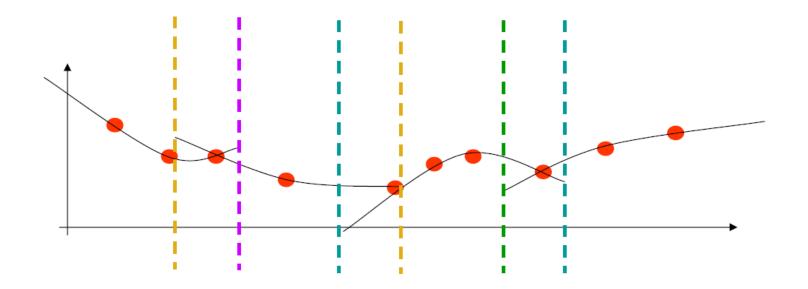
Blend local interpolations?



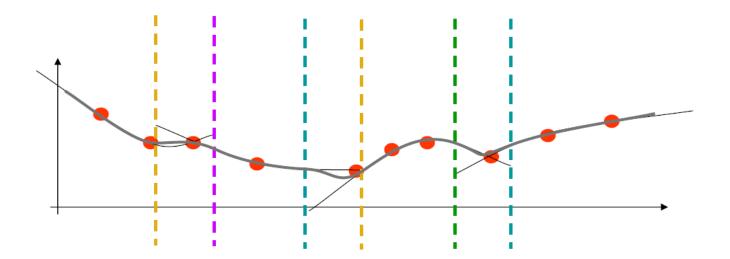
Subdivide domain into overlapping cells



Compute local interpolations

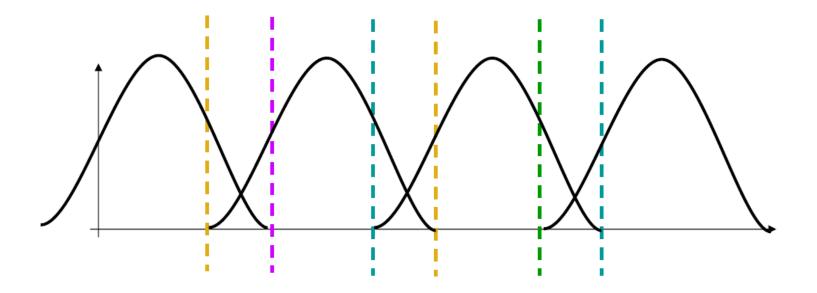


Blend local interpolations



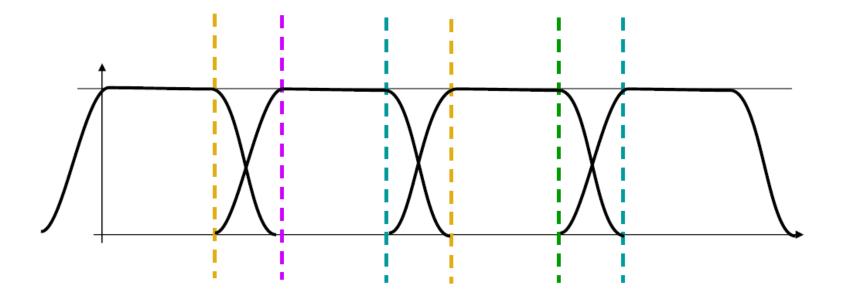
Partition of Unity Methods

- Weights should
 - Have the (local) support of the cell



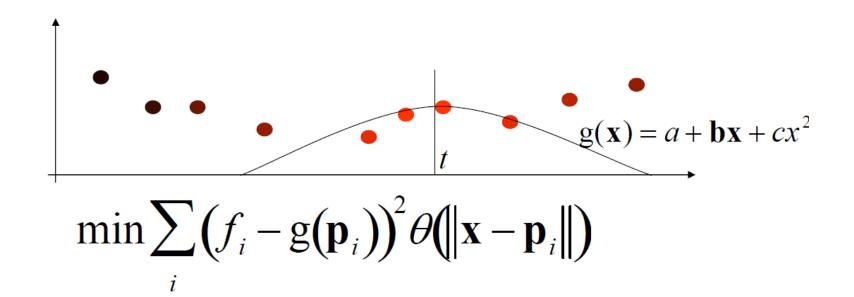
Partition of Unity Methods

- Weights should
 - Sum up to one everywhere (Shepard weights)
 - Have the (local) support of the cell



Moving Least Squares

- Compute a local LS approximation at x
- Weight data points based on distance to x

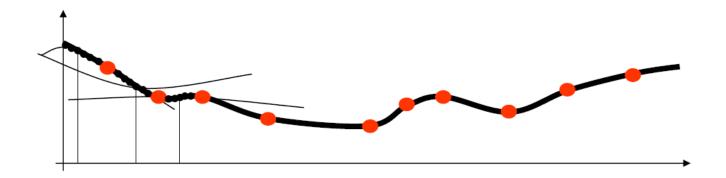


Moving Least Squares

The set

$$f(\mathbf{x}) = g_{\mathbf{x}}(\mathbf{x}), g_{\mathbf{x}} : \min_{g} \sum_{i} (f_{i} - g(\mathbf{p}_{i}))^{2} \theta(||\mathbf{x} - \mathbf{p}_{i}||)$$

is a smooth curve, iff θ is smooth



Moving Least Squares

- Typical choices for θ:

 - $\theta(d) = d^{-r}$ $\theta(d) = e^{-d^2/h^2}$
- Note: $\theta_i = \theta(\|\mathbf{x} \mathbf{p}_i\|)$ is fixed
- For each x
 - Standard weighted LS problem
 - Linear iff corresponding LS is linear

Fitting

Implicits

- Each orientable 2-manifold can be embedded in 3-space
- Idea: Represent 2-manifold as zero-set of a scalar function in 3-space

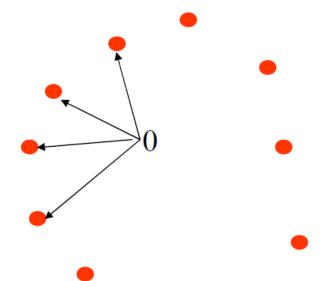
- Inside:
$$f(x) < 0$$

– On the manifold: f(x) = 0

- Outside: $f(\mathbf{x}) > 0$

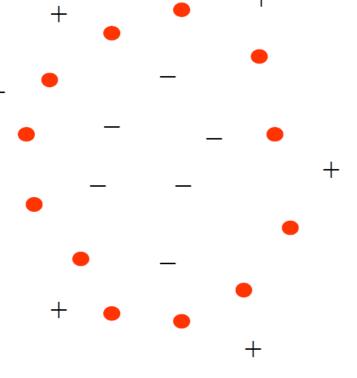
Implicits from point samples

- Function should be zero in data points
 - $f(\mathbf{p}_i) = 0$
- Use standard approximation techniques to find f
- Trivial solution: f = 0
- Additional constraints are needed



Implicits from point samples

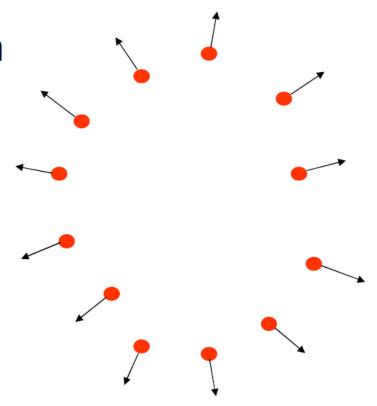
- Constraints define inside and outside
- Simple approach (Turk, + O'Brien)
 - Sprinkle additional information manually
 - Make additional information soft constraints



Implicits from point samples

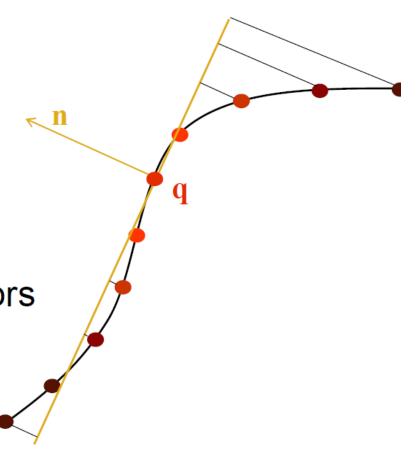
Use normal information

- Normals could be computed from scan
- Or, normals have to be estimated



Estimating normals

- Normal orientation (Implicits are signed)
 - Use inside/outside information from scan
- Normal direction by fitting a tangent
 - LS fit to nearest neighbors
 - Weighted LS fit
 - MLS fit



Estimating normals

General fitting problem

$$\min_{\|\mathbf{n}\|=1} \sum_{i} \langle \mathbf{q} - \mathbf{p}_{i}, \mathbf{n} \rangle^{2} \theta(\|\mathbf{q} - \mathbf{p}_{i}\|)$$

q

Problem is non-linear
 because n is constrained
 to unit sphere

Estimating normals

The constrained minimization problem

$$\min_{\|\mathbf{n}\|=1} \sum_{i} \langle \mathbf{q} - \mathbf{p}_{i}, \mathbf{n} \rangle^{2} \theta_{i}$$

is solved by the eigenvector corresponding to the smallest eigenvalue of the following covariance matrix

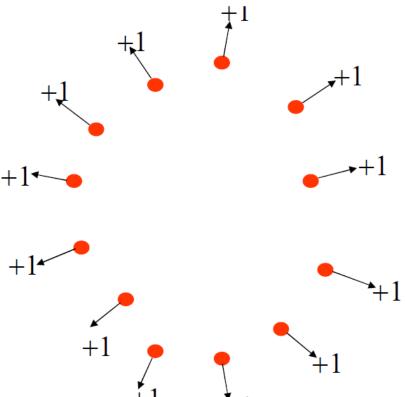
$$\sum_{i} (\mathbf{q} - \mathbf{p}_{i}) \cdot (\mathbf{q} - \mathbf{p}_{i})^{\mathrm{T}} \theta_{i}$$

which is constructed as a sum of weighted outer products.

Implicits from point samples

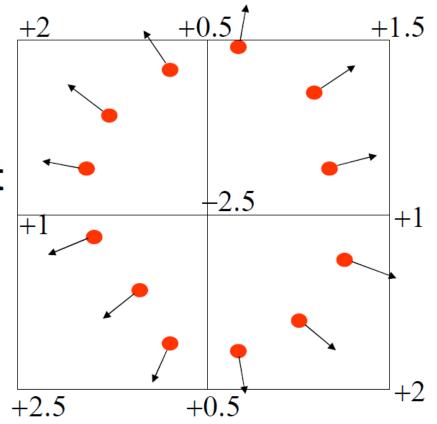
- Compute non-zero anchors in the distance field
- Use normal information directly as ₊₁
 constraints

$$f(\mathbf{p}_i + \mathbf{n}_i) = 1$$



Implicits from point samples

- Compute non-zero anchors in the distance field
- Compute distances at specific points
 - Vertices, mid-points, etc. in a spatial subdivision



• Given N points and normals \mathbf{p}_i , \mathbf{n}_i and constraints $f(\mathbf{p}_i) = 0$, $f(\mathbf{c}_i) = d_i$

- Let $\mathbf{p}_{i+N} = \mathbf{c}_i$
- An RBF approximation

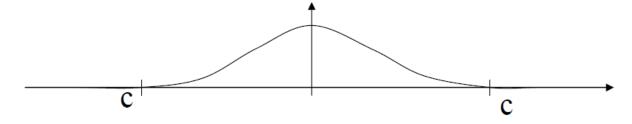
$$f(\mathbf{x}) = \sum_{i} w_{i} \theta(\|\mathbf{p}_{i} - \mathbf{x}\|)$$

leads to a system of linear equations

- Practical problems: N > 10000
- Matrix solution becomes difficult
- Two solutions
 - Sparse matrices allow iterative solution
 - Smaller number of RBFs

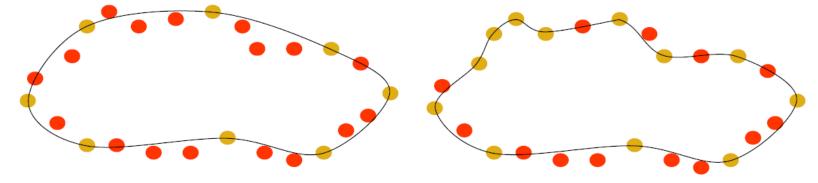
• Sparse matrices
$$\begin{pmatrix} \theta(0) & \theta(|\mathbf{p}_0 - \mathbf{p}_1||) & \theta(|\mathbf{p}_0 - \mathbf{p}_2||) & \cdots \\ \theta(|\mathbf{p}_1 - \mathbf{p}_0||) & \theta(0) & \theta(|\mathbf{p}_1 - \mathbf{p}_2||) & \cdots \\ \theta(|\mathbf{p} - \mathbf{p}_0||) & \theta(|\mathbf{p}_2 - \mathbf{p}_1||) & \theta(0) & \cdots \\ \vdots & & \ddots \end{pmatrix}$$

-Needed: $d > c \rightarrow r(d) = 0, r'(c) = 0$



Compactly supported RBFs

- Smaller number of RBFs
- Greedy approach (Carr et al.)
 - Start with random small subset
 - Add RBFs where approximation quality is not sufficient



RBF Implicits - Results

Multi-Level Partition of Unity

Overview

- Goal:
 - Use multi-level partition of unity (MPU) implicit surface to construct surface models
- 3 Key Concepts:
 - Piecewise quadratic functions used as local estimates
 - Weighing functions that blend these local shape functions.
 - Octree subdivision that adapts based on shape complexity.
- Flexibility
 - Accurate representation of sharp features (edges, corners)
- Adaptive approximation based on required accuracy
 - Determines space/time complexity

Advantages of Implicit Functions

 Edit surfaces using standard implicit modeling operations: shape blending, offsets, deformations

Method Summary: Setup

Given: set of points with normals to indicate surface orientation

- Partition of unity: set of weighing functions that sum to one at all points in the domain
- MPU implicit: adaptive error-controlled approximation of signed distance function from surface
 - Surface is zero-level of the distance function.

Method Summary: Algorithm

- To create implicit representation:
 - Octree-based subdivision of bounding box for entire point set
 - At each cell, fit a piecewise quadratic function (local shape function)
 - Signed distance function: 0 near points, positive inside, negative outside
 - If shape function isn't accurate enough, subdivide further until desired accuracy is achieved
 - In common boundary between cells, shape functions are blended together according to weights from partition of unity functions
- Global implicit of function is given by blending of local shape functions at the leaves of the octree

Partition of Unity

- Generate weight functions:
 - For approximation: use quadratic B-spline b(t)

$$w_i(x) = b\left(\frac{3|x - c_i|}{2R_i}\right)$$

For interpolation: use inverse-distance singular weights

$$w_i(x) = \left[\frac{(R_i - |x - c_i|)_+}{R_i |x - c_i|}\right]^2$$
, where $(a)_+ = \begin{cases} a & a > 0\\ 0 & else \end{cases}$

For interpolation: use inverse-distance singular weights

$$\Omega \subset \cup_i \operatorname{supp}(w_i)$$

Partition of Unity

- Blend local functions using smooth, local weights that add up to 1
 - Partition of unity functions

$$\sum_{i} \phi_{i} \equiv 1 \text{ on } \Omega \qquad \qquad \phi_{i}(x) = \frac{w_{i}(x)}{\sum_{j=1}^{n} w_{j}(x)}$$

- Define set of local shape functions V_i
- Approximation of a function defined on domain

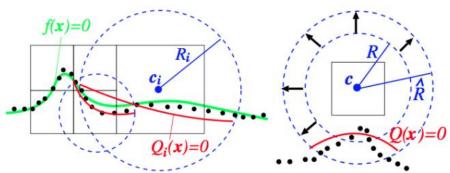
$$Q_i \in V_i$$
 $f(x) \approx \sum_i \phi_i(x) Q_i(x)$

Adaptive Octree

- Octree-based subdivision. Each cell has center c and diagonal length d
- Define the support radius for the cell's weight function: $R=\alpha d$
 - Bigger alpha -> smoother interpolation/approximation, slower computation
 - Time complexity quadratic on alpha
- Must have at least N_{min} points in the sphere to estimate shape function
 - If not enough, iteratively increase radius

$$\hat{R} = \hat{R} + \lambda R$$

$$\alpha = 0.75 \qquad \lambda = 0.1$$

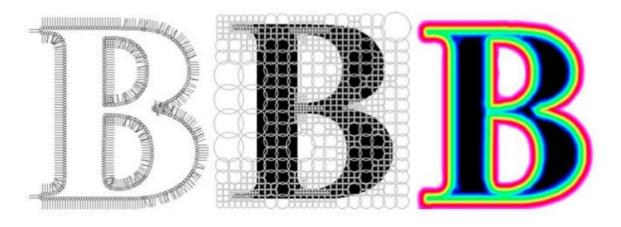


Adaptive Octree

 Local max-norm approximation error estimated based on Taubin distance

$$\epsilon = \max_{|p_i - c| < R} \frac{|Q(p_i)|}{|\nabla Q(p_i)|}$$

If error is larger than a threshold ε0, subdivide the cell



Algorithm: Pseudocode

```
MPUapprox(\mathbf{x}, \boldsymbol{\varepsilon}_0)
                                                                     d = ||\mathbf{c} - \mathbf{x}||;
                                                                     if (d > R) then
                EvaluateMPUapprox(\mathbf{x}, \boldsymbol{\varepsilon}_0)
                       S_{wO} = S_w = 0;
                                                                            return:
                                                                     end if
                       root - >MPUapprox(\mathbf{x}, \boldsymbol{\varepsilon}_0)
                                                                     if (Q is not created yet) then
                       return S_{wO}/S_w;
                                                                           Create Q and compute \varepsilon;
                                                                     end if
    S_{wQ} = \sum w_i(x)Q_i(x)
                                                                     if ({m \epsilon} > {m \epsilon}_0) then
                                                                            if (No childs) then
                                                                                  Create childs:
       S_w = \sum w_i(x)
                                                                            end if
                                                                            for each child
                                                                                  child->MPUapprox(\mathbf{x}, \boldsymbol{\varepsilon}_0);
f(x) \approx \frac{S_{wQ}}{S_{w}} = \frac{\sum w_i(x)Q_i(x)}{\sum w_i(x)}
                                                                            end for
                                                                     else
                                                                           S_{wO} = S_{wO} + w(d,R) * Q(\mathbf{x});
                                                                           S_w = S_w + w(d, R):
                                                                     end if
```

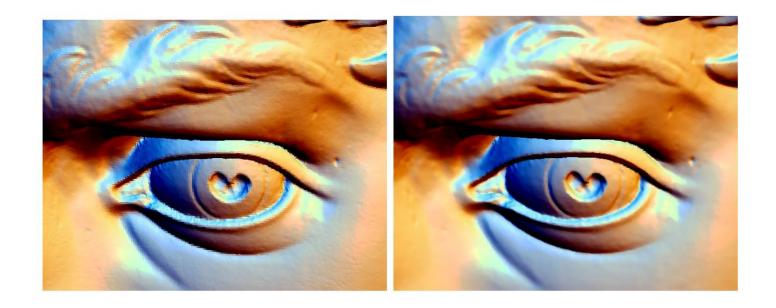
Local Shape Functions – Details in the paper

- General 3D quadric
 - Larger parts of the surface: unbounded, more than one sheet B

- Bivariate quadratic polynomial in local coordinates
 - Local smooth patch C

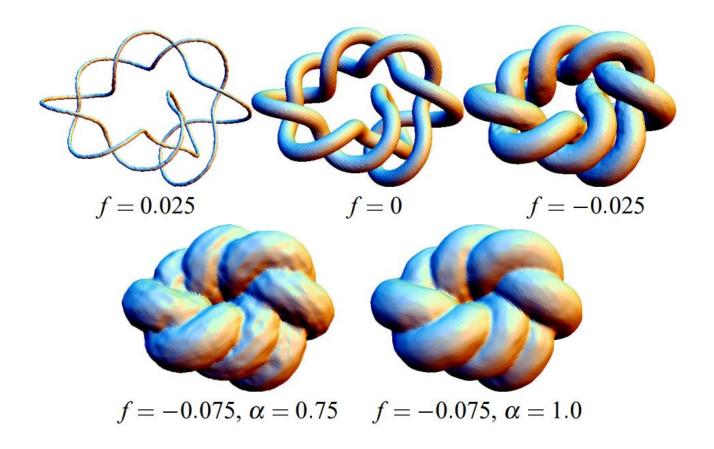
- Piecewise quadric surface to fit sharp features
 - Edges, corners

Representation power



Eye from Stanford's reconstruction of Michalangelo's David (scanned at 1mm resolution). Right: The eye is reconstructed as an MPU implicit with relative accuracy 10^{-4}

Robustness

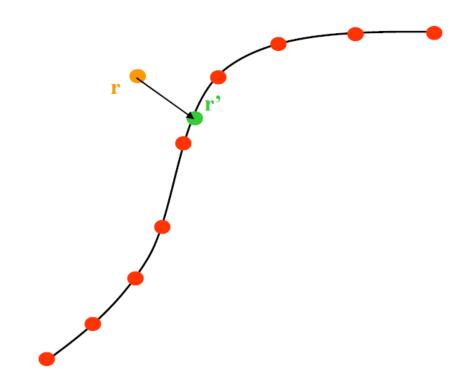


Offsetting of a knot model. The distance function to the knot is approximated by w=f(x,y,z)

Projection-based Approaches

Projection

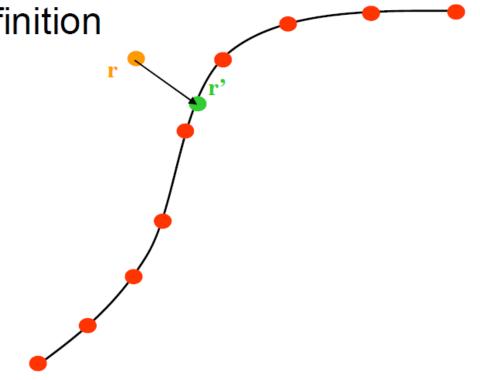
- Idea: Map space to surface
- Surface is defined as fixpoints of mapping



Surface definition

- Projection procedure (Levin)
 - Local polyonmial approximation
 - Inspired by differential geometry
 - "Implicit" surface definition

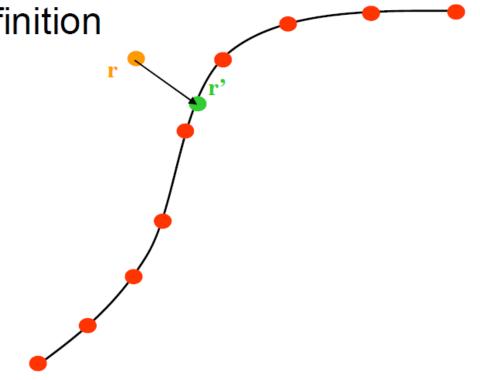
- Infinitely smooth &
- Manifold surface



Surface definition

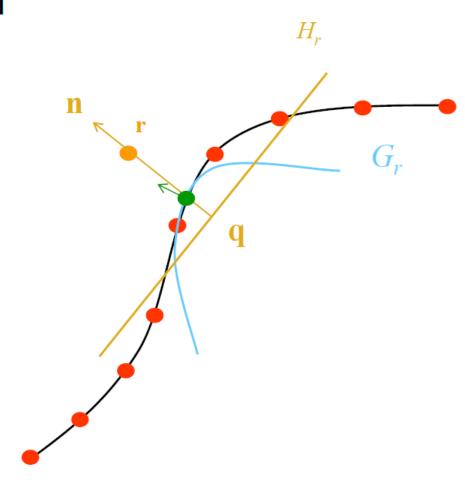
- Projection procedure (Levin)
 - Local polyonmial approximation
 - Inspired by differential geometry
 - "Implicit" surface definition

- Infinitely smooth &
- Manifold surface



Surface definition

- Constructive definition
 - Input point r
 - Compute a local reference plane H_r=⟨q,n⟩
 - Compute a local polynomial over the plane G_r
 - Project point $\mathbf{r}' = G_{\mathbf{r}}(0)$
 - Estimate normal

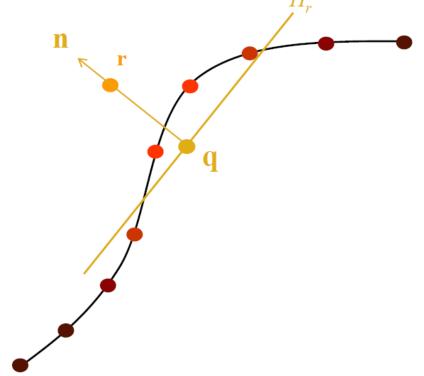


Local reference surface

- Find plane $H_r = \langle \mathbf{q}, \mathbf{n} \rangle + D_r$

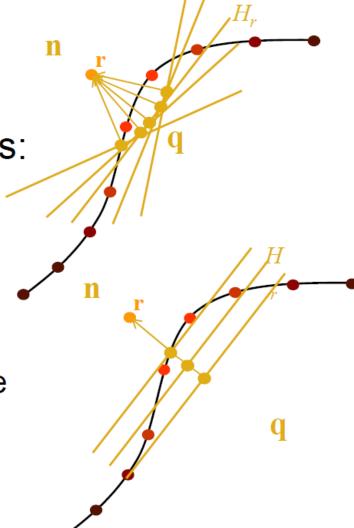
Weight function based on distance to q, not r

- $\min_{\mathbf{q}, \|\mathbf{n}\|=1} \sum_{i} \langle \mathbf{q} \mathbf{p}_{i}, \mathbf{n} \rangle^{2} \theta(\|\mathbf{q} \mathbf{p}_{i}\|)$ $\theta(\mathbf{d}) = e^{d^{2}/h^{2}}$
- - h is feature size/ point spacing
- $-H_r$ is independent of r's distance
- Manifold property



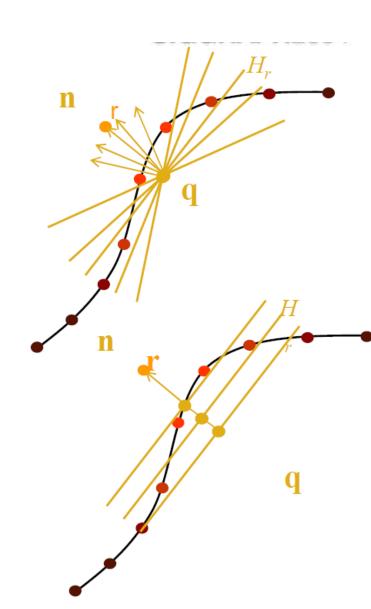
Local Reference Plane

- Computing reference plane
 - Non-linear optimization problem
- Minimize independent variables:
 - Over \mathbf{n} for fixed distance $\|\mathbf{r} \mathbf{q}\|$
 - Along n for fixed direction n
 - q changes → the weights change
 - Only iterative solutions possible



Local reference plane

- Practical computation
 - Minimize over n for fixed q
 - Eigenvalue problem
 - Translate q so that $\mathbf{r} = \mathbf{q} + \|\mathbf{r} \mathbf{q}\|\mathbf{n}$
 - Effectively changes $\|\mathbf{r} \mathbf{q}\|$
 - Minimize along n for fixed direction n
 - Exploit partial derivative



Rejecting the point

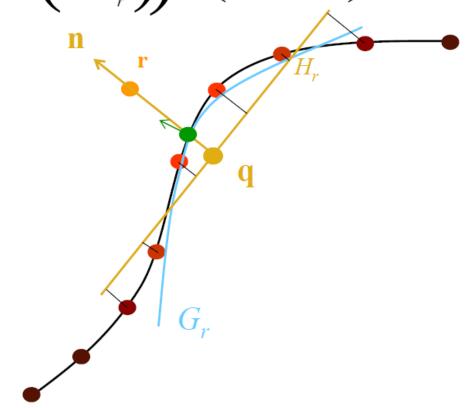
MLS polyonomial over H_r

$$-\min_{G \in \Pi_d} \sum_{i} \left(\left\langle \mathbf{q} - \mathbf{p}_i, \mathbf{n} \right\rangle - G\left(\mathbf{p}_i |_{H_r} \right) \right)^2 \theta \left(\left\| \mathbf{q} - \mathbf{p}_i \right\| \right)$$

- LS problem

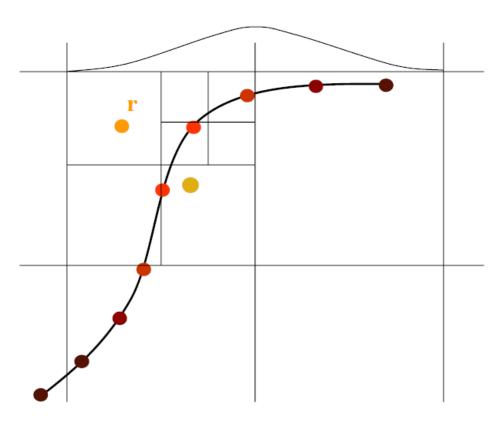
$$-\mathbf{r}'=G_r(0)$$

Estimate normal



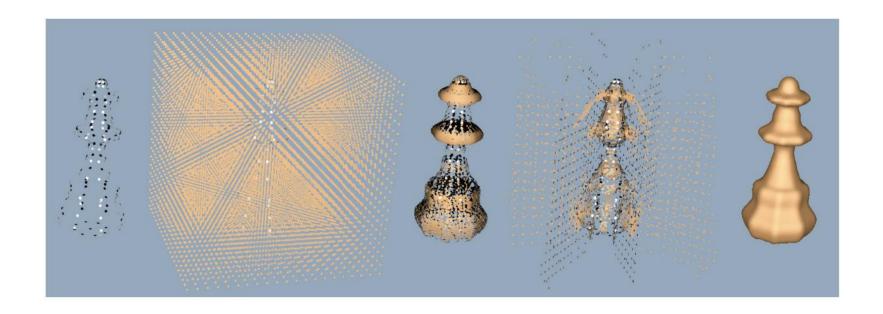
Spatial data structure

- Regular grid based on support of θ
 - Each point influences only 8 cells
- Each cell is an octree
 - Distant octree cells are approximated by one point in center of mass



Defining point-set surfaces

[Amenta and Kil 05]



Poisson Surface Reconstruction

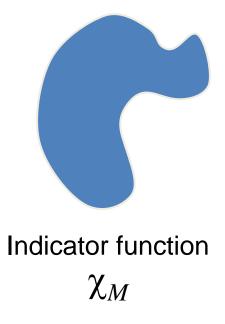
Poisson surface reconstruction

- Michael Kazhdan, M. Bolitho, and H. Hoppe, SGP 2006
- Source Code available at: <u>http://www.cs.jhu.edu/~misha/</u>
- Implementation included in Meshlab
- Relevant works
 - Poisson mesh editing [SIGGRAPH 2004, SGP 2004]
 - Poisson image editing [SIGGRAPH 2003]

Poisson surface reconstruction

- Indicator Function
 - reconstruct the surface by solving for the indicator function of the shape
 - Assume normal as inputs

$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$



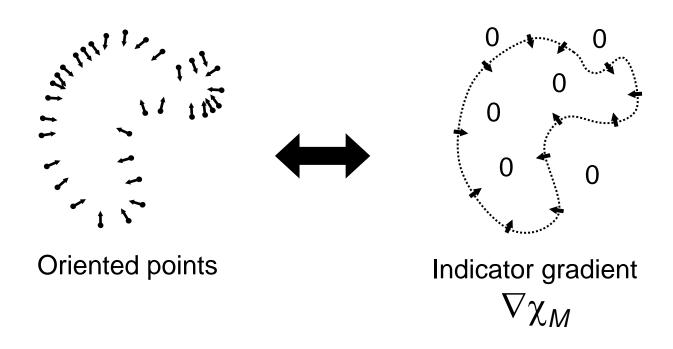
Problem

- Fit the indicator function to a set of oriented normal
 - Fitting should be robust



Gradient Relationship

 There is a relationship between the normal field and gradient of indicator function



Integration

- Represent the points by a vector field
- Find the function χ whose gradient best approximates \vec{V} :

$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

Integration

- Represent the points by a vector field
- Find the function χ whose gradient best approximates \vec{V} :

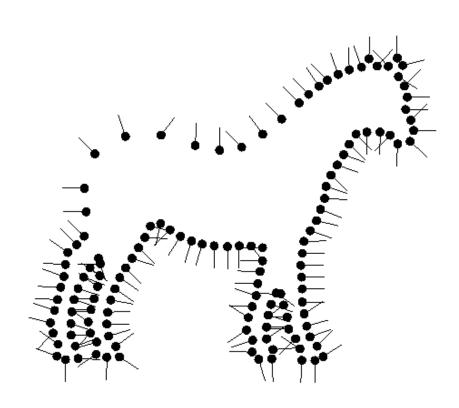
$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

 Applying the divergence operator, we can transform this into a Poisson problem:

$$\nabla \cdot (\nabla \chi) = \nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi = \nabla \cdot \vec{V}$$

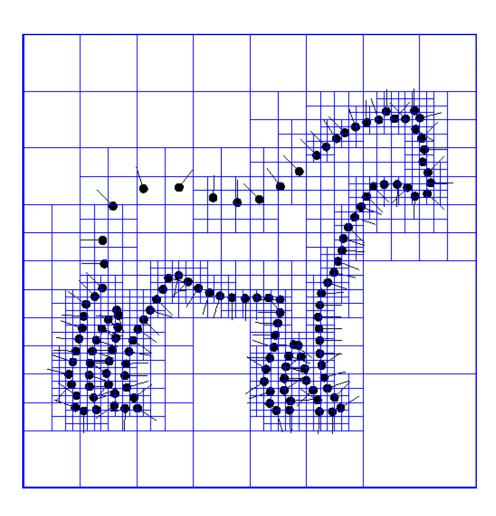
Implementation

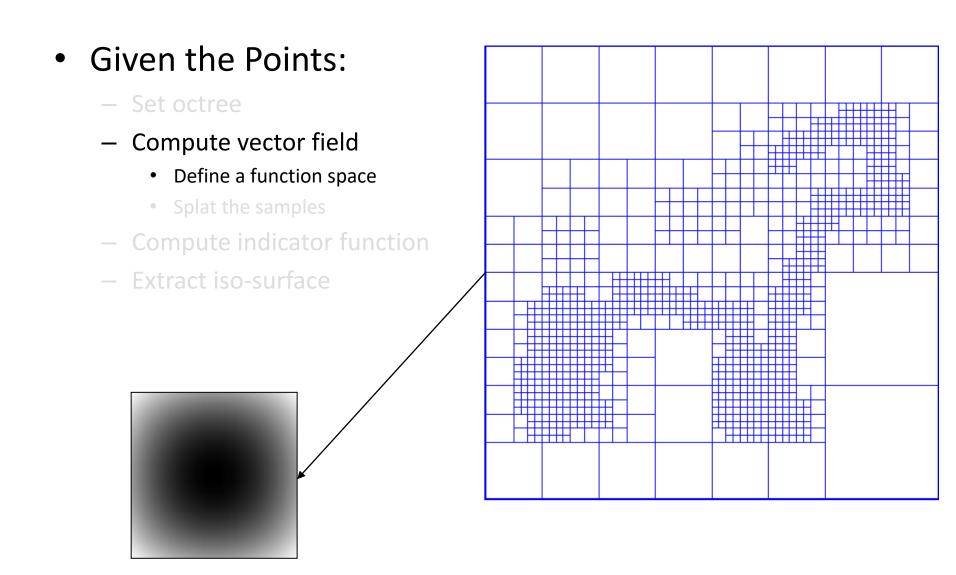
- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Extract iso-surface

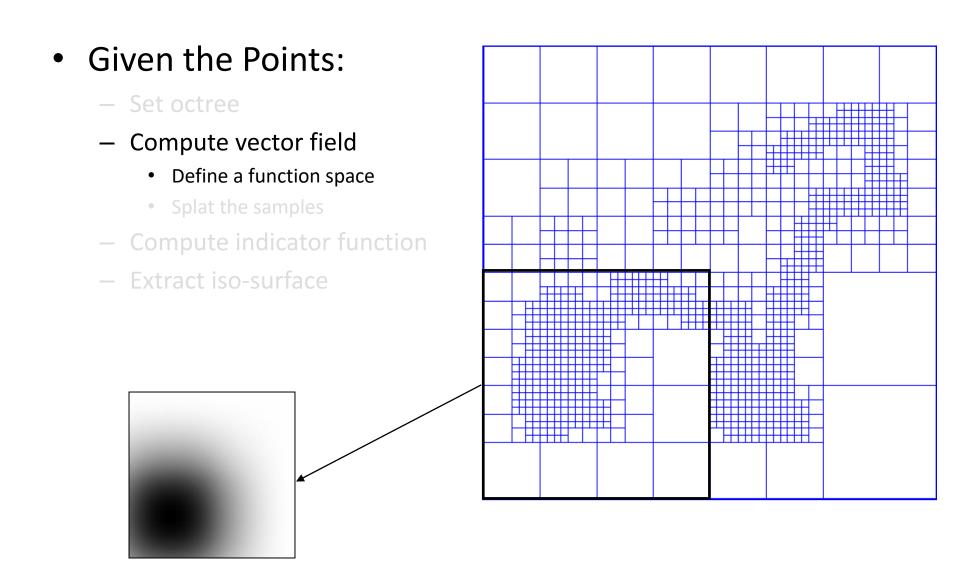


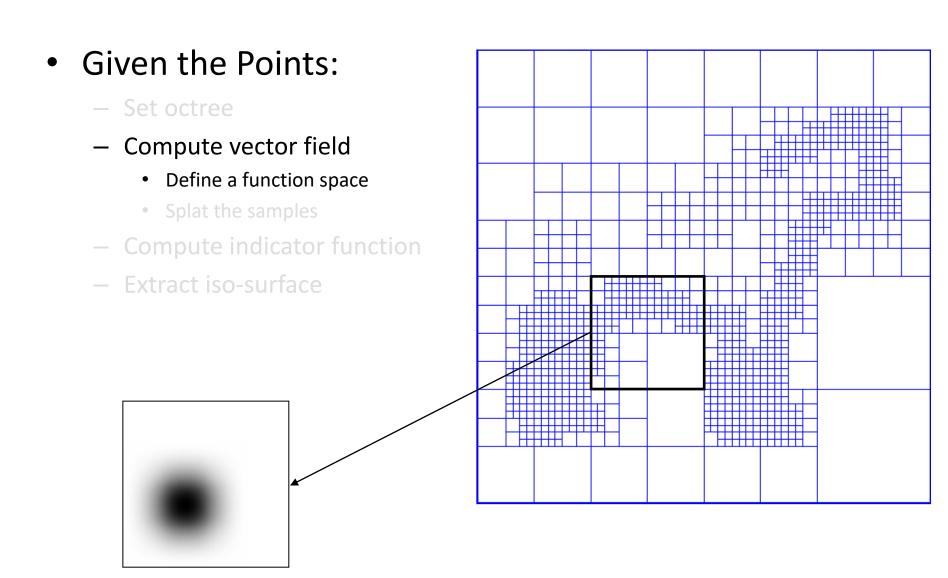
Implementation: Adapted Octree

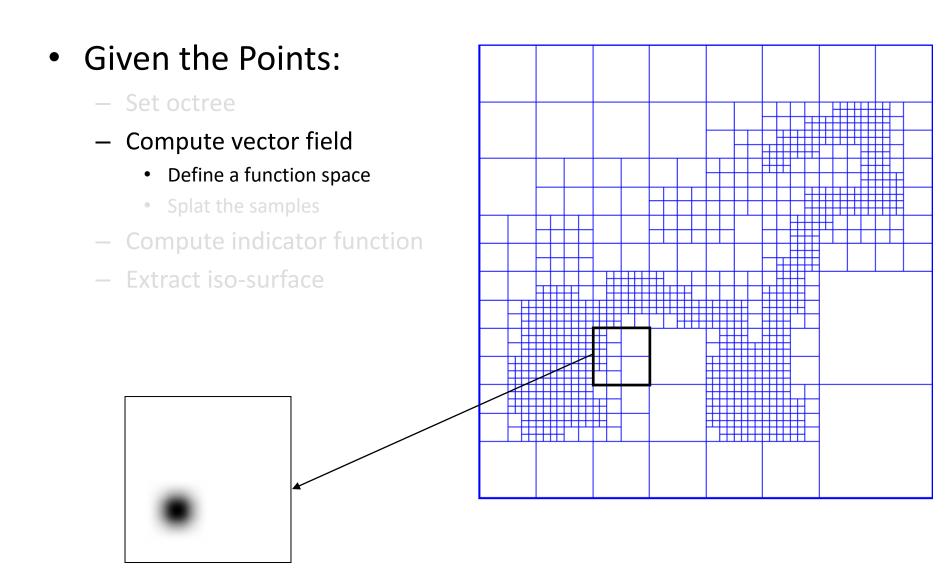
- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Extract iso-surface



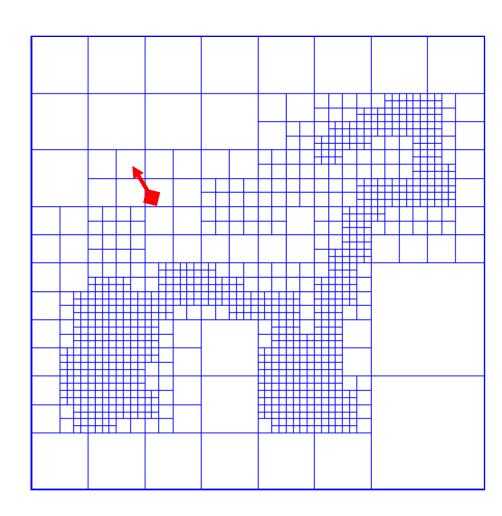




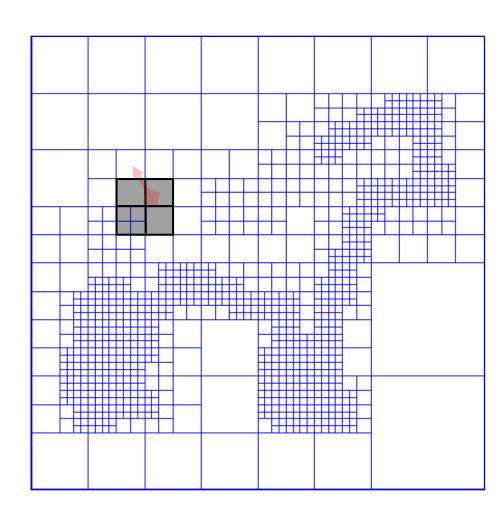




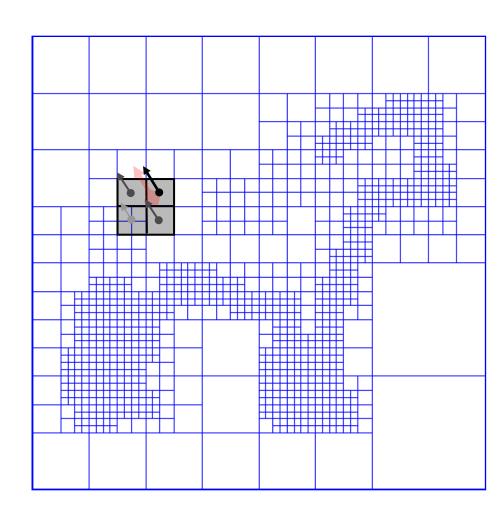
- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



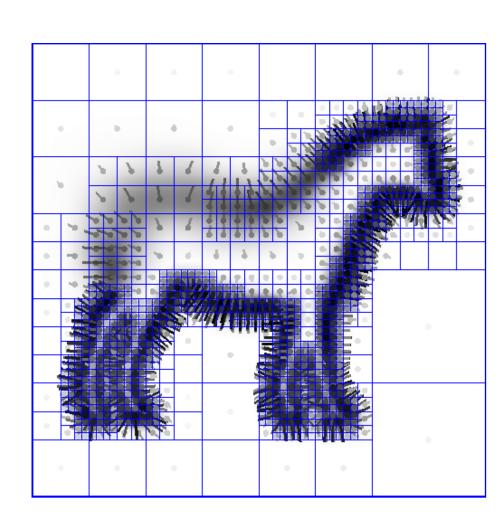
- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

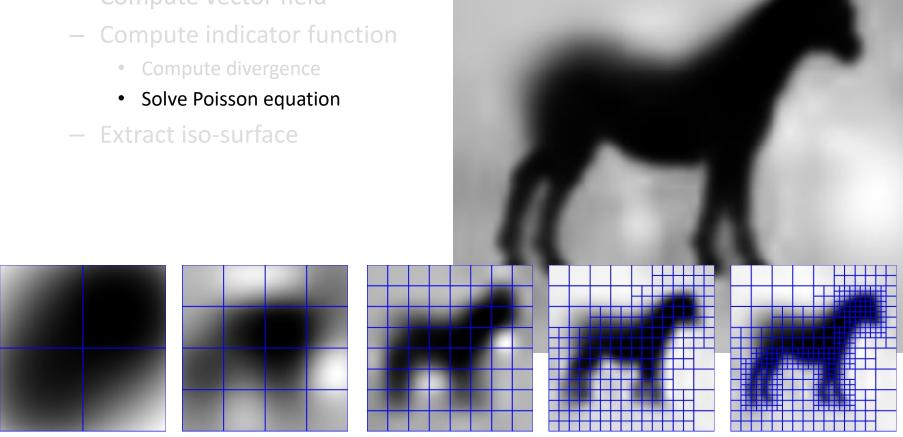


- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

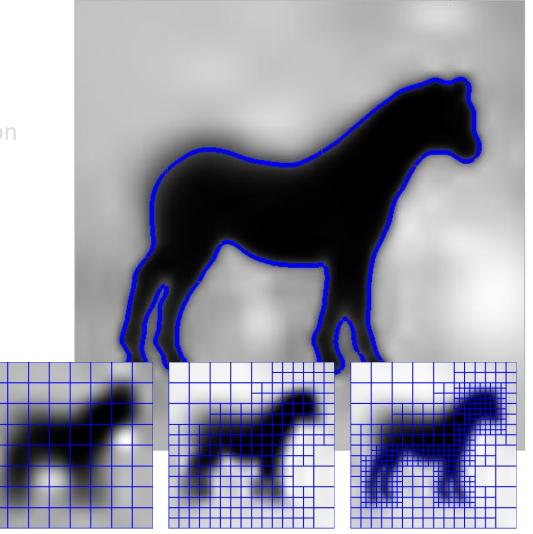


- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface

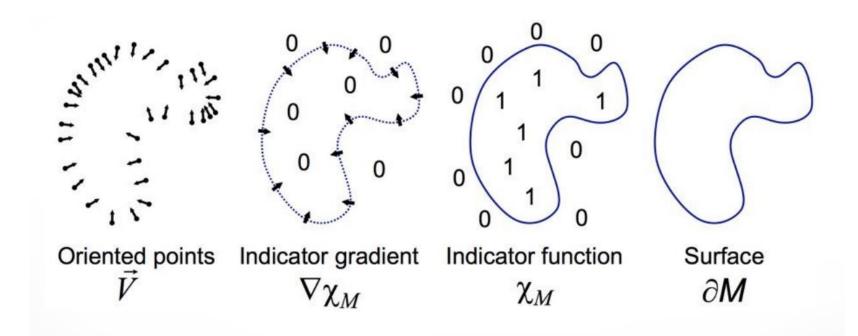
- Set octree
- Compute vector field



- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface



Summary

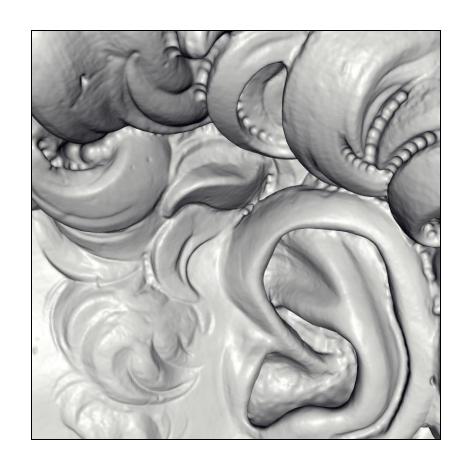


Michelangelo's David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Compute Time: 2.1 hours
- Peak Memory: 6600MB

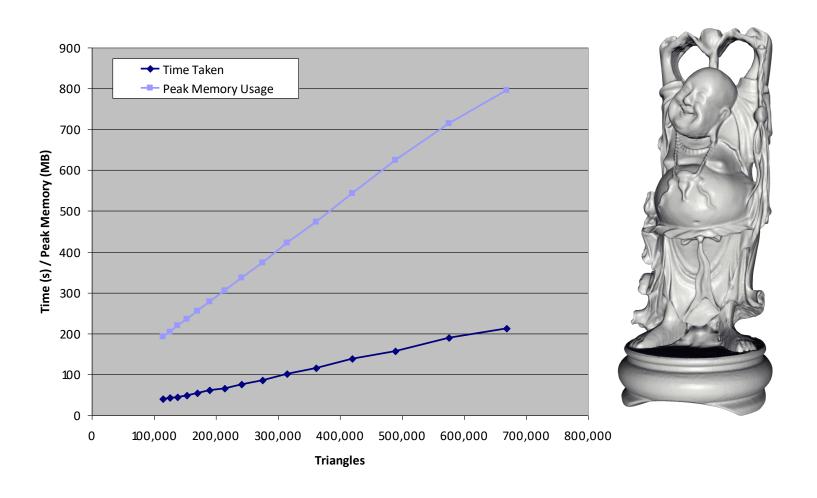
David – Chisel marks

David – Drill Marks

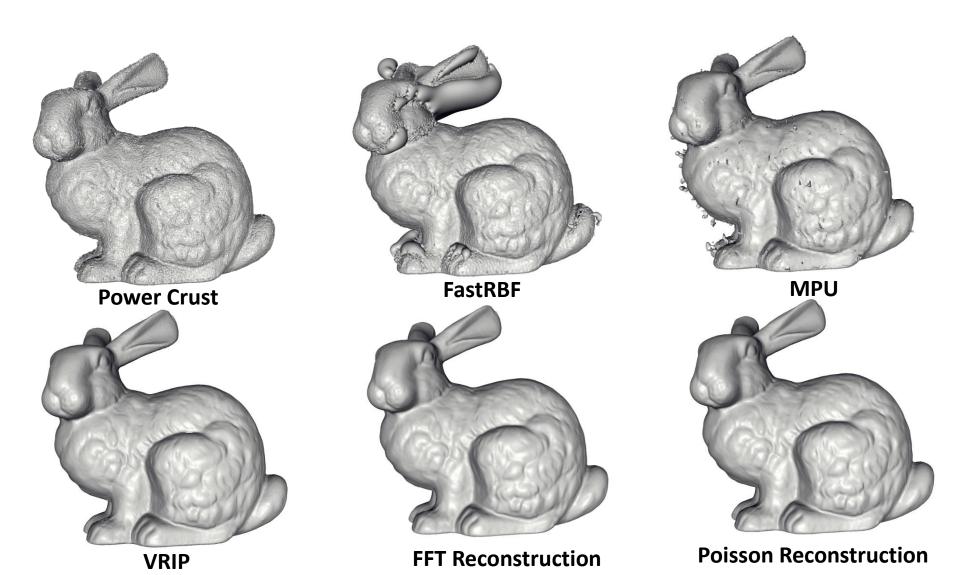


David – Eye

Scalability – Buddha Model



Stanford Bunny



VRIP Comparison

VRIP

Poisson Reconstruction

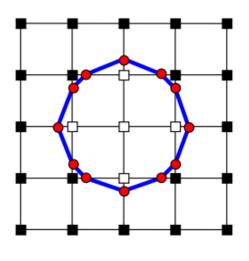
Neural Implicits

We will cover this later

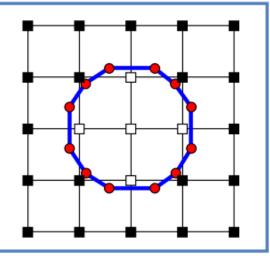
Meshing

Algorithms

- Primal methods
 - Marching Squares (2D),
 Marching Cubes (3D)
 - Placing vertices on grid edges



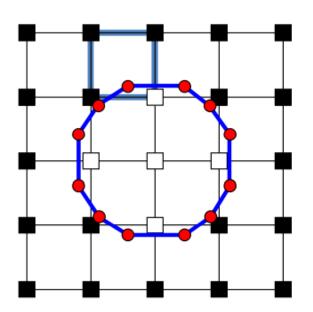
- Dual methods
 - Dual Contouring (2D,3D)
 - Placing vertices in grid cells



Slide Credit: Tao Ju

Dual Contouring (2D)

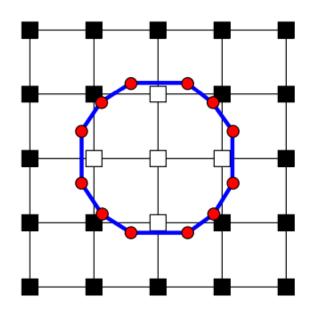
- For each grid cell with a sign change
 - Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment



Dual Contouring (2D)

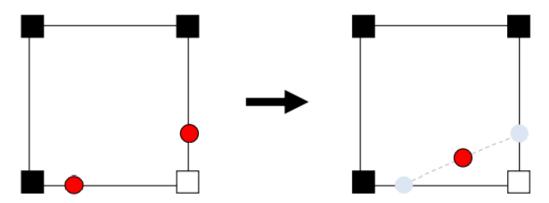
 For each grid cell with a sign change

- Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment



Dual Contouring (2D)

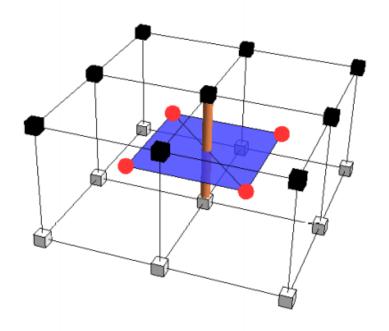
- Creating the vertex within a cell
 - Compute one point on each grid edge with a sign change (by linear interpolation)
 - There could be more than two sign-changing edges, so
 >2 points possible
 - Take the centroid of these points



Slide Credit: Tao Ju

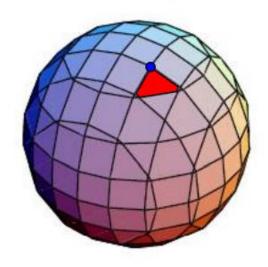
Dual Contouring (3D)

- For each grid cell with a sign change
 - Create one vertex (same way as 2D)
- For each grid edge with a sign change
 - Create a quad (or two triangles) connecting the four vertices in the adjacent grid cubes
 - No look-up table is needed!

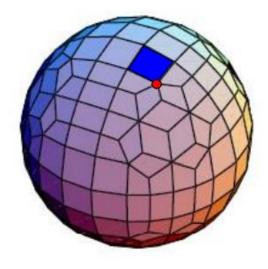


Duality

- The two outputs have a dual structure
 - Vertices and quads of Dual Contouring correspond (roughly) to un-triangulated polygons and vertices produced by Marching Cubes



Marching Cubes



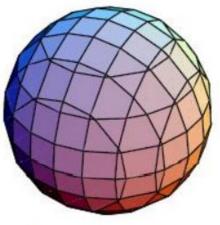
Dual Contouring

Slide Credit: Tao Ju

Slide Credit: Tao Ju

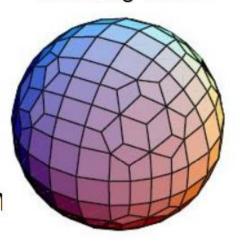
Primal vs. Dual

- Marching Cubes
 - ✓ Always manifold
 - Requires look-up table in 3D
 - X Often generates thin and tiny poly



Marching Cubes

- Dual Contouring
 - * Can be non-manifold
 - ✓ No look-up table needed
 - ✓ Generates better-shaped polygon



Dual Contouring

Slide Credit: Tao Ju

Primal vs. Dual

- Marching Cubes
 - ✓ Always manifold
 - Requires look-up table in 3D
 - Continuous of the continuous of the
 - Restricted to uniform grids
- Dual Contouring
 - Kan be non-manifold
 - No look-up table needed
 - ✓ Generates better-shaped polygon
 - ✓ Can be applied to any type of gric DC on

