
GAMES
Surface Reconstruction

Qixing Huang

July  23th 2021



Goal

Captured point cloud Reconstructed model



Two approaches

• Explicit
– Local surface 

connectivity 
estimation

– Computation 
geometry based

• Implicit
– Signed distance 

function estimation

– Mesh approximation

– Fast and efficient



Implicit-Based Methods



Surface Reconstruction from 
Unorganized Points 

[H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle
SIGGRAPH 1992]



Method Pipeline

• Input:
– Cloud of points
– Orientation not required

• Output:
– Triangular mesh
– Possible boundary edges

• Guarantees:
– Manifold



Implicit Surfaces : Regular value



Implicit Function Theorem



Computation of the Signed Distance 
Function
• For each sample fit a tangent plane using its k-

Nearest Neighbours

• Define a coherent orientation for the tangent plane 
of all sample points

• For any 𝑝 ∈ 𝑅3 the signed distance function is given 
by its closest (oriented) tangent plane.



Tangent Plane Fitting



Computation of the Signed Distance 
Function
• For each sample fit a tangent plane using its k-

Nearest Neighbours

• Define a coherent orientation for the tangent plane 
of all sample points

• For any 𝑝 ∈ 𝑅3 the signed distance function is given 
by its closest (oriented) tangent plane.



Global Optimization



Normal Propagation By Geometric 
Proximity



Normal Propagation By Geometric 
Proximity





Normal Propagation by Plane Parallelism



Normal Propagation by Plane Parallelism



Normal Propagation by Plane Parallelism



Computation of the Signed Distance 
Function
• For each sample fit a tangent plane using its k-

Nearest Neighbours

• Define a coherent orientation for the tangent plane 
of all sample points

• For any 𝑝 ∈ 𝑅3 the signed distance function is given 
by its closest (oriented) tangent plane



Sampling Assumptions



Signed Distance Function



Remark



Surface Reconstruction: Marching 
Cubes



Surface Reconstruction: Marching 
Cubes



Surface Reconstruction: Marching 
Cubes



Data Structure



Results



A Volumetric Method for Building 
Complex Models from Range Images

[Brian Curless and Marc Levoy, SIGGRAPH 1996]

https://graphics.stanford.edu/papers/volrange/slides/











Hole Filling Using Sensor Information

• It is possible to fill holes in the polygonal mesh 
directly, but such methods:

– Are hard to make robust

– Do not use all available information















Other Print-Based Fitting Methods



Least Squares

• Fit a primitive to the data

• Minimizes squared distances between the 
points and the primitive 



Least Squares-- Example

• Primitive is a (univariate) polynomial

• Linear system of equations



Least Squares-- Example

• Resulting system



Radial Basis Functions

• Represent approximating function as 

– Sum of radial functions r

– Centered at the data points pi



Radial Basis Functions

• Solve 

to compute weights wi

• Linear system of equations



Radial Basis Functions

• Solvability depends on radial function

• Several choices assure solvability



Function Spaces!

• Monomial, Lagrange, RBF share the same 
principle
– Choose basis of a function space

– Find weight vector for base elements by solving linear 
system defined by data points

– Compute values as linear combinations

• Properties
– One costly preprocessing step

– Simple evaluation of function in any point



Function Spaces?

• Problems

– Many points lead to larger linear systems

– Evaluation requires global solutions

• Solutions

– RBF with compact support

• Matrix is sparse

• Still: solution depends on every data point, though 
drop-off is exponential with distance

– Local approximation approaches



Partition of Unity



Shepard Interpolation

• Approach

with basis functions

• Define



Shepard Interpolation



Shepard Interpolation



Partition of Unity Methods



Partial of Unity Methods



Partial of Unity Methods

Subdivide domain into cells



Partial of Unity Methods

Compute local interpolation per cell



Partial of Unity Methods

Blend local interpolations?



Partial of Unity Methods

Subdivide domain into overlapping cells



Partial of Unity Methods

Compute local interpolations



Partial of Unity Methods

Blend local interpolations



Partition of Unity Methods

• Weights should

– Have the (local) support of the cell



Partition of Unity Methods

• Weights should

– Sum up to one everywhere (Shepard weights)

– Have the (local) support of the cell



Moving Least Squares

• Compute a local  LS approximation at x

• Weight data points based on distance to x



Moving Least Squares



Moving Least Squares



Fitting



Implicits



Implicits from point samples



Implicits from point samples



Implicits from point samples



Estimating normals



Estimating normals



Estimating normals



Implicits from point samples



Implicits from point samples



Computing Implicits



Computing Implicits



Computing Implicits



Computing Implicits



RBF Implicits - Results

Image courtesy: Greg Turk



Multi-Level Partition of Unity



Overview

• Goal:
– Use multi-level partition of unity (MPU) implicit surface to 

construct surface models

• 3 Key Concepts: 
– Piecewise quadratic functions used as local estimates
– Weighing functions that blend these local shape functions.
– Octree subdivision that adapts based on shape complexity.

• Flexibility
– Accurate representation of sharp features (edges, corners)

• Adaptive approximation based on required accuracy
– Determines space/time complexity



Advantages of Implicit Functions

• Edit surfaces using standard implicit modeling 
operations: shape blending, offsets, deformations



Method Summary: Setup

• Given: set of points with normals to indicate surface 
orientation

• Partition of unity: set of weighing functions that sum 
to one at all points in the domain

• MPU implicit: adaptive error-controlled 
approximation of signed distance function from 
surface

– Surface is zero-level of the distance function.



Method Summary: Algorithm

• To create implicit representation:
– Octree-based subdivision of bounding box for entire point set
– At each cell, fit a piecewise quadratic function (local shape 

function)
• Signed distance function: 0 near points, positive inside, negative 

outside

– If shape function isn’t accurate enough, subdivide further until 
desired accuracy is achieved

– In common boundary between cells, shape functions are 
blended together according to weights from partition of unity 
functions

• Global implicit of function is given by blending of local 
shape functions at the leaves of the octree



Partition of Unity

• Generate weight functions: 
– For approximation: use quadratic B-spline b(t)

– For interpolation: use inverse-distance singular weights

• For interpolation: use inverse-distance singular weights



Partition of Unity

• Blend local functions using smooth, local weights that add up 
to 1
– Partition of unity functions

• Define set of local shape functions Vi

• Approximation of a function defined on domain



Adaptive Octree

• Octree-based subdivision. Each cell has center c and diagonal 
length d

• Define the support radius for the cell’s weight function: 
– Bigger alpha -> smoother interpolation/approximation, slower 

computation

– Time complexity quadratic on alpha 

• Must have at least Nmin points in the sphere to estimate shape 
function
– If not enough, iteratively increase radius



Adaptive Octree

• Local max-norm approximation error estimated based on 
Taubin distance

• If error is larger than a threshold ɛ0 , subdivide the cell



Algorithm: Pseudocode



Local Shape Functions – Details in the 
paper

• General 3D quadric

– Larger parts of the surface: unbounded, more than one 
sheet B

• Bivariate quadratic polynomial in local coordinates

– Local smooth patch C

• Piecewise quadric surface to fit sharp features

– Edges, corners



Representation power

Eye from Stanford’s reconstruction of Michalangelo’s David (scanned at 1mm 
resolution). Right: The eye is reconstructed as an MPU implicit with relative accuracy 
10-4



Robustness

Offsetting of a knot model. The distance function to the knot is approximated by w=f(x,y,z) 



Projection-based Approaches



Projection

• Idea: Map space to surface

• Surface is defined as fixpoints of mapping



Surface definition



Surface definition



Surface definition



Local reference surface



Local Reference Plane



Local reference plane



Rejecting the point



Spatial data structure



Defining point-set surfaces
[Amenta and Kil 05]



Poisson Surface Reconstruction



Poisson surface reconstruction

• Michael Kazhdan, M. Bolitho, and H. 
Hoppe, SGP 2006

• Source Code available at:  
http://www.cs.jhu.edu/~misha/

• Implementation included in Meshlab

• Relevant works

– Poisson mesh editing [SIGGRAPH 
2004, SGP 2004]

– Poisson image editing [SIGGRAPH 
2003]

http://www.cs.jhu.edu/~misha/


Poisson surface reconstruction

• Indicator Function

– reconstruct the surface by solving for the indicator 
function of the shape

– Assume normal as inputs

M

Indicator function



Problem

• Fit the indicator function to a set of oriented normal 

– Fitting should be robust

M

Indicator functionOriented points



Gradient Relationship

• There is a relationship between the normal field and 
gradient of indicator function

M

Indicator gradient

0 0

0

0

0

0

Oriented points



Integration

• Represent the points by a vector field

• Find the function    whose gradient best 
approximates    : 



V


V


−min



Integration

• Represent the points by a vector field

• Find the function    whose gradient best 
approximates    :

• Applying the divergence operator, we can 
transform this into a Poisson problem: 



V


V


−min

( ) VV


==            



Implementation

• Given the Points:

– Set octree

– Compute vector field

– Compute indicator function

– Extract iso-surface



Implementation: Adapted Octree

• Given the Points:

– Set octree

– Compute vector field

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field
• Define a function space

• Splat the samples

– Compute indicator function

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field

– Compute indicator function
• Compute divergence

• Solve Poisson equation

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field

– Compute indicator function
• Compute divergence

• Solve Poisson equation

– Extract iso-surface



Implementation: Vector Field

• Given the Points:
– Set octree

– Compute vector field

– Compute indicator function
• Compute divergence

• Solve Poisson equation

– Extract iso-surface



Summary



Michelangelo’s David

• 215 million data points from 1000 
scans

• 22 million triangle reconstruction

• Compute Time: 2.1 hours

• Peak Memory: 6600MB



David – Chisel marks



David – Drill Marks



David – Eye



Scalability – Buddha Model

0

100

200

300

400

500

600

700

800

900

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000

Triangles

Ti
m

e
 (

s)
 /

 P
e

ak
 M

e
m

o
ry

 (
M

B
)

Time Taken

Peak Memory Usage



Stanford Bunny

Power Crust FastRBF MPU

VRIP FFT Reconstruction Poisson Reconstruction



VRIP Comparison

VRIP Poisson Reconstruction



Neural Implicits

• We will cover this later



Meshing


















