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Projection and Two-View Geometry



Pinhole camera

* The dominant image formation model in computer vision
 Apinhole camera is a box in which one wall has a small hole

» Exactly one ray from each point in the scene passes through
the pinhole and hits the wall opposite to it

 The inversion of the image is corrected for by considering a
virtual image on the opposite side of the pinhole

image
plane

~ pinhole -7 wvirtual
image




Mathematical model under this
idealized camera

* |tis clear that the camera is given by a perspective projection
that maps the 3D space to a 2D plane

(X, Y. Z (2,1
* The equations of perspective projections are given by

X Y
r=]—= y=f—=
B =/ y=r7
f is the focal length of the camera, i.e., the distance between
the image plane and the pinhole

) T Projection )T
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Homogeneous coordinates

 The representation of the image point x = (x,y) is referred to
as the inhomogeneous representation of the point x

* The homogeneous representation of a point x is given by x =
(x,y, 1). In fact, the homogeneous representation of a point
maps it to an entire class of set of points:

(x,y) < (Az, Ay, A), VA #£ 0 Inparticular, (2/2,y/2) < (2,9, 2)

« Homogeneous coordinates encode the invariance of all points
along a line and its projection



Examples

* The equation of a line ax+by+cz = 0 can be rewritten using

homogeneous coordinates

x'l =0, where 1= (a,b,c

* The general conicin 3 dimensions is given by

)T

ar® +bry + cy® +drz +eyz + f27 =0

which can be written using 2D homogeneous coordinates as

x' Cx =0 where

C:

a b/2 d/2

b/2 ¢

- d/2 /2
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Points at infinity

* In R?, all pairs of lines intersect except for the ones that are
parallel

* |n P?, all pairs of lines intersect, and parallel lines intersect in
points of infinity and these points have the form (x,y,0)"

* Consider the two lines given by

ll — (alablacl)—r
[, = (G-za b‘zacz)T

 The intersection of these two lines is given by
r = l| X l-g



Intersection of parallel lines

* Givenalinel, = (a,b,c)', aline parallel to it is given by

I, = (a,b,c)’

* The intersection is now given by

I, xl, = (bd —cb,ac—ac,0)"
= (c—c)(b.—a,0)'

~ (b,—a,0)"



Duality

* In P? points and lines are dual of each other

* The point of intersection of two lines is their cross product.
Likewise, the line passing through any two points is given by
their cross product [ = z, x x»

 The definition of points at infinity leads us to the definition of
the line at infinity [

 Consider two points at infinity &, = (21,41,0)" and ©2 = (22,7.0) "

* The line passing through these two points is given by

= T X To

= (0,0, 2192 — y122)*

~ (0,0,1)"

Lo



A model for P?in R3

X,

ideal

Hartley&Zisserman



Intrinsic/Extrinsic Parameters of a Camera

The following equation maps the real world point X, in
homogeneous coordinates to its projection x” also in
homogeneous coordinates

N [ fs, fsp o, |[1 0 0 0 T ii”

| 0
1 0 0 1 {[00 10 |e—m ——= )
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Intrinsic parameters canonical projection matrix Extrinsic parameters



The problem

01

Given two views of the scene

recover the unknown camera

displacement and 3D scene
structure

02

https://www.tripadvisor.com/Attraction_Review-g187147-d188679-Reviews-Notre_Dame_Cathedral-Paris_lle_de_France.html
https://commons.wikimedia.org/wiki/File:Notre_Dame_de_Paris_Cathédrale_Notre-Dame_de_Paris_(6094168584).jpg



One View

Axy =X



TwoO views




Think about how you would solve this problem



Epipolar geometry
)\2X2 — R)\le —|— 1

correspondences

(R,T)
e Multiply both sides by the cross product of T [Longuet-Higgins '81]:

e Essential matrix EF=TR



Mathematical Derivation
MXo = RA\1x1 + T

¢

1 x ()\2332) =" X (R)\l.’Bl -+ T)

¢

AQTXIEQZ)\l(TXR).’L'l + 1" x T

¢

)\QT X L9 = )\1(T X R)CL'l

¢

(T X R)x, is perpendicular to

z2 (T x R)x, =0



Epipolar geometry

e Epipolar lines l1, l2

X%EXl =0

* Epipoles e€1,€9
Inyage
correspondences

E=TR

AN
01 Sl I —
€2 02
Properties (pay attention to geometric interpretations):
b1 ~ ETXQ l,;-FXZ' — [> ~ Xy
Fei =0 l;,-rei = esEL =0



Singular-Value Decomposition

Theorem If A is a real m x n matvix then there exist orthogonal matrices
7y = [ w -o-ou, ] cR™ “m
'{_‘.-" — [ A a4 o Vi ] f R XN

such that
UTAV = ¥ = diag(oy,...,0,) € R™*"

where p = min(m,n)and oy = ... = g, = 0. Equivalently,

A=UxVT,

The SVD reveals a great deal about the structure of a matrx. If we define r by

T1 2 e 20 > Opy1=...=0,

that is, if 7, is the smallest nonzero singular value of A. then

rank(4) = r

Check Wikipedia for more details
https://en.wikipedia.org/wiki/Singular_value_decomposition



Characterization of the Essential Matrix
X%TRXl =0

e Essential matrix FE = TR Special 3x3 matrix

i €1 €2 €2 -
Xg eq es eg | X1 =0
| e7 eg eg

Theorem 5.1 (Characterization of the essential matrix). A non-
zero matriz E € R?*® is an essential matriz if and only if E has a singular

value decomposition (SVD): E = ULV™T with

Y. = diag{o, 0,0
ot ; [Ma et al.
for some 0 € Ry and U,V € SO(3). Invitation to 3D Vision]

See notes for details]



Characterization of the Essential Matrix

* Space of all Essential Matrices is 5 dimensional
— 3 Degrees of Freedom - Rotation
— 2 Degrees of Freedom — Translation (up to scale!)

 Decompose essential matrixintoR, T
X%TRXl =0

* Given feature correspondences, a straightforward approach is
to find such Rotation and Translation that the epipolar error is
minimized — nonlinear optimization

ming 23 1 X2 Exl



Pose recovery from the Essential Matrix

Essential matrix F = TR

Theorem 5.2 (Pose recovery from the essential matrix). There exist
exactly two relative poses (R, T) with R € SO(3) and T € R? corresponding
to a non-zero essential matriz f; = UNV L

Again, please either refer to the R, (_l_E) —
Invitation to 3D vision book or
the course notes



Estimating essential matrix

* The eight-point linear constraint
— Essential vector

€1 €2 €3

_ T RQ
€4 €5 €g — € = [61362363764765766767368569] S
€7 €8 €9

E =

— Vectorized correspondence

x1 = [x1,y1,21]7 € R3 and x3 = [72, 92, 22]T € R3
V

T 9
a = [ToT1, ToY1, Ta21, Y2&1, Y2Y1, Y221, 221, Z22Y1, 2271] € R

— Linear constraint



Estimating essential matrix

* The eight-point linear constraint
— Multiple correspondences

Ae =0

— More than 8 ideal correspondences

— Due to noise, choose the eigenvector of ATA that
correspondences to the smallest eigenvalue:




Projection to the space of essential matrices

Theorem 5.3 (Projection onto the essential space). Given a real
matriv F € R3*3 with a SVD: F = Udiag{\1, Ao, \3}V1 with U,V €
SO(3), A1 > Ao > A3, then the essential matriz E € € which minimizes the
error ||E — FH% is given by E = Udiag{co,o,0}VT with 0 = (A + X2)/2.
The subscript f indicates the Frobenius norm. =

A

There is a general theorem that is (
widely used in low-rank matrix recovery

min  ||A— X||?
X, rank(X)=r 7

X =03, v!

A 4



The eight-point method

Algorithm 5.1 (The eight-point algorithm). For a given set of im-
age correspondences (x7,x3),7 = 1,...,n (n > 8), this algorithm finds
(R, T) € SE(3) which solves

X%Tfo{:O, J=1sm:u; B

1. Compute a first approximation of the essential matrix
Construct the A € R"™ from correspondences x3 and x3} as in (6.21),
namely.

o = [ghal, whyl, wha], i), vdvl, v32l, Al Ayl 232]]" e R®.
Find the vector e € R® of unit length such that ||Ae|| is minimized
as follows: compute the SVD A = UaX AV} and define e to be the
9th column of Va. Rearrange the 9 elements of e into a square 3 x 3

matriz E as in (5.8). Note that this matriz will in general not be an
essential matriz.



The eight-point method

2. Project onto the essential space
Compute the Singular Value Decomposition of the matrixz E¥ recovered

from data to be

E = Udiag{o, 09, ag}VT

where o1 > g9 > o3 > 0 and U,V € SO(3). In general, since E
may not be an essential matriz, o1 # oo and o3 > 0. Compute its
projection onto the essential space as ULV, where ¥ = diag{1,1,0}.

3. Recover displacement from the essential matrix
Define the diagonal matriz X2 to be Extract R and T from the essential

matriz as follows:

R=URZL (ig) VI, T=URy (ig) U,



Camera Calibration



Uncalibrated Camera — Intrinsic
Parameters are unknown

/7

- [ fsy fsp or | | 2
! / - —_—
r=|y | =Kzr= O fsy oy Y calibrated
1 0 0 1 ] |1] coordinates _~
N ,/ e
~ - P
Linear transformation K =~ - , 7
o
O
e - &
(Oj O) :,’ /’ _/. ‘F y
pixel i

coordinates  y' ¢




Overview

e Calibration with a rig (Checkborad for
example)

* Uncalibrated epipolar geometry
 Ambiguities in image formation

e Stratified reconstruction



Uncalibrated Camera Using
Homogeneous Coordinates

X=[X,Y.ZW]' eR*, (W=1) X
Last Lecture: |
e Image plane coordinates X = [x,, 1]T
X
- _ v/
e Camera extrinsic parameters g = (R) T) [ , 4=
e Perspective projection Ax = [R,T]X [f,
O
. (R.T) o
This Lecture: ] K

e Pixel coordinates X = KX

e Projection matrix Ax' = MNX = [KR, KT]X /‘x /



Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature
points on a pre-fabricated object (e.g., a cube) are known.




Calibration with a Rig

e Given 3-D coordinates on known object X
MX'=[KR,KT)X mmp \x' =X

i ]

T -
FLY
7
3

e

Z?ﬂ
1

=

e Eliminate unknown scales

(7L X)
y' (73 X)

W?Xj
W%X



Calibration with a Rig

e Recover projection matrix N =[KR,KT] = [R/,T"]
N® = [n11,721,731, 712, szfﬁazsﬂlaaﬂ:zaz7?3337F14,~TF24:?T34]T
min [|[MN#||?  subject to ||[N%)|2 =1

Again singular value decomposition

e Factor the KR into Re SO(3)and K
using QR decomposition

e Solve for translation 7= k=117



Uncalibrated Epipolar Geometry
(not required)



Uncalibrated Epipolar Geometry

. X
A2KX2 — KR/\]_X]_ + KTA )\2X’2 = KRK_l)\lX"l -+ T’

(R.T)

» Epipolar constraint x5 K- TTRK~'x'1 =0

» Fundamental matrix F=K ITRK 1

» Equivalent forms of F=K TIRK-1=7T'KRK™1



Properties of the Fundamental Matrix

e Epipolar lines 1,15

* Epipoles ej,ep

COI"PBSPOHC{EHCBS




Properties of the Fundamental Matrix

Remark 6.1. Characterization of the fundamental matriz. A non-zero
matriz ' € R**3 is a fundamental matriz if F has a singular value
decomposition (SVD): E = UXVT with

Y = diag{oy, 02,0}

for some 01,00 € Ry .

There is little structure in the matrix [ except that

det(F) =20



Estimating Fundamental Matrix

e Find such F that the epipolar error is minimized

T
min Y (xh, Fxl)? st ||F||F =1
j=1

e Fundamental matrix can be estimated up to scale
e Denote a = x| @ x5

a = [T102, T1Y2, T122, Y172, Y1Y2, Y122, 21%2, 21Y2, 2122] 1
FS = [f1, fa, f7, f2. [5, fa. f3 f6, fol T

e Rewrite alF$=0

1][1;111141?S||2 sit. ||[F5|F =1



Two view linear algorithm — 8-point
algorithm

e Solve the LLSE problem:
win Z S FEh )2 st |F|E=1

e Solution elgenvector associated with
smallest eigenvalue of ATA

e Compute SVD of F recovered from data
F=Uxv! ¥ =diag(o1,02,03)

* Project onto the essential manifold:

>/ = diag(o1,00,0) F=UX'VT

e [ cannot be unambiguously decomposed into pose

and calibration T 1
F =K *TRK



What Does F Tell Us?

* Fcan be inferred from point matches (eight-point algorithm)

 Cannot extract motion, structure and calibration from one
fundamental matrix (two views)

* Fallows reconstruction up to a projective transformation

* Fencodes all the geometric information among two views
when no additional information is available



Comments

* Without prior knowledge about the underlying 3D
environment, one can only obtain Projective
reconstruction rather than Euclidean reconstruction

e With prior knowledge about the underlying 3D
environment (planar structures in particular), we can
still perform Euclidean reconstruction



Multi-View Structure from Motion

http://www.cs.cmu.edu/~16385/s18/lectures/lecture12.pdf



Projective structure from motion

Given: m images of n fixed 3D points
z;x; =PX,, i=L..,m j=1..,n

Problem: estimate m projection matrices P; and n 3D
points Xj from the mn correspondences X;;




Projective structure from motion

* Given: mimages of n fixed 3D points

ZU-XU-:PJ-XJ-, i=1,...,m j=1 ...,n

* Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences Xx;

* With no calibration info, cameras and points can only
be recovered up to a 4x4 projective transformation Q:

X —-QX,P - PQ"
* We can solve for structure and motion when
2mn>=11m+3n-15
* For two cameras, at least 7 points are needed



Sequential structure-from-motion

*Initialize motion from two images
using fundamental matrix

«Initialize structure by triangulation points
*For each additional view: teeseeee
® ® @& & & 9 9 0
* Determine projection matrix of | e e e e e e e e
new camera using all the known g ee e e e e
3D points that are visible in its E| |®*e® e e 00 00
image — calibration S| |®*®®eeeee
® & & & & & & »
® & & » & 9 9 98 »
— -
e @ & & @




Sequential structure-from-motion

*Initialize motion from two images
using fundamental matrix

*Initialize structure by triangulation

For each additional view:

» Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

- Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

cameras

points

® =
@ 8
® o



Sequential structure-from-motion

*Initialize motion from two images
using fundamental matrix

sInitialize structure by triangulation points

*For each additional view:

« Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras
® 00 000 00
e o 00 00 00
S e 0 0000 0 o0
o o0 00 0 0 00
oo 0 0 00 0 00
oo 0 0000 00

 Refine and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

*Refine structure and motion: bundle
adjustment



Bundle adjustment

* Non-linear method for refining structure and motion

« Minimizing reprojection error
2

E(P,X) = i Z D(x,,PX )

i=1 j=1




Large-scale structure from motion

http://www.cs.cmu.edu/~16385/s18/lectures/lecture12.pdf






Photo Tourism




Input: Point correspondences

<>

3

‘ Feature detection

L

.

‘ Feature matching

o

- -

g




Feature detection

Describe features using SIFT [Lowe, 1JCV 2004]




Feature matching

Match features between each pair of images




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Correspondence estimation

* Link up pairwise matches to form connected components of matches across several
images




Image connectivity graph

. .

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)




Structure from motion

X3

minimize
g(R, T, X)
]-_'[]. X 1 i p 11 non-linear least squares
.f/ > \.O 7
F ) - ~ -
J'~':"1,1.|‘r
Fa
I} o
)
Cameral Camera 3
Rl’ tl Camera 2 R3*f3

R2f IZ



Global structure from motion

* Minimize sum of squared reprojection errors:

gX,R,T) = ZZWU ‘IP(XI' [UU]H

T PRI

predr.-:ted observed
image location image location
indicator variable:
is point i visible in image j ?

* Minimizing this function is called bundle adjustment
— Optimized using non-linear least squares, e.g. Levenberg-Marquardt



Doing bundle adjustment

* Minimizing g is difficult
—g is non-linear due to rotations, perspective division
—lots of parameters: 3 for each 3D point, 6 for each camera
—difficult to initialize

—gauge ambiguity: error is invariant to a similarity transform
(translation, rotation, uniform scale)

* Many techniques use non-linear least-squares (NLLS)
optimization (bundle adjustment)
—Levenberg-Marquardt is one common algorithm for NLLS

— Lourakis, The Design and Implementation of a Generic
Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm,
http://www.ics.forth.gr/~lourakis/sba/

—http://en.wikipedia.org/wiki/Levenberg-Marguardt algorithm




Initialization: Incremental structure from
motion




Incremental structure from motion




Final reconstruction




Next lecture

Stereo Reconstruction



