GAMES Structure-From-Motion

Qixing Huang July 30th 2021

Projection and Two-View Geometry

Pinhole camera

- The dominant image formation model in computer vision
- A pinhole camera is a box in which one wall has a small hole
- Exactly one ray from each point in the scene passes through the pinhole and hits the wall opposite to it
- The inversion of the image is corrected for by considering a virtual image on the opposite side of the pinhole

Mathematical model under this idealized camera

 It is clear that the camera is given by a perspective projection that maps the 3D space to a 2D plane

$$(X, Y, Z)^{\top} \xrightarrow{Projection} (x, y)^{\top}$$

The equations of perspective projections are given by

$$x = f\frac{X}{Z} \qquad y = f\frac{Y}{Z}$$

f is the focal length of the camera, i.e., the distance between the image plane and the pinhole

Homogeneous coordinates

- The representation of the image point x = (x,y) is referred to as the inhomogeneous representation of the point x
- The homogeneous representation of a point x is given by x = (x, y, 1). In fact, the homogeneous representation of a point maps it to an entire class of set of points:

 $(x,y) \leftrightarrow (\lambda x, \lambda y, \lambda), \qquad \forall \lambda \neq 0 \quad \text{In particular,} \quad (x/z, y/z) \leftrightarrow (x, y, z)$

 Homogeneous coordinates encode the invariance of all points along a line and its projection

Examples

 The equation of a line ax+by+cz = 0 can be rewritten using homogeneous coordinates

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0, \text{ where } \boldsymbol{l} = (a, b, c)^{\top}$$

• The general conic in 3 dimensions is given by

$$ax^{2} + bxy + cy^{2} + dxz + eyz + fz^{2} = 0$$

which can be written using 2D homogeneous coordinates as

$$oldsymbol{x}^{ op}Coldsymbol{x}=0$$
 where $C=\left[egin{array}{ccc} a&b/2&d/2\b/2&c&e/2\d/2&e/2&f \end{array}
ight]$

Points at infinity

- In R², all pairs of lines intersect except for the ones that are parallel
- In P^2 , all pairs of lines intersect, and parallel lines intersect in points of infinity and these points have the form $(x,y,0)^T$
- Consider the two lines given by

$$egin{array}{rll} m{l}_1 &= (a_1, b_1, c_1)^{ op} \ m{l}_2 &= (a_2, b_2, c_2)^{ op} \end{array}$$

• The intersection of these two lines is given by

$$oldsymbol{x}~=~oldsymbol{l}_1 imesoldsymbol{l}_2$$

Intersection of parallel lines

- Given a line $l_1 = (a, b, c)^{\top}$, a line parallel to it is given by $l_2 = (a, b, c')^{\top}$
- The intersection is now given by

$$\boldsymbol{l}_1 \times \boldsymbol{l}_2 = (bc' - cb, ac - ac', 0)^\top$$
$$= (c - c')(b, -a, 0)^\top$$
$$\sim (b, -a, 0)^\top$$

Duality

- In P², points and lines are dual of each other
- The point of intersection of two lines is their cross product. Likewise, the line passing through any two points is given by their cross product $l = x_1 \times x_2$
- The definition of points at infinity leads us to the definition of the line at infinity l_∞
- Consider two points at infinity $\boldsymbol{x}_1 = (x_1, y_1, 0)^{ op}$ and $\boldsymbol{x}_2 = (x_2, y_2, 0)^{ op}$
- The line passing through these two points is given by

$$egin{array}{rcl} m{l}_{\infty} &=& m{x}_1 imes m{x}_2 \ &=& (0,0,x_1y_2-y_1x_2)^2 \ &\sim& (0,0,1)^{ op} \end{array}$$

A model for P^2 in R^3

Hartley&Zisserman

Intrinsic/Extrinsic Parameters of a Camera

 The following equation maps the real world point X₀ in homogeneous coordinates to its projection x' also in homogeneous coordinates

The problem

Given two views of the scene recover the unknown camera displacement and 3D scene structure

https://www.tripadvisor.com/Attraction_Review-g187147-d188679-Reviews-Notre_Dame_Cathedral-Paris_Ile_de_France.html https://commons.wikimedia.org/wiki/File:Notre_Dame_de_Paris_Cathédrale_Notre-Dame_de_Paris_(6094168584).jpg

One View

$$\lambda_1 x_1 = X_1$$

Two views

 $\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + T$

Think about how you would solve this problem

Epipolar geometry $\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + T$ Image /correspondences \mathbf{X}_1 \mathbf{x}_2 (R,T)

• Multiply both sides by the cross product of T [Longuet-Higgins '81]:

 $\mathbf{x}_{2}^{T} \underbrace{\widehat{T}R}_{E} \mathbf{x}_{1} = \mathbf{0}$ $E = \widehat{T}R$

Essential matrix

Mathematical Derivation

 $\lambda_2 \mathbf{x}_2 = R\lambda_1 \mathbf{x}_1 + T$ $T \times (\lambda_2 \boldsymbol{x}_2) = T \times (R\lambda_1 \boldsymbol{x}_1 + T)$ $\lambda_2 T \times \boldsymbol{x}_2 = \lambda_1 (T \times R) \boldsymbol{x}_1 + T \times T$ $\lambda_2 T \times \boldsymbol{x}_2 = \lambda_1 (T \times R) \boldsymbol{x}_1$ $(T \times R)\boldsymbol{x}_1$ is perpendicular to \boldsymbol{x}_2 $\boldsymbol{x}_2^T(T \times R)\boldsymbol{x}_1 = 0$

Epipolar geometry

Properties (pay attention to geometric interpretations):

 $l_1 \sim E^T \mathbf{x}_2 \qquad l_i^T \mathbf{x}_i = 0 \qquad l_2 \sim E \mathbf{x}_1$ $E \mathbf{e}_1 = 0 \qquad l_i^T \mathbf{e}_i = 0 \qquad \mathbf{e}_2 E^T = 0$

Singular-Value Decomposition

Theorem If A is a real $m \times n$ matrix then there exist orthogonal matrices

$$U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \in \mathcal{R}^{m \times m}$$
$$V = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \in \mathcal{R}^{n \times n}$$

such that

$$U^T A V = \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_p) \in \mathcal{R}^{m \times n}$$

where $p = \min(m, n)$ and $\sigma_1 \ge \ldots \ge \sigma_p \ge 0$. Equivalently,

$$A = U\Sigma V^T$$
.

The SVD reveals a great deal about the structure of a matrix. If we define r by

$$\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = 0 ,$$

that is, if σ_r is the smallest nonzero singular value of A, then

 $\operatorname{rank}(A) = r$

Check Wikipedia for more details https://en.wikipedia.org/wiki/Singular_value_decomposition

Characterization of the Essential Matrix

$$\mathbf{x}_2^T \widehat{T} R \mathbf{x}_1 = \mathbf{0}$$

• Essential matrix $E = \hat{T}R$ Special 3x3 matrix

$$\mathbf{x}_{2}^{T} \begin{bmatrix} e_{1} & e_{2} & e_{2} \\ e_{4} & e_{5} & e_{6} \\ e_{7} & e_{8} & e_{9} \end{bmatrix} \mathbf{x}_{1} = \mathbf{0}$$

Theorem 5.1 (Characterization of the essential matrix). A nonzero matrix $E \in \mathbb{R}^{3\times 3}$ is an essential matrix if and only if E has a singular value decomposition (SVD): $E = U\Sigma V^T$ with

$$\Sigma = diag\{\sigma, \sigma, 0\}$$

for some $\sigma \in \mathbb{R}_+$ and $U, V \in SO(3)$.

[Ma et al. Invitation to 3D Vision] See notes for details]

Characterization of the Essential Matrix

- Space of all Essential Matrices is 5 dimensional
 - 3 Degrees of Freedom Rotation
 - 2 Degrees of Freedom Translation (up to scale!)
- Decompose essential matrix into R, T

$$\mathbf{x}_2^T \widehat{T} R \mathbf{x}_1 = \mathbf{0}$$

 Given feature correspondences, a straightforward approach is to find such Rotation and Translation that the epipolar error is minimized – nonlinear optimization

$$min_E \sum_{j=1}^n \mathbf{x}_2^{jT} E \mathbf{x}_1^j$$

Pose recovery from the Essential Matrix

Essential matrix

$$E = \widehat{T}R$$

Theorem 5.2 (Pose recovery from the essential matrix). There exist exactly two relative poses (R, T) with $R \in SO(3)$ and $T \in \mathbb{R}^3$ corresponding to a non-zero essential matrix $E = U\Sigma V^T$

$$(\widehat{T}_1, R_1) = (UR_Z(+\frac{\pi}{2})\Sigma U^T, UR_Z^T(+\frac{\pi}{2})V^T), (\widehat{T}_2, R_2) = (UR_Z(-\frac{\pi}{2})\Sigma U^T, UR_Z^T(-\frac{\pi}{2})V^T).$$

Again, please either refer to the Invitation to 3D vision book or the course notes

$$R_Z\left(+\frac{\pi}{2}\right) = \left[\begin{array}{rrrr} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right]$$

Estimating essential matrix

- The eight-point linear constraint
 - Essential vector

$$E = \begin{bmatrix} e_1 & e_2 & e_3 \\ e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 \end{bmatrix} \longrightarrow \mathbf{e} = [e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9]^T \in \mathbb{R}^9$$

- Vectorized correspondence

$$\mathbf{x}_{1} = [x_{1}, y_{1}, z_{1}]^{T} \in \mathbb{R}^{3} \text{ and } \mathbf{x}_{2} = [x_{2}, y_{2}, z_{2}]^{T} \in \mathbb{R}^{3}$$
$$\mathbf{\downarrow}$$
$$\mathbf{a} = [x_{2}x_{1}, x_{2}y_{1}, x_{2}z_{1}, y_{2}x_{1}, y_{2}y_{1}, y_{2}z_{1}, z_{2}x_{1}, z_{2}y_{1}, z_{2}z_{1}]^{T} \in \mathbb{R}^{9}$$

Linear constraint

$$\mathbf{a}^T \mathbf{e} = 0$$

Estimating essential matrix

- The eight-point linear constraint
 - Multiple correspondences

 $A\mathbf{e}=0$

- More than 8 ideal correspondences
- Due to noise, choose the eigenvector of A^TA that correspondences to the smallest eigenvalue:

$$\min_{\mathbf{e}} \frac{\|A\mathbf{e}\|^2}{\|\mathbf{e}\|^2}$$

Projection to the space of essential matrices

Theorem 5.3 (Projection onto the essential space). Given a real matrix $F \in \mathbb{R}^{3\times3}$ with a SVD: $F = U \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3\} V^T$ with $U, V \in SO(3), \lambda_1 \geq \lambda_2 \geq \lambda_3$, then the essential matrix $E \in \mathcal{E}$ which minimizes the error $||E - F||_f^2$ is given by $E = U \operatorname{diag}\{\sigma, \sigma, 0\} V^T$ with $\sigma = (\lambda_1 + \lambda_2)/2$. The subscript f indicates the Frobenius norm.

There is a general theorem that is widely used in low-rank matrix recovery

$$\min_{X, \operatorname{rank}(X)=r} \|A - X\|_{\mathcal{F}}^2$$
$$X = U_r \Sigma_r V_r^T$$

The eight-point method

Algorithm 5.1 (The eight-point algorithm). For a given set of image correspondences $(\mathbf{x}_1^j, \mathbf{x}_2^j)$, j = 1, ..., n $(n \ge 8)$, this algorithm finds $(R, T) \in SE(3)$ which solves

$$\mathbf{x}_2^{jT}\widehat{T}R\mathbf{x}_1^j = 0, \quad j = 1, \dots, n.$$

1. Compute a first approximation of the essential matrix Construct the $A \in \mathbb{R}^{n \times 9}$ from correspondences \mathbf{x}_1^j and \mathbf{x}_2^j as in (6.21), namely.

 $\mathbf{a}^{j} = [x_{2}^{j}x_{1}^{j}, x_{2}^{j}y_{1}^{j}, x_{2}^{j}z_{1}^{j}, y_{2}^{j}x_{1}^{j}, y_{2}^{j}y_{1}^{j}, y_{2}^{j}z_{1}^{j}, z_{2}^{j}x_{1}^{j}, z_{2}^{j}y_{1}^{j}, z_{2}^{j}z_{1}^{j}]^{T} \in \mathbb{R}^{9}.$

Find the vector $\mathbf{e} \in \mathbb{R}^9$ of unit length such that $||A\mathbf{e}||$ is minimized as follows: compute the SVD $A = U_A \Sigma_A V_A^T$ and define \mathbf{e} to be the 9th column of V_A . Rearrange the 9 elements of \mathbf{e} into a square 3×3 matrix E as in (5.8). Note that this matrix will in general not be an essential matrix.

The eight-point method

2. Project onto the essential space

Compute the Singular Value Decomposition of the matrix E recovered from data to be

$$E = U diag\{\sigma_1, \sigma_2, \sigma_3\} V^T$$

where $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq 0$ and $U, V \in SO(3)$. In general, since E may not be an essential matrix, $\sigma_1 \neq \sigma_2$ and $\sigma_3 > 0$. Compute its projection onto the essential space as $U\Sigma V^T$, where $\Sigma = diag\{1, 1, 0\}$.

3. Recover displacement from the essential matrix Define the diagonal matrix Σ to be Extract R and T from the essential matrix as follows:

$$R = UR_Z^T \left(\pm \frac{\pi}{2} \right) V^T, \quad \widehat{T} = UR_Z \left(\pm \frac{\pi}{2} \right) \Sigma U^T.$$

Camera Calibration

Uncalibrated Camera – Intrinsic Parameters are unknown

Overview

- Calibration with a rig (Checkborad for example)
- Uncalibrated epipolar geometry
- Ambiguities in image formation
- Stratified reconstruction

Uncalibrated Camera Using Homogeneous Coordinates

$$\mathbf{X} = [X, Y, Z, W]^T \in \mathbb{R}^4, \quad (W = 1)$$

Last Lecture:

- Image plane coordinates $\mathbf{x} = [x, y, 1]^T$
- Camera extrinsic parameters g = (R, T)
- Perspective projection

This Lecture:

- Pixel coordinates $\mathbf{x}' = K\mathbf{x}$
- •
- Projection matrix $\lambda \mathbf{x'} = \Pi \mathbf{X} = [KR, KT] \mathbf{X}$

 $\lambda \mathbf{x} = [R, T] \mathbf{X}$

Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature points on a pre-fabricated object (e.g., a cube) are known.

Calibration with a Rig

 \bullet Given 3-D coordinates on known object ${\bf X}$

 $\lambda \mathbf{x}' = [KR, KT] \mathbf{X} \implies \lambda \mathbf{x}' = \Pi \mathbf{X}$ $\lambda \begin{bmatrix} x^i \\ y^i \\ 1 \end{bmatrix} = \begin{bmatrix} \pi_1^T \\ \pi_2^T \\ \pi_3^T \end{bmatrix} \begin{bmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{bmatrix}$

• Eliminate unknown scales

$$\begin{aligned} x^{i}(\pi_{3}^{T}\mathbf{X}) &= \pi_{1}^{T}\mathbf{X}, \\ y^{i}(\pi_{3}^{T}\mathbf{X}) &= \pi_{2}^{T}\mathbf{X} \end{aligned}$$

Calibration with a Rig

• Recover projection matrix $\Pi = [KR, KT] = [R', T']$

 $\boldsymbol{\Pi}^{s} = [\pi_{11}, \pi_{21}, \pi_{31}, \pi_{12}, \pi_{22}, \pi_{32}, \pi_{13}, \pi_{23}, \pi_{33}, \pi_{14}, \pi_{24}, \pi_{34}]^{T}$

min
$$||M\Pi^s||^2$$
 subject to $||\Pi^s||^2 = 1$

Again singular value decomposition

- Factor the KR into $R \in SO(3)$ and K using QR decomposition
- Solve for translation $T = K^{-1}T'$

Uncalibrated Epipolar Geometry (not required)

Uncalibrated Epipolar Geometry

Properties of the Fundamental Matrix

Properties of the Fundamental Matrix

Remark 6.1. Characterization of the fundamental matrix. A non-zero matrix $F \in \mathbb{R}^{3\times 3}$ is a fundamental matrix if F has a singular value decomposition (SVD): $E = U\Sigma V^T$ with

 $\Sigma = diag\{\sigma_1, \sigma_2, 0\}$

for some $\sigma_1, \sigma_2 \in \mathbb{R}_+$.

There is little structure in the matrix F except that

$$\det(F) = 0$$

Estimating Fundamental Matrix

• Find such F that the epipolar error is minimized

$$\min_{F} \sum_{j=1}^{n} ({\boldsymbol{x}'_{2,j}}^T F {\boldsymbol{x}'_{1,j}})^2 \quad s.t. \quad \|F\|_{\mathcal{F}}^2 = 1$$

- Fundamental matrix can be estimated up to scale
- Denote $\mathbf{a} = \mathbf{x}_1' \otimes \mathbf{x}_2'$ $\mathbf{a} = [x_1x_2, x_1y_2, x_1z_2, y_1x_2, y_1y_2, y_1z_2, z_1x_2, z_1y_2, z_1z_2]^T$ $F^s = [f_1, f_4, f_7, f_2, f_5, f_8, f_3, f_6, f_9]^T$
- Rewrite $\mathbf{a}^T F^s = \mathbf{0}$

$$\min_{F^s} \|AF^s\|^2 \quad s.t. \quad \|F^s\|^2 = 1$$

Two view linear algorithm – 8-point algorithm

• Solve the LLSE problem:

$$\min_{F} \sum_{j=1}^{n} (\boldsymbol{x}_{2,j}^{\prime T} F \boldsymbol{x}_{1,j}^{\prime})^{2} \quad s.t. \quad \|F\|_{\mathcal{F}}^{2} = 1$$

- Solution eigenvector associated with smallest eigenvalue of A^TA
- Compute SVD of F recovered from data

$$F = U \Sigma V^T \quad \Sigma = diag(\sigma_1, \sigma_2, \sigma_3)$$

• Project onto the essential manifold:

$$\Sigma' = diag(\sigma_1, \sigma_2, 0) \ F = U \Sigma' V^T$$

• F cannot be unambiguously decomposed into pose and calibration $F = K^{-T} \hat{T} R K^{-1}$

What Does F Tell Us?

- *F* can be inferred from point matches (eight-point algorithm)
- Cannot extract motion, structure and calibration from one fundamental matrix (two views)
- *F* allows reconstruction up to a projective transformation
- *F* encodes all the geometric information among two views when no additional information is available

Comments

- Without prior knowledge about the underlying 3D environment, one can only obtain Projective reconstruction rather than Euclidean reconstruction
- With prior knowledge about the underlying 3D environment (planar structures in particular), we can still perform Euclidean reconstruction

Multi-View Structure from Motion

http://www.cs.cmu.edu/~16385/s18/lectures/lecture12.pdf

Projective structure from motion

Given: *m* images of *n* fixed 3D points

$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Problem: estimate *m* projection matrices P_i and *n* 3D points X_i from the *mn* correspondences x_{ij}

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \quad i = 1, ..., m, \quad j = 1, ..., n$$

- Problem: estimate *m* projection matrices P_i and *n* 3D points X_j from the *mn* correspondences x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation Q:

$$X \rightarrow QX, P \rightarrow PQ^{-1}$$

- We can solve for structure and motion when $2mn \ge 11m + 3n 15$
- For two cameras, at least 7 points are needed

Sequential structure-from-motion

 Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

•For each additional view:

 Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*

Sequential structure-from-motion

 Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – *triangulation*

Sequential structure-from-motion

 Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

•For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – *triangulation*

•Refine structure and motion: bundle adjustment

S

camera

Bundle adjustment

- Non-linear method for refining structure and motion
- · Minimizing reprojection error

Large-scale structure from motion

http://www.cs.cmu.edu/~16385/s18/lectures/lecture12.pdf

Photo Tourism

Input: Point correspondences

Feature detection

Describe features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images

Image 1

Image 2

Image 3

Image 4

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Structure from motion

Global structure from motion

Minimize sum of squared reprojection errors:

Minimizing this function is called *bundle adjustment*

- Optimized using non-linear least squares, e.g. Levenberg-Marquardt

Doing bundle adjustment

- Minimizing g is difficult
 - -g is non-linear due to rotations, perspective division
 - -lots of parameters: 3 for each 3D point, 6 for each camera
 - difficult to initialize
 - gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
 - Levenberg-Marquardt is one common algorithm for NLLS
 - Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, <u>http://www.ics.forth.gr/~lourakis/sba/</u>
 - -<u>http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm</u>

Initialization: Incremental structure from motion

Incremental structure from motion

Final reconstruction

Next lecture

Stereo Reconstruction