GAMES Multi-View Stereo

Qixing Huang August 6th 2021

Two-View Stereo

Binocular Stereo

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 1

Dense depth map

Basic Stereo Matching Algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines

 When does this happen?

Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?

Simplest Case: Parallel Images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images

Disparity is inversely proportional to depth!

Conf. Computer Vision and Pattern Recognition, 1999.

Rectification Example

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Correspondence search

Effect of window size

W = 20

- -Smaller window
 - + More detail
 - More noise
- -Larger window
 - + Smoother disparity maps
 - Less detail

Results with window search

Data

Window-based matching

Ground truth

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

- Corresponding points should be in the same order in both views

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

- Corresponding points should be in the same order in both views

Ordering constraint doesn't hold

Consistency Constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

MRF Formulation:

$$E(d) = E_d(d) + \lambda E_s(d)$$
Pixel matching score Consistency Scores

Comparsion

Window-Based Search:

Ground Truth

Graph Cut:

Stereo matching as energy minimization

• Graph-cuts can be used to minimize such energy

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via Graph Cuts</u>, PAMI 2001

Multi-View Stereo

Multi-View Stereo from Internet Collections

[Goesele et al. 07]

Challenges

Appearance variation

Resolution

• Massive collections

82754 results for photos matching notre and dame and paris

Law of Nearest Neighbors

206 Flickr images taken by 92 photographers

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

4 best neighboring views

reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Notre Dame de Paris

653 images 313 photographers

129 Flickr images taken by 98 photographers

merged model of Venus de Milo

56 Flickr images taken by 8 photographers

merged model of Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

Use of Structural Priors
MVS has been so successful

[Apple maps]

High-quality passive facial performance capture using anchor frames [T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, M. Gross, 2011]

What if no texture...

What if no texture...

Existing Method Fails

[Furukawa and Ponce, 2007]

Enforce Prior in MVS

- Manhattan-world assumption
 - Planarity
 - Orthogonality

Standard Depthmap Markov Random Field (MRF)

$$E = \sum_{p} E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Szeliski et al., PAMI 2008]

 $E = \sum_p E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$

$$E = \sum_p E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

$$E = \sum_p E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

$$E = \sum_{p} E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

$$E = \sum_{p} E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

$$E = \sum_{p} E_d(d_p) + \sum_{\{p,q\} \in \mathbb{N}} E_s(d_p, d_q)$$

 $E = \sum E_d(d_p) + \sum E_s(d_p, d_q)$ p $\{p,q\} \in \mathbb{N}$

Graph-cuts (alpha-expansion) gives you very good solutions

How to enforce piecewise planar

- 1. Advanced MRF and optimization
 - Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR 2008] Best Paper Award
- 2. Integrate with top-down (primitive) approach
 - Manhattan World Stereo [Furukawa et al., CVPR 2009]
 - Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]
 - Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery [Zebedin et al., ECCV 2008]
 - Piecewise Planar and Non-Planar Stereo for urban Scene Reconstruction [Gallup et al., CVPR 2010]

Advanced MRF for Depthmap Estimation

Reference image

Ground truth

Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR 2008] Best Paper Award

Standard MRF

Standard MRF

$$E_s(d_p, d_q) = |d_p - d_q|$$

Standard MRF

MRF with a triple clique

$$E_s(d_p, d_q) = |d_p - d_q|$$

$$E_s(d_p, d_q, d_r)$$

Standard MRF MRF with a triple clique

$$E_s(d_p, d_q) = |d_p - d_q|$$

$$E_s(d_p, d_q, d_r) = |d_p + d_r - 2d_q|$$

MRF with a triple clique

 $E = \sum E_d(d_p) + \sum E_s(d_p, d_q)$ $\{p,q\} \in \mathbb{N}$ p+ $\sum E_s(d_p, d_q, d_r)$ $\{p,q,r\} \in \mathbb{N}_3$

Optimization becomes a challenge

Standard MRF (submodular)

- Graph-cuts (alpha-expansion)
- Belief propagation (TRW)

MRF with a triple clique (non-submodular)

- QPBO
- Belief propagation (TRW?)

Fusion moves...

Experimental results

Reference image

Neighboring image

Output depthmap

Comparative experiment

Reference image

Standard MRF

Ground truth

MRF with a triple clique

How to enforce piecewise planar

- 1. Advanced MRF and optimization
 - Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR 2008] Best Paper Award
- 2. Integrate with top-down (primitive) approach
 - Manhattan World Stereo [Furukawa et al., CVPR 2009]
 - Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]
 - Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery [Zebedin et al., ECCV 2008]
 - Piecewise Planar and Non-Planar Stereo for urban Scene Reconstruction [Gallup et al., CVPR 2010]

Planemap

Extract Manhattan directions Extract planes

[Furukawa and Ponce, 2007]

Planemap

Planemap

Depthmap to Planemap Depthmap (d_p) $E = \sum E_d(d_p) + \sum E_s(d_p, d_q)$ $\{p,q\} \in \mathbb{N}$ Planemap (h_p) $E = \sum E_d(h_p) + \sum E_s(h_p, h_q)$ $\{p,q\} \in \mathbb{N}$ p

Planemap MRF $E = \sum E_d(h_p) + \sum E_s(h_p, h_q)$ $\{p,q\} \in \mathbb{N}$ p

Planemap MRF $E = \sum E_d(h_p) + \sum E_s(h_p, h_q)$ $\{p,q\} \in \mathbb{N}$ p

Planemap MRF $E = \sum E_d(h_p) + \sum E_s(h_p, h_q)$ $\{p,q\} \in \mathbb{N}$ p

Planemap MRF $E = \sum E_d(h_p) + \sum E_s(h_p, h_q)$ $\{p,q\} \in \mathbb{N}$ p

Comparison

Standard method

Manhattan Planemap

Reconstruction Results

Kitchen - 22 images

house - 148 images

gallery - 492 images

How to enforce piecewise planar

- 1. Advanced MRF and optimization
 - Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR 2008] Best Paper Award
- 2. Integrate with top-down (primitive) approach
 - Manhattan World Stereo [Furukawa et al., CVPR 2009]
 - Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]
 - Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery [Zebedin et al., ECCV 2008]
 - Piecewise Planar and Non-Planar Stereo for urban Scene Reconstruction [Gallup et al., CVPR 2010]

Relaxing Mahnattan

- Use sparse lines + sparse points to detect planes
- MRF + Graph-cuts

Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]

Relaxing Manhattan

[Sinha et al.]

Relaxing Manhattan

[Sinha et al.]

Enable Curved Surfaces

• Building reconstruction from a top down view

Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery [Zebedin et al., ECCV 2008]

Enable Curved Surfaces

How to enforce piecewise planar

- 1. Advanced MRF and optimization
 - Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR 2008] Best Paper Award
- 2. Integrate with top-down (primitive) approach
 - Manhattan World Stereo [Furukawa et al., CVPR 2009]
 - Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]
 - Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery [Zebedin et al., ECCV 2008]
 - Piecewise Planar and Non-Planar Stereo for urban Scene Reconstruction [Gallup et al., CVPR 2010]

3D Reconstruction from Video

Street-Side Video

FDC

Real-Time Stereo

Enforce planarity where it looks like a building

First step: Planar and Non-Planar Stereo

Video

Labels = { $\pi_1, \cdots, \pi_N, \pi_\infty, non-plane, discard$ }

Real-Time Stereo

Plane Detection

Planemap (w/ non-planar))

Second step: Appearance Prior

Video Frames

Algorithm

Video

Planar/Non-Planar Classification

planar

non-planar

Planar and Non-Planar MRF

Real-Time Stereo

Plane Detection

Large-Scale Multi-View Stereo

Input images

[diydrones.com]

Input images

[diydrones.com]

Divide and Reconstruct

[diydrones.com]

Large-Scale MVS for Unorganized Photos (Internet Photos)

"Building Rome in a Day" [Agarwal, Snavely, et al., 2009]

Image-clustering based on a model

"Towards Internet-scale Multi-View Stereo" [furukawa et al., 2010]

One way to look at the clustering problem

Formulation

SFM points $\{P_1, P_2, \ldots\}$

Images $\{I_1, I_2, ...\}$

Image clusters $\{C_1, C_2, ...\}$

P1 is reconstructed well in *C1* based on (image resolutions/distribution)

 \rightarrow "P1 is covered by C1."

"P4 is covered by C2."

Formulation

SFM points $\{P_1, P_2, \ldots\}$

Images $\{I_1, I_2, ...\}$

Image clusters $\{C_1, C_2, ...\}$

We want to

- 1. remove redundant images
- 2. keep each cluster small (memory limit)
- 3. "cover" many points

Formulation

Minimize
$$\sum_{k} |C_k| \text{ subject to}$$
(compactness)• $\forall k \ |C_k| \le \alpha,$ (size)• $\forall i \ \frac{\{\text{\# of covered points in } I_i\}}{\{\text{\# of points in } I_i\}} \ge \delta.$ (coverage)

1. Start with all the images in a cluster

Minimize
$$\sum_{k} |C_k|$$
 subject to(compactness)• $\forall k \models C_k \models \leq \alpha$,(size)• $\forall i \quad \frac{\{\text{\# of covered points in } I_i\}}{\{\text{\# of points in } I_i\}} \geq \delta$.(coverage)

- 1. Start with all the images in a cluster
- 2. Optimize *compactness* while keeping *coverage*

- 1. Start with all the images in a cluster
- 2. Optimize *compactness* while keeping *coverage*
- 3. If *size* constraint is broken, split a cluster

- 1. Start with all the images in a cluster
- 2. Remove redundant images while keeping *coverage*
- 3. If *size* constraint is broken, split a cluster

4. Add an image to each cluster to satisfy *coverage*

- 1. Start with all the images in a cluster
- 2. Remove redundant images while keeping *coverage*
- 3. If *size* constraint is broken, split a cluster

- 4. Add an image to each cluster to satisfy *coverage*
- 5. Repeat (3,4) until *size* and *coverage* are satisfied

St. Peter's Basilica

- 1275 images
- 4 clusters
- 6M 3D points

