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Two-View Stereo



Binocular Stereo

e Given a calibrated binocular stereo pair, fuse it to
produce a depth image

image 1 image 2

Dense depth map




Basic Stereo Matching Algorithm

T HON. ABRATIAM LINCOLN, President of United States. =g
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* For each pixel in the first image
— Find corresponding epipolar line in the right image
— Examine all pixels on the epipolar line and pick the best match
— Triangulate the matches to get depth information

* Simplest case: epipolar lines are corresponding scanlines
— When does this happen?
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Simplest Case: Parallel Images

* Image planes of cameras are
parallel to each other and to the
baseline

 Camera centers are at same
height

* Focal lengths are the same

* Then, epipolar lines fall along the

horizontal scan lines of the
images




Depth from Disparity
X

@) Baseline o’

B

disparity = x — x'

Disparity is inversely proportional to depth!



Stereo Image Rectification




Stereo Image Rectification

* reproject image planes onto a common
. plane parallel to the line between optical centers
pixel motion is horizontal after this transformation

two homographies (3x3 transform), one for each input image
reprojection

»C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE
Conf. Computer Vision and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification Example




Correspondence search

Left Right

scanline

Matching cost
TN\/\/\{ disparity

 Slide a window along the right scanline and compare

contents of that window with the reference window in the
left image

* Matching cost: SSD or normalized correlation



Correspondence search

Left Right

scanline

SSD



Correspondence search

Left Right

scanline

Norm. corr



Effect of window size

—Smaller window
+ More detail
— More noise

—Larger window
+ Smoother disparity maps
— Less detail



Results with window search

Data

Window-based matching Ground truth




Non-local constraints

* Uniqueness

— For any point in one image, there should be at most one matching
point in the other image

o Violates uniqueness
constraint

0, Left image Right image Oc



Non-local constraints

* Uniqueness

— For any point in one image, there should be at most one matching point in
the other image

* Ordering

— Corresponding points should be in the same order in both views




Non-local constraints

* Uniqueness

— For any point in one image, there should be at most one matching point in
the other image

* Ordering

— Corresponding points should be in the same order in both views

Ordering constraint doesn’t hold



Consistency Constraints

* Uniqueness

— For any point in one image, there should be at most one matching point in
the other image

* Ordering

— Corresponding points should be in the same order in both views

* Smoothness
— We expect disparity values to change slowly (for the most part)

MRF Formulation:

E(d) = Ea(d) + AEs(d)

N\

Pixel matching score Consistency Scores



Comparsion

Window-Based
Search:

Graph Cut:

Ground Truth




Stereo matching as energy minimization

* Graph-cuts can be used to minimize such energy
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts,

PAMI 2001


http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Multi-View Stereo



Multi-View Stereo from Internet Collections

[Goesele et al. 07]

flickr:

Home The Tour Sign Up Explore

Search

Photos Groups  People

Jstatue of liberty

@ Full text £ Tags only

@ We found 80,865 results matching statue and of and liberty.

View: Most relevant « Most recent + Most interesting Show: Details - Thumbnails

4';» From Marion Doss \
From mbell1975 From Barry Wright
| 4
From almk From sbecreate11 From sbecreatet1

From phileole

: %ﬁ. e

Vi e i e Vs

I
From sjgardiner From sjgardiner From glesa.ah

From picoatridge




Challenges

« Appearance variation

« Massive collections

82754 results for photos matching notre and dame and paris



Law of Nearest Neighbors

206 Flickr image




| ocal view selection

« Automatically select neighboring views for each point in the image
* Desiderata: good matches AND good baselines




| ocal view selection

« Automatically select neighboring views for each point in the image
* Desiderata: good matches AND good baselines




reference view

| ocal view selection

« Automatically select neighboring views for each in the image
 Desiderata: good matches AND good baselines
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129 Flickr images taken by 98 photographers



¥ W

merged model of Venus de Milo



. [

56 Fllckr |mages taken by 8 <photographers



merged model of Pisa Cathedral



Accuracy compared to laser scanned model:
90% of points within 0.25% of ground truth



Use of Structural Priors



MVS has been so successful

Result - Leila

Camera 5 of 7 " - 4 Camera 6 of 7 [Apple mapS]

High-quality passive facial performance
capture using anchor frames

[T. Beeler, F. Hahn, D. Bradley, B. Bickel,

P. Beardsley, C. Gotsman, M. Gross, 2011]



What if no texture...




What if no texture...




Existing Method Fails

[Furukawa and Ponce, 2007]



Enforce Prior in MVS

® Manhattan-world assumption
® Planarity

® Orthogonality




Depthmap Estimation

</._’
camera —
center 'MAage

screen




Standard Dep
Markov Random

nmap
-1e

d (MRF)

E = Z Ed<dp) + Z ES(dp? d(})

p {p,q}eN

A Comparative Study of Energy Minimization Methods for Markov Random Fields with
Smoothness-Based Priors [Szeliski et al., PAMI 2008]



Markov Random Field (MRF)

E=Y Eqdy)+ > Es(dp,dy)
p

{p,q}eN

Eqgldp) 7 7 6 6 7




Markov

E=> Ey(dp)+
p

Random

Es(dpa dq) — |d'p - dQ‘

—leld (M

> Ey(dy, dg)

{p.q}eN

v

afo

v




Markov Random Field (M

Ly = Z Eq(dp) + Z Es(dp, dg)

p

Es(dp: dq) — |dp o dQ‘

{r,q}eN

¢

oo

v

q




Markov Random Field (MRF)

E=) Eqdy)+ ) Es(dydg)

p {p,q}eN

Ey(dp, dg) = |dp — dg|

v

oo

v




Markov Random Field (MRF)

E=) Eqdy)+ ) Es(dydg)

p {p,q}eN

Ey(dp, dg) = |dp — dg|

oo




Markov

E — ZEddp

ES(dP: dq)

Random

Sield (MR

Y Ey(dy,dy)

{p.q}eN

= |dp — dy]

ofo




Markov Random Field (MR

E=Y Eqdp)+ > Es(dpdg)

p {p,q}eN

Graph-cuts (alpha-expansion)
gives you very good solutions




We want piecewise planar
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How to enforce piecewise planar

1. Advanced MRF and optimization

* Global Stereo Reconstruction under Second Order Smoothness Priors [Woodford et al., CVPR
2008]

2. Integrate with top-down (primitive) approach

Manhattan World Stereo [Furukawa et al., CVPR 2009]

* Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]

* Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial
Imagery [Zebedin et al., ECCV 2008]

* Piecewise Planar and Non-Planar Stereo for urban Scene Reconstruction [Gallup et al., CVPR
2010]



Advanced MRF for
Depthmap Estimation

Reference image

N

Global Stereo Reconstruction under Second Order Smoothness Priors
[Woodford et al., CVPR 2008] Best Paper Award



Standard MRF

O—O0—0
O—O—O
O—O—0




Standard MRF

ES(dP: dq) — ‘dp - dq'

P q
O

O
O




MRF with a triple

Standard MRF

cligue
Es(dp, dq) — |dp — dql ES(dp: dq; d?")
P q p q r
O—0O—0 O—0O0—0
O—O—=0 O—O—0
O—O—=0O O—O—0




MRF with a triple

Standard MRF

cligue

Es(dp, dg) = |dp - dq| ES(dpa dg, dr)= ‘dp +dr — 2dq|
P q P q r
O—0O—0 O—0O—~0
O—O—0O O—O—O
O—O—O O—O—0




MRF with a triple clique

b = ZEd(dp) T Z Es(dp, dg)
p

{p.q}eN

Z ES(dpadQ: d?“)

{p,q,r}€N3




Optimization becomes a

challenge
Standard MRF MRF with a triple clique
(submodular) (non-submodular)
* Graph-cuts « QPBO
(alpha-expansion) » Belief propagation
» Belief propagation (TRW?)

(TRW)

Fusion moves...



Experimental results

Reference image Neighboring image

[Woodford et al.]



Comparative experiment

Reference image  Ground truth
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How to enforce piecewise planar

2. Integrate with top-down (primitive) approach



Standard Depthmap

</'_'
camera —>
center 'MAage

screen




Planemap

1. Extract Manhattan
directions
2. Extract planes

[Furukawa and Ponce, 2007]



Planemap

1. Extract Manhattan Possible planes a
directions e 8 h

b

e

2. Extract planes




Planemap

1. Extract Manhattan Possible plane ids a

directions

2. Extract planes




Depthmap to Planemap

Depthmap (dp)
L= ZEd(dp) T Z Es(dp, dg)
p {p,q}€N
Planemap (hp)
E=3 Eqhp)+ Y FEslhp hy)
p

{r.q}eN



Planemap MRF
E=) Eqhp)+ D Eslhy hg)

p {p,q}eN



Planemap MR-
E=Y Eyhp)+ > Es(hp hy)

p {p.q}eN




Planemap MRF




Planemap MRF
E=Y Eyhp)+ > Es(hphy)

p {p,q}eN

Es(hp, hq)



Planemap MRF
E=% Eqhp)+ > Es(hphy)

p {p.q}eN

Es(hp, hq)

O



Comparison

Standard method Manhattan Planemap



Reconstruction Results

Kitchen - 22 images

house - 148 images

gallery - 492 images [ o |




How to enforce piecewise planar

2. Integrate with top-down (primitive) approach

* Manhattan World Stereo [Furukawa et al., CVPR 2009]



Relaxing Mahnattan

AT ks 4 P
L - ‘ fl/
=g W 2 = =%

60 images

Structure from motion

Reconstruct Lines
+

Detect Multiple Planes

i

Piecewise planar depth-map

» Use sparse lines + sparse points to detect planes

« MRF + Graph-cuts

Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]



Relaxnng I\/Ianhattan

[Sinha et al.]



Relaxmg Manhattan




Enable Curved Surfaces

e Building reconstruction from a top down view

Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial
Imagery [Zebedin et al., ECCV 2008]



Enable Curved Surfaces

[Zebedin et al.]

.
llﬁ




How to enforce piecewise planar

2. Integrate with top-down (primitive) approach

* Manhattan World Stereo [Furukawa et al., CVPR 2009]
* Piecewise Planar Stereo for Image-based rendering [Sinha et al., ICCV 2009]

* Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial
Imagery [Zebedin et al., ECCV 2008]



3D Reconstruction from Video

Street-Side Video Real-Time Stereo

=)




Video Frames

I RLIEL S

|

Enforce planarity where it looks like a building

Il ETH



First step: Planar and Non-Planar Stereo

Labels = {7y, -+ , TN, Too, NON-plane, discard}

o planes . non-plane - discard

Real-Time Stereo Plane Detection Planemap (w/ non-planar))



Second step: Appearance Prior

Video Frames




Algorithm

Planar/Non-Planar

Classification
q Planar and Non-Planar
| &
154

MRF
u_.

- i e ' " - a
non- planar planar

Plane Detection
Real-Time Stereo

=




Large-Scale Multi-View Stereo



[ diydrones.com ]
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Divide and Reconstruct
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arge-Scale MVS for Unorganized Photos
Internet Photos

“Building Rome in a Day” [ Agarwal, Snavely, et al., 2009 ]



Divide Is a challenge




Divide Is a challenge

Divide in the image space?




Divide Is a challenge

Divide in the model space?




Image-clustering based on a model

“Towards Internet-scale Multi-View Stereo” [furukawa et al., 2010 ]




One way to look at the
clustering problem

A )
S AP

Image
— (Common features




Formulation

SFM point—" 7 |
p, 1lmage
P, ?  cluster
1mages
bV

CEE
L Lllls * < L5 C,

)

P1is reconstructed well in C1

SFM points
{PLP, ...}

Images
Ul ..

Image clusters

based on (image resolutions/distribution)
— “P1is covered by C1."

“P4is covered by C2.”



Formulation

SFM point— P, SFM points
image 1, P, ..
. P L Cluster & }
1ma}g\fs A v Images
4 W r’—jﬁ ) Ul ...}
C 3 .. ] Image clusters
! o = [rflle e /; | &) {G? (>, ... !

We want to

1. remove redundant images

2. keep each cluster small (memory limit)
3. “cover’ many points



Formulation

SFM points

Image PP, ...}
clusfer

J Images
VULl
- Image clusters
| 2 0,
Minimize Z |C';:| subject to (compactness)
k
o Vi |Ck| < a, (size)

{# of covered points in /; } -

Vi
o {# of points in /;} -

0. (coverage)



Image Clustering Algorithm

Minimize Z |C'k| subject to (compactness)
k

o Vi |Ck| < a, (size)
o Vs {# of covereq po%nts in 1;} -
{# of points in /; }

0. (coverage)



Image Clustering Algorithm

1. Start with all the images in a cluster P

P R‘
).

P b

Minimize Z |C';;| subject to (compactness)
k

o VEteRZ o (size)

o\ {# of covered points in /; } -
{# of points in I; } -

0. (coverage)



Image Clustering Algorithm

1. Start with all the images in a cluster P

2. Optimize compactness 4‘ 4
while keeping coverage > B

Py

Minimize Z C’k@ (compactness)
k

o W, (size)

o {# of covered points in /; } -
{# of points in I, } -

J. (coverage)



Image Clustering Algorithm

1. Start with all the images in a cluster P
2. Optimize compaciness Pz"
while keeping coverage > "

3. If size constraint is broken, > 4
split a cluster L

Minimize Z |C'x| subject to (compactness)
k

(size)

(coverage)



Image Clustering Algorithm

1. Start with all the images in a cluster P,
2. Remove redundant images P—""R
while keeping coverage ’

3. If size constraint is broken,
split a cluster

>y ¢

4. Add an image to each cluster to
satisty coverage

Minimize Z |C'k| subject to (compactness)
k

: (size)

~1# of (:cmerﬁ'f1 po%nts infy > 4. (coverage)
{# of points in /;}




Image Clustering Algorithm

1. Start with all the images in a cluster P
2. Remove redundant images ’”—’R’
while keeping coverage ) .

3. If size constraint is broken,
split a cluster

Py ¢

4. Add an image to each cluster to
satisty coverage

5. Repeat (3,4) until size and coverage are satisfied

Minimize Z |C'k| subject to (compactness)
k
?
o\ " (size)

~{# of coverefi po%nts in ;} > 0. (coverage)
{# of points in I; }
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St. Peter’s
Basilica

e 1275 images
* 4 clusters

« 6M 3D points







