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Map Synchronization

. Goal: Compute maps among a collection of
objects

. Input: Pair-wise maps computed between
pairs of objects in isolation



Map synchronization applications

. Multi-scan registration

. Multi-view structure from motion
. Reassembling fractured objects

. Joint data analysis

. Multi-graph matching

. Joint learning of neural networks



Motivations of Map Synchronization



Ambiguities in assembling pieces
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Resolving ambiguities by looking at
additional pieces
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Resolving ambiguities by looking at
additional pieces
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Matching through intermediate objects
--- map propagation

Blended intrinsic maps
[Kim et al. 11]

object

Composite



Pair-wise maps usually contain
enough information
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Network of approximately correct blended intrinsic maps



Map synchronization problem
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Identify correct maps among a (sparse) network of
maps



A natural constraint on maps is that
they should be consistent along cycles




A natural constraint on maps is that
they should be consistent along cycles

Composite



Literature on utilizing the
cycle-consistency constraint

* Spanning tree optimization [Huber et al. 01, Huang
et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]



Greedy algorithm for spanning tree
computation

(b) incorrect (c) correct

[Huber and Hebert 02] [Huang et al. 06]



Literature on utilizing the
cycle-consistency constraint

* Spanning tree optimization [Huber et al. 01, Huang
et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]

* Sampling inconsistent cycles [zach et al. 10, Nyugen
et al. 11, Zhou et al. 15]



Linear programming formulation [zach et al. 10]

(d) Erroneous relations

(b) Relation graph

(c) Error statistics (mean error shown)
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Compressive sensing view of
map synchronization

VAN

Cycle-consistency

Input maps Noisy observations



Map synchronization as

constrained matrix optimization
[HG13]

Noisy measurements of matrix blocks



The equivalence among cycle-consistency,

low-rankness, and SDP
[HG13]

* The following three statements are equivalent:
— The maps are cycle-consistent
— Xis low-rank and the rank equals to #points per surface
— X is positive semidefinite
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Example: permutation synchronization

[HG13]
Objective function:

e 3 (X500

(1,5)€G «_
Observation graph
Constraints:

X =0« cycle-consistency

X?'.-i. — 4Lm; 1 <i<n
X1=1X/1=1, 1<i<j<n
0< X <1




Deterministic guarantee

e Theorem[HG13]: Given noisy input maps,
permutation synchronization recovers the underlying

maps if | \a(G)
#incorrect corres. of each point <




Optimality when the object graph G is a
clique [HG13]

* 25% incorrect correspondences
* Worst-case scenario

— Two clusters of objects of equal size

— Wrong correspondences between objects of different
clusters only (50%)




Justification of maximizing »(G)
for map graph construction

Imageweb [Heath et al 10] Fuzzy correspondences
on shapes [Kim et al 12]



Randomized setting

[CGH14]

* Generalized Erd6s—Rényi model:
— p,,s: the probability that two objects connect
— P, .- the probability that a pair-wise map is correct
— Incorrect maps are random permutations

* Theorem [CGH14]: The underlying
permutations can be recovered w.h.p if

log*(mn)

v/ " Pobs

Ptrue = C




Optimality when m is a constant

* Exact recovery condition:

log*(n)
v/ "Pobs

* |Information theoretic limits [Chen et al 15]:

Ptrue > C

1
\ NPobs

No method works if  Ptrue < €1



Comparison to a generic low-rank matrix
recovery method [CGH14]

Permutation synchronization RPCA [Candes et al. 09]

50 70 90 110 130 150 50 70 90 110 130 150
n: number of objects n: number of objects

Phase transitions in empirical success probability (p,,. =1)



Noise distribution when perturbing
permutations [CGH14]

 RPCA can handle dense corruption if the

perturbations exhibit random sign pattern, yet

o
EP (Sgn(X?,j Im)) — Im"‘ l

* The map constraints incur a quotlent space

defined by
K={Z:|ZcR™™, Z1=0, Z'1 =0}

* The expectation under this quotient space

Ep, /k(sen(Xij — 1)) = 0



Partial point-based map synchronization

[CGH14]

Step |: Spectral method:
m <= #dominant eigenvalues of X"Put gfter trimming

Step II: minimize > (anh - 2x P X))
(2.9)€G
subject to X;; =1,,., 1<i<n
0<X <1

Size of the universe

m 17



Exact recovery condition

[CGH14]

 Randomized model: n objects, universe size m

— Each object contains a fraction p.,, of m elements
— Each pair is observed w.p. p_,.
— Each observed is randomly corrupted w.p. 1 —p,,,.

Theorem. When ) ¢ (L L, the underlying maps can

M \/Pobs

be recovered witn nign probability if

log? (mn
Ptrue 2 C2 D) 5 ( )

pset \/ NPobs




Spectral Map Synchronization



Intuition

Xobservation Xground—truth + Xnoise

David-Kham theorem:

||X'n,oz'se ||

UrmJ Xobs _U’rn th <
1Um (X7%) (X7 < N (X)  h1 (X)




Algorithm

[Pachauri et al 13, Shen et al 16]

e Step I: Leading eigen-vector computation
— Power method, which can be done very efficiently

e Step Il: Rounding via linear assighment
— Hungarian algorithm



Theoretical Analysis

* Deterministic setting
— A constant fraction of noise [Huang et al. 19]
— 1/8 for clique graphs (a gap from SDP formulations)

 Randomized setting [Bajaj et al. 18]

pZOCI%mB

N

Fraction of correct maps Sampling density




Non-Convex Optimization



Translation Synchronization

* Pair-wise differences along a graph [Huang et al. 17
* Convex optimization

mn
minimize Z 1tij — (x; —x;)|, subjectto Z x; =0
(i,5)€EE =1

* Truncated least squares

T
{;c,gk)} = argmin Z wi;lti; — (z; —x;)|%,  subject to Z Vdiz; =0, d;:= Z Wi
i=1

i (igee JEN (i)

wij = Td(Jti; — (@*1 — 2D < 6)

¢ J



Exact recovery condition

e Deterministic

— A constant fraction of noise (1/6 for clique graphs)
— 2/3 of the optimal ratio

e Randomized

1

z9t — a:gt + Ul[—a,b] with probability 1 — p

2

, { xIt — a:gt + Ul—0o,0]  with probability p
ij =

Exact recovery if p > ¢/+/log(n).



Summary of low-rank based techniques

Xobservation

Xground—truth

Recovery if Insome reduced space

spectral-gap (X eround-truth) > CH XnoiseH

Xnoise

The constant depends on the optimization techniques being used

Many (non-convex) techniques require further understanding!




Joint Map and Symmetry Synchronization



Symmetric objects are ubiquitous

[Ranson and Stockley 10]

1i8f

[André et al. 07]
Daily objects Biological/chemical objects



Multiple plausible
self-maps and pair-wise maps




No separation in the standard
formulation

observation — ground-truth noise
X = | X +| X
( IQ IQ IQ IQ \ ( IQ 1—2 12 _IQ \
IQ IQ I2 12 12 _12 ;
IQ IQ IQ Cee Vs 12 _12 12




Symmetry detection first?

« Symmetry detection is difficult, particularly in the
presence of partial observations

Dome of the Rock



Two correlated problems

Symmetry detection Better symmetry detection
Improves matching through information aggregation
_\;_‘)&
& & S y»éz

[Ovsjanikov et al. 13]

e

[Tevs and Huang et al. 14]




Using the product operator - lifting

Q: Z(P®P) 00® oo
Peg oo 0o ®

Linear programming or semidefinite programming relaxations for MAP inference
[Wainwright and Jordan 08, Kumar et al. 09, Huang et el. 14,...]



Properties of lifting

Proposition: If the orbit size is equal to the
group size, then we can recover G from Q




A Variant of Low-rank Matrix Recovery Formulation
In the Lifting Space



Low-rank representation

 Define

) f : Rm%xm% s lemg X1MmM1M>2
A 4 0<i1,71 <mp—1,
‘F( )i1m2+i2;j1m2‘|‘j2 — digma+jJ1,i2ma+j2 0 < iy, jo < ma—1
-~ 3 -~ .

* Then
F(Q) = E vec(P) - vec(P)"

Peg

Low-rank



Observation induces a linear
constraint

Q12 = Z P12 @ Pio

PioeMqo

|
F(Q12) = Z vec(Pyg)vec(Pra)?t

PioeMio
+

T
L(VGC(Plg),VGC(PIQ)) ~ 5, YV Pio # P1,2 e Mo

v

F(Qi2)vec(Pr2) = ||vec(Py2)||*vec(Pi2)



Low-rank factorization

. Low-rank factorization
Qij = (Pjo ® Pjo)" Qoo(Pio ® Py)
|

\

Qo
0

1
R:ng(Pl()@PlOp"' 7PnO®PnU)

Q=R'R



Low-rank matrix recovery

min 3" IF(Qu)vee( P — llvee(P)|Pvee( P | + XIQ — KTRI%
T (i) €EE 1

Block-wise L1-norm for robust recovery Low-rank constraint

Spectral initialization
Alternating minimization
Greedy rounding



Stool dataset
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Quantitative Evaluations

%Correspondences

Joint map and symmetry synchronization improves

symmetry detection

100
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40f

20... ..

Symmetry Detection (Images)

===Symll=Input,  _ _

— Syml-Input

— SymlI-Opt

- == SymlI-Opt
0.02  0.04

Correspondence Error

%Correspondences
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Symmetry Detection (Shapes)
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Correspondence Error



Quantitative Evaluations

- Joint map and symmetry synchronization improves mapping
— With respect to the closest map (not correspondence)

Matching (Images, Sym-Aware) Matching (Shapes, Sym-Aware)

100 100——
¢ 80f---Huang14 | g 80 "';‘:an%;‘
S Zhou15a 5 COU > —
===00smo ez
£ ©0l.--Zhou15b = -
o . a  |—Ours o,
2 40 Cosmo17 - 8 40| T T s S
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2 20 '," X 20t
L7
002 004 006 008 0.1 002 004 006 008 0.4

Correspondence Error Correspondence Error



Map Synchronization++

EREE R RpERCL -
iy B R A R
6% R FTLRRL, WEM E@ ARREARE

Huang et al. 19 Huang et al. 15

- Simultaneous mapping and clustering
- Joint matching and segmentation

- Joint image and shape matching

- Multiple protein-protein interaction network alignment



Learning Transformation Synchronization

[With X. Huang, Z. Liang, X. Zhou, X. Yao, L. Guibas]



Hand-crafted objective function

[HG13]
Objective function:

e 37 [XEP - X

(1,5)€G «_
Observation graph
Constraints:

X =0 < cycle-consistency

X?'.-i. — 4Lm; 1 <i<n
X1=1X/1=1, 1<i<j<n
0< X <1




3D scene reconstruction from depth scans

[Dai et al. 17]

* Similar noise sources
— Scanning noise, frame rate, and symmetry structures



Reweighted least square synchronization

Rotation: Translation

P P D2 U g 2
RSBy 2wl = Rl i 2 walft b~ 6]

(1,5)€€ (i,5)€E
Solved by the first 3 eigenvectors of a Linear system:
Connection Laplacian
Wi 13 L=
L o < ]EN(Z) Where
ij = wwRT (¢.,j) € € Z wi; R
! 0 otherwise
JEN (1)

Robust recovery under a constant fraction of adversarial noise if

E2

€2 4+ 12

wyy = p(|Ri; B = R™|)  where  plr) =



Network design

Input Scans

Relative
Poses

|

—

!

Weighting
Module

—> Weights —

)

—_

Synchronization

Module

Synchronized
Poses




Weighting module

Input Scans

Distance Maps

KNN| —
i, I a k
T’ij (k) . 8?(, j ) —
Relative pose L _—

Status Vector
Connection Laplacian S

Eq.(13)

- M_» SCOreeo(S“SJ’Tm)

(k+1)

—_— ’IU% ]
Output Weight



Qualitative results

Ground Truth RotAvg Geometric Registration Our Approach




Qualitative results

Ground Truth RotAvg Geometric Registration Our Approach




Quantitative results

Baseline Comparison (FastGR)
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g 02 RotAvg 027 RotAvg
O —— Our Approach —— Qur Approach
0.0 1 0.0 1
0 25 50 75 100 125 150 175 0 1 2 3 4 5
Angular Rotation Error Translation Error

Redwood dataset



Further reading (a partial list)

* Uncertainty quantification, Rotation/transformation
synchronization, and lower bounds

1. T. Birdal, U. Simsekli. Probabilistic Permutation Synchronization using the Riemannian
Structure of the Birkhoff Polytope. CVPR 2019.

2. T. Birdal, U. Simsekli, M. Eken, S. llic. Bayesian Pose Graph Optimization via Bingham
Distributions and Tempered Geodesic MCMC. In NIPS 2018.

3. A. Perry, J. Weed, A. S. Bandeira, P. Rigollet, A. Singer, “The sample complexity of multi-
reference alignment”. SIAM Journal on Mathematics of Data Science

4. 0. Ozyesil, N. Sharon, A. Singer, “*Synchronization over Cartan motion groups via
contraction”, SIAM Journal on Applied Algebra and Geometry, 2 (2), pp. 207-241 (2018)

5. A. S. Bandeira, N. Boumal, A. Singer, “"Tightness of the maximum likelihood semidefinite
relaxation for angular synchronization”, Mathematical Programming, series A, 163 (1):145-
167 (2017).

6. A. Singer, H.-T. Wu, “Spectral Convergence of the Connection Laplacian from Random
Samples”, Information and Inference: A Journal of the IMA, 6 (1):58-123 (2017).



Further reading (a partial list)

* Uncertainty quantification, Rotation/transformation
synchronization, and lower bounds

7. K. N. Chaudhury, Y. Khoo, A. Singer, “"Global registration of multiple point clouds using
semidefinite programming”, SIAM Journal on Optimization, 25 (1), pp. 468-501 (2015).

8. N. Boumal, A. Singer, P.-A. Absil and V. D. Blondel, "Cramér-Rao bounds for
synchronization of rotations”, Information and Inference: A Journal of the IMA, 3 (1), pp. 1-
-39 (2014).

9. A. Singer, “Angular Synchronization by Eigenvectors and Semidefinite Programming",
Applied and Computational Harmonic Analysis, 30 (1), pp. 20-36 (2011).

10. SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean
Group David M. Rosen, Luca Carlone, Afonso S. Bandeira, and John J. Leonard. (2018)

11. Robust synchronization in SO (3) and SE (3) via low-rank and sparse matrix

decomposition. Federica Arrigoni, Beatrice Rossi, Pasqualina Fragneto, Andrea Fusiello.
Computer Vision and Image Understanding. 174. pp. 95-113 (2018)



Neural networks as maps



Neural networks are maps

* Approximate any function given sufficient
data




Monocular reconstruction

(a) depth
I floor _

wall
bed
I window
M sofa

objects

(c) output

Semantic scene completion [Song MarrNet [Wu et al. 17]
et al. 17]

Space of images — Space of 3D models



Image Captioning

{parked (072) [bencn ( 63)] [truck (0.70)] [rea (0 &)

iwn uc‘s [yelow (057)]

men (0.59)] m.m mm'n (064)) snow (097) [skis (074)] (player (054

: taying (061) [people (0.85)) (v (07 4kang (051 |“v A ' {fleld (0.00) l°"9ﬂ" {0.56)) [dawn (0.54)]) {iracks (099}

[court (0.51) |sxana«»gwss)] [slus (0.58)] [street (0.52)) [skateboard (0.89)] [riding (0.75)] [tennis (0.74)] [trick (0.53)] [skate (0.52)] n a train traveling down train tracks near a field
{man (0.77)] [skateboard (067)] [man (0.86)) [down (061)] Isky (06Y] [kite (0.

a red train is coming down the tracks

2 growp o peopia Standing next 1o each other a group of people riding skis down a Snow covered siope
people stand outside a large ad for gap fealuring 8 yoUng b0y 3 guy on a skate board on the side of a ramp

a couple of people flying Kites in a field
people in a field flying different styles of kites

156)) (car (0.79)] [Dlack (0.57)] (iru
et (0.57)) [bed (0.51)] [dog (0.65)]
[siting (055)] {man (053 [c3

a dog sitting on top of a car
?"’55“”‘“‘” orss (0801 a cat is lying on the hood of a black car

[umbrelia (0.59)] [woman (0.52)]

{fre (0.96)] [hydrant (0.96)] [street mm)
{bench (0.87) 57]
[white (0.82)] [sitting (0.65)

[man (0.59) ch (054)] [sky (05 50)] (1
snow (0.86)] [mountain (0.59)] [white (064)]

— 8
[horse (0.53)) [bear (0.71)] [elephant (0.99)
[pcoplz (051)) muq ( (o)] [cows (0.55

) ] [elepna
brown (0.68)] [taying (061)]
[man (0.57)] [standing (0.79)) [field (0.65)]
STlack and White Bhot of @ Tre Fydrant water (083)] [large (0.71) [drt (0.65)) [river (0.58)]
a courtyard 1 of poles pigeons ond garbage cans alo has banches o0 5 gk -gTephant tanding H6XT 1o each oTher on a Tield

thor sido of il 0ne of which shows tho back of a arge parson face
0 e clrbellon of e plgeors o elephants are playing together in a shallow watering hole

{bear (0.
3 black bear standing on top of a grass covere
a couple of sheep standing up on a small hill

(0.71)] [sitting (0.61) g‘,.ﬁs,rr;;m 85| ek i
00! [iruck (076)] 110aa ( 57)) compute ! -

o (095 \ n.,aram (091) [siting (053} a man doing a trick on a skaleboard iv (054)] [television (0.50)) a baseball player swinging a bat at a ball

ed (053 Iparked (082)) [sign (078)] der is is mid air performing a stunt  an open Tapfop computer sitting on top of a desk a boy is playing with a baseball bat

afire “Yd'a"‘ on the side of a road two computers are shown together on a desk
two signs with arrows pointing to each other for detour

station (052))

Space of images — Space of natural language descriptions



Joint Learning in Neural Networks



Advantage |: Leverage more training data



A toy example

[Johnson et al. 16]

Sparse
paired data

Korean Portuguese

English



Advantage Il: Leverage Unlabeled Data



A toy example

Labeled Unlabeled

NN | NN Il

Standard setting: Joint setting:

I Representation I
|




Limitations of low-rank approaches

Input Model _
. B Iy Xi2 Xin
VOLI ||
g : : K Xn—l,n
PCIII vOu 'o X s X — I
| nl n,n—1 m
Output Seg.

TR

Neural networks

Matrix representations

Undirected maps
Directed maps




Path-invariant map networks



Multi-lingual translation

[Johnson et al. 16]

Sparse
paired data

English



Abstraction

[Zhang et al. CVPR 19]

f5=fAf ffofy=1d

Path-invariance Cycle-consistency



Path-invariance

[Zhang et al. CVPR 19]

Input Model Definition 3. Let Gpun (u, v) collect all paths in G that con-
nect u to v. We define the set of all possible path pairs of G

as
gpair - U {(pa Q) |p7 qc gpath(u: U)}

u,veY

VOLI

VOLII

We say F is path-invariant if

Output Seg. o = Jfgs V(p,q) € Gpair-

-y

PCIII




Path-invariance basis

[Zhang et al. CVPR 19]

Input Input

@ PCI VOLI PCI VOLII
Input Model
Output Output
PCI
VOLI P Input Input
PCI PCIII PCI PCII
VOLIT | (g Output Output
PCIII
Input Input PCI
Output Seg.
PCI PCI PCI
7 PCII PCII PCIII

Can induce the path-invariance property of the entire graph



Path-invariance provides a regularization
for training neural networks

[Zhang et al. CVPR 19]

VOLI PCI VOLII
Input Model

Output Output
Input Input
QPCIII PCl PCII
Output Output
Input PCI
{ i PCI!{
PCII PCIl PCIII

Supervised loss Unsupervised loss



Induction operations

AN AN

Pf)q g —p )q q’ @ =3 pp'(Aqq’| p' P (=g p’ D

VoA QY

merge stitch cut

Primitive operations that preserve the path-invariance property



Main result

[Zhang et al. CVPR 19]

 Theorem: Given a directed graph with n
vertices and m edges, there exists a path-
invariance basis with size at most O(nm)

 Main idea for the proof

— A directed graph is a directed acyclic graph (DAG)
of strongly connected components

— Use a vertex order to construct a path-invariance
basis for DAG



Connection to cycle-basis

€

2 ‘ €2
€6
€3 e3 el
es €5
‘ o

[Kavitha et al. 09]

€2
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AP X open P X-har open polynomial polynomial
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Cycle-consistency basis

[Guibas, H., Liang, 19]

* Defined on undirected graphs

* Operations: merge and stitch

 Minimum size of a cycle-consistency basis
— #Hedges - #ivertices + 1

* Conjecture I:
— Computing the minimum path-invariance basis of a given
graph is NP-hard
* Conjecture ll:

— Testing a collection of cycles (or path pairs) is a cycle-
consistency basis (or path-invariance basis) is also NP-hard



Three advantages over randomly
sampling path-pairs (Zhang et al. CVPR 19

* One may need to sample many (exponentially
number of) path pairs to ensure the path-
Invariance property
— Many long path pairs

 There is a cost of implementing one path pair

* Convergence of stochastic algorithms



Semantic segmentation on ScanNet

Ground Truth |8% Label _30% Label _100% Label _8% Label + 92%Unlabel
[nput Model K
VOLI (o e i HEresy) MY IS
- - - =
PCIII " v
Output Seg.
"J%“ﬂ")
R |PCI PCII PCIII VOLI VOLII
100% Label (Isolated) 84.2 833 834 819 815
8% Label (Isolated) 79.2 783 784 787 T4
8% Label + 92%Unlabel (Joint)|81.7 81.7 81.4 8I1.1 78.7
30% Label (Isolated) 80.8 81.9 81.2 803 795

8% labeled + 92% unlabeled = 30% labeled



Shape Matching (SHRECO7, Clique)
80-

| — Input
» 70 — Cosmo17
§ 60 = Zhou15
T Huang14
S ===Rand-Cycle P
o 40 —— Fund.-Cycle ¥~~~ s
2 30 = Ours ;
8 |
2 20

-
o

004 006 008

Geodesic Error
Shape Matching (SPCoSeg, Clique)
1o PO v

0.02

0.1

= [nput
79 m— Cosmo17
60 Zhou15

== =Huang14
2 N Rand-Cycle
40 —— Fund.-Cycle
30 — Ours

20
10!

%Correspondences

0.02

0.04
Geodesic Error

0.06 0.08 0.1

Comparisons on computing object
correspondences

Shape Matching (SHRECO07, Sparse)
BOpcee

» 70 m— Cosmo17

§eo = Zhou15

(o) = ==Huang14
-g - Rand-Cycle ¢ 2~

& 40 —— Fund.-Cycle”

O 39, = Ours

8 20

X

0.1

0.08

004 0.06
Geodesic Error

Shape Matching (SPCoSeg, Sprase)
80-

0.02

| — Input
70 m— Cosmo17
60 -Zhou15
===Huang14
e Rand-Cycle
0| —— Fund.-Cycle; 27
= Qurs o

(%]
Q
o
c
[}
©
o
Q
[}
—

4
= 30
o)

20
10

2
X

004 006 008 0.1

Geodesic Error

0.02

Better than low-rank based techniques on sparse graphs



Further reading (a partial list)

* Joint learning of neural networks

1. Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.

2. Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, Alexei A. Efros. Learning
Dense Correspondence via 3D-guided Cycle Consistency. CVPR 2016.

3. Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Kar, Nikhil Cheerla, Rohan Suri,
Zhangjie Cao, Jitendra Malik, Leonidas Guibas. Robust Learning Through Cross-Task
Consistency. CVPR 2020.



