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Map Synchronization

• Goal: Compute maps among a collection of 
objects

• Input: Pair-wise maps computed between 
pairs of objects in isolation



Map synchronization applications

• Multi-scan registration

• Multi-view structure from motion

• Reassembling fractured objects

• Joint data analysis

• Multi-graph matching

• Joint learning of neural networks 



Motivations of Map Synchronization



Ambiguities in assembling pieces



Resolving ambiguities by looking at 
additional pieces



Resolving ambiguities by looking at 
additional pieces



Matching through intermediate objects 
--- map propagation

Blended intrinsic maps
[Kim et al. 11]

Composite

Intermediate
object



Pair-wise maps usually contain 
enough information 

Network of approximately correct blended intrinsic maps



Map synchronization problem

Identify correct maps among a (sparse) network of 
maps



A natural constraint on maps is that 
they should be consistent along cycles

Inconsistent



A natural constraint on maps is that 
they should be consistent along cycles

Composite

Consistent



Literature on utilizing the 
cycle-consistency constraint

• Spanning tree optimization [Huber et al. 01, Huang 

et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]



Greedy algorithm for spanning tree 
computation

[Huber and Hebert 02] [Huang et al. 06]



Literature on utilizing the 
cycle-consistency constraint

• Spanning tree optimization [Huber et al. 01, Huang 

et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]

• Sampling inconsistent cycles [Zach et al. 10, Nyugen 

et al. 11, Zhou et al. 15]



Linear programming formulation [Zach et al. 10]

min

s.t
.



Compressive sensing view of 
map synchronization

Cycle-consistency Compressible 

Input maps Noisy observations



Map synchronization as 
constrained matrix optimization

Noisy measurements of matrix blocks

[HG13]



The equivalence among cycle-consistency, 
low-rankness, and SDP

• The following three statements are equivalent:
– The maps are cycle-consistent

– X is low-rank and the rank equals to #points per surface

– X is positive semidefinite 

[HG13]



Example: permutation synchronization

Objective function:

minimize

Constraints:
cycle-consistency

Observation graph

mapping constraint

[HG13]



Deterministic guarantee

• Theorem[HG13]: Given noisy input maps, 
permutation synchronization recovers the underlying 
maps if
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Optimality when the object graph G is a 
clique 

• 25% incorrect correspondences

• Worst-case scenario
– Two clusters of objects of equal size

– Wrong correspondences between objects of different 
clusters only (50%)

[HG13]



Justification of maximizing
for map graph construction

Imageweb [Heath et al 10] Fuzzy correspondences
on shapes [Kim et al 12]



Randomized setting

• Generalized Erdős–Rényi model:
– pobs:  the probability that two objects connect

– ptrue:  the probability that a pair-wise map is correct

– Incorrect maps are random permutations

• Theorem [CGH14]: The underlying 
permutations can be recovered w.h.p if

[CGH14]



Optimality when m is a constant

• Exact recovery condition:

• Information theoretic limits [Chen et al 15]:

No method works if 



Comparison to a generic low-rank matrix 
recovery method 

Phase transitions in empirical success probability

Permutation synchronization RPCA [Candes et al. 09]

(pobs =1)

[CGH14]



Noise distribution when perturbing 
permutations

• RPCA can handle dense corruption if the 
perturbations exhibit random sign pattern, yet

• The map constraints incur a quotient space 
defined by

• The expectation under this quotient space

[CGH14]



Partial point-based map synchronization 

Size of the universe

Step II:

Step I: Spectral method: 
m   <=   #dominant eigenvalues of Xinput after trimming 

[CGH14]



Exact recovery condition

• Randomized model: n objects, universe size m
– Each object contains a fraction pset of m elements

– Each pair is observed w.p.  pobs

– Each observed is randomly corrupted w.p. 1 – ptrue

• Theorem. When                   , the underlying maps can 
be recovered with high probability if

[CGH14]



Spectral Map Synchronization



Intuition

= +

David-Kham theorem:



Algorithm

• Step I: Leading eigen-vector computation

– Power method, which can be done very efficiently

• Step II: Rounding via linear assignment

– Hungarian algorithm

[Pachauri et al 13, Shen et al 16]



Theoretical Analysis

• Deterministic setting
– A constant fraction of noise [Huang et al. 19]

– 1/8 for clique graphs (a gap from SDP formulations)

• Randomized setting [Bajaj et al. 18]

Fraction of correct maps Sampling density



Non-Convex Optimization



Translation Synchronization

• Pair-wise differences along a graph

• Convex optimization

• Truncated least squares

[Huang et al. 17]



Exact recovery condition

• Deterministic 
– A constant fraction of noise (1/6 for clique graphs)

– 2/3 of the optimal ratio

• Randomized

Exact recovery if



Summary of low-rank based techniques

= +

Recovery if In some reduced space

The constant depends on the optimization techniques being used

Many (non-convex) techniques require further understanding!



Joint Map and Symmetry Synchronization



Symmetric objects are ubiquitous

Daily objects Biological/chemical objects

[Ranson and Stockley 10]

[André et al. 07]



Multiple plausible 
self-maps and pair-wise maps



No separation in the standard 
formulation

= +

v.s.



Symmetry detection first?

• Symmetry detection is difficult, particularly in the 

presence of partial observations

Dome of the Rock 



Two correlated problems

Symmetry detection 

improves matching

Better symmetry detection 

through information aggregation

[Tevs and Huang et al. 14]

[Ovsjanikov et al. 13]



Using the product operator - lifting

Linear programming or semidefinite programming relaxations for MAP inference

[Wainwright and Jordan 08, Kumar et al. 09, Huang et el. 14,….]



Properties of lifting

• Proposition: If the orbit size is equal to the 
group size, then we can recover G from Q



A Variant of Low-rank Matrix Recovery Formulation 

in the Lifting Space



Low-rank representation

• Define

• Then

Low-rank



Observation induces a linear 
constraint

+



Low-rank factorization

• Low-rank factorization

Q0

0

=Q:



Low-rank matrix recovery

• Spectral initialization

• Alternating minimization

• Greedy rounding

Low-rank constraintBlock-wise L1-norm for robust recovery



Stool dataset





Quantitative Evaluations

• Joint map and symmetry synchronization improves 
symmetry detection



Quantitative Evaluations

• Joint map and symmetry synchronization improves mapping
– With respect to the closest map (not correspondence)



Map Synchronization++

• Simultaneous mapping and clustering

• Joint matching and segmentation

• Joint image and shape matching

• Multiple protein-protein interaction network alignment

Huang et al. 19 Huang et al. 15



Learning Transformation Synchronization
[With X. Huang, Z. Liang, X. Zhou, X. Yao, L. Guibas]



Hand-crafted objective function

Objective function:

minimize

Constraints:
cycle-consistency

Observation graph

mapping constraint

[HG13]



3D scene reconstruction from depth scans

• Similar noise sources
– Scanning noise, frame rate,  and symmetry structures

[Dai et al. 17]



Reweighted least square synchronization

Rotation:

Solved by the first 3 eigenvectors of a 
Connection Laplacian

Translation
:

Linear system:

Where

Robust recovery under a constant fraction of adversarial noise if

where



Network design



Weighting module



Qualitative results



Qualitative results



Quantitative results

Redwood dataset



Further reading (a partial list)

• Uncertainty quantification, Rotation/transformation 
synchronization, and lower bounds

1. T. Birdal, U. Simsekli. Probabilistic Permutation Synchronization using the Riemannian 
Structure of the Birkhoff Polytope. CVPR 2019.
2. T. Birdal, U. Simsekli, M. Eken, S. Ilic. Bayesian Pose Graph Optimization via Bingham 
Distributions and Tempered Geodesic MCMC. In NIPS 2018.
3. A. Perry, J. Weed, A. S. Bandeira, P. Rigollet, A. Singer, “The sample complexity of multi-
reference alignment”. SIAM Journal on Mathematics of Data Science
4. O. Özyeşil, N. Sharon, A. Singer, ``Synchronization over Cartan motion groups via 
contraction”, SIAM Journal on Applied Algebra and Geometry, 2 (2), pp. 207-241 (2018)
5. A. S. Bandeira, N. Boumal, A. Singer, ``Tightness of the maximum likelihood semidefinite 
relaxation for angular synchronization”, Mathematical Programming, series A, 163 (1):145-
167 (2017).
6. A. Singer, H.-T. Wu, ``Spectral Convergence of the Connection Laplacian from Random 
Samples”, Information and Inference: A Journal of the IMA, 6 (1):58-123 (2017).



• Uncertainty quantification, Rotation/transformation 
synchronization, and lower bounds

7. K. N. Chaudhury, Y. Khoo, A. Singer, ``Global registration of multiple point clouds using 
semidefinite programming”, SIAM Journal on Optimization, 25 (1), pp. 468-501 (2015).
8. N. Boumal, A. Singer, P.-A. Absil and V. D. Blondel, ``Cramér-Rao bounds for 
synchronization of rotations”, Information and Inference: A Journal of the IMA, 3 (1), pp. 1-
-39 (2014). 
9. A. Singer, ``Angular Synchronization by Eigenvectors and Semidefinite Programming'', 
Applied and Computational Harmonic Analysis, 30 (1), pp. 20-36 (2011).
10. SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean 
Group David M. Rosen, Luca Carlone, Afonso S. Bandeira, and John J. Leonard. (2018)
11. Robust synchronization in SO (3) and SE (3) via low-rank and sparse matrix 
decomposition. Federica Arrigoni, Beatrice Rossi, Pasqualina Fragneto, Andrea Fusiello. 
Computer Vision and Image Understanding. 174. pp. 95-113 (2018)

Further reading (a partial list)



Neural networks as maps



Neural networks are maps

• Approximate any function given sufficient 
data 



Monocular reconstruction

Semantic scene completion [Song 
et al. 17]

MarrNet [Wu et al. 17]

Space of images Space of 3D models



Image Captioning 

Space of images Space of natural language descriptions



Joint Learning in Neural Networks



Advantage I: Leverage more training data



A toy example

[Johnson et al. 16]

English

Korean Portuguese
Sparse 

paired data



Advantage II: Leverage Unlabeled Data



A toy example

Input

Output

Representation

Input

Output

Repre. I Repre. II

NN NN I NN II

Standard setting: Joint setting:

Labeled Unlabeled



Matrix representations

Undirected mapsNeural networks

Directed maps

Limitations of low-rank approaches



Path-invariant map networks



Multi-lingual translation

[Johnson et al. 16]

Korean PortugueseSparse 
paired data

English



Abstraction

Path-invariance

f1

f2

f3

f3= f2f1

Cycle-consistency

f1

f2

f3

f3f2f1 = Id

[Zhang et al. CVPR 19]



Path-invariance
[Zhang et al. CVPR 19]



Path-invariance basis

Can induce the path-invariance property of the entire graph 

[Zhang et al. CVPR 19]



Path-invariance provides a regularization 
for training neural networks

Supervised loss Unsupervised loss

[Zhang et al. CVPR 19]



Induction operations

Primitive operations that preserve the path-invariance property



Main result

• Theorem: Given a directed graph with n 
vertices and m edges, there exists a path-
invariance basis with size at most O(nm)

• Main idea for the proof
– A directed graph is a directed acyclic graph (DAG) 

of strongly connected components

– Use a vertex order to construct a path-invariance 
basis for DAG

[Zhang et al. CVPR 19]



Connection to cycle-basis
[Kavitha et al. 09]



Cycle-consistency basis

• Defined on undirected graphs

• Operations: merge and stitch

• Minimum size of a cycle-consistency basis

– #edges - #vertices + 1

• Conjecture I:

– Computing the minimum path-invariance basis of a given 
graph is NP-hard

• Conjecture II:

– Testing a collection of cycles (or path pairs) is a cycle-
consistency basis (or path-invariance basis) is also NP-hard

[Guibas, H., Liang, 19]



Three advantages over randomly 
sampling path-pairs

• One may need to sample many (exponentially 
number of) path pairs to ensure the path-
invariance property

– Many long path pairs

• There is a cost of implementing one path pair

• Convergence of stochastic algorithms

[Zhang et al. CVPR 19]



Semantic segmentation on ScanNet

8% labeled + 92% unlabeled          30% labeled



Comparisons on computing object 
correspondences

Better than low-rank based techniques on sparse graphs



Further reading (a partial list)

• Joint learning of neural networks

1. Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image 
Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.

2. Tinghui Zhou, Philipp Krähenbühl, Mathieu Aubry, Qixing Huang, Alexei A. Efros. Learning 
Dense Correspondence via 3D-guided Cycle Consistency. CVPR 2016.

3. Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Kar, Nikhil Cheerla, Rohan Suri, 
Zhangjie Cao, Jitendra Malik, Leonidas Guibas. Robust Learning Through Cross-Task 
Consistency. CVPR 2020.


