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Take-home messages

. Approximation error *#faces = const.
. Arbitrary topology

. Flexibility for piecewise smooth surfaces
. Flexibility for adaptive refinement
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Take-home messages

. Approximation error *#faces = const.

. Arbitrary topology

. Flexibility for piecewise smooth surfaces
. Flexibility for adaptive refinement

. Implicit representation can support efficient
access to vertices, faces...



Typical Operations



Evaluation

- smooth parametric surfaces

— positions  f(u,v)

—normals n(u,v) = f,(u,v) x f,(u,v)

— curvatures c(u,v) = C(fw(u,v),fw(u,v),fw(u,v))
* generalization to triangle meshes

— positions (barycentric coordinates)

(a,8) — aP1 + 8Py + (1—a—03)P3

0<a, 043, a+p<1



Evaluation

* smooth parametric surfaces
— positions  f(u,v)
—normals n(u,v) = f,(u,v) x f,(u,v)
— curvatures c(u,v) = C(fm(u,v),fm(u,v),fw(u,v))

* generalization to triangle meshes
— positions (barycentric coordinates)
— normals (per face, Phong)

N = (PQ —Pl) X (P3 —Pl)



Evaluation

» smooth parametric surfaces
— positions  f(u,v)
—normals n(u,v) = £,(u,v) x £,(u,v)
— curvatures c(u,v) = C(fuu(u,v),fm(u,v),fw(u,v))

* generalization to triangle meshes
— positions (barycentric coordinates)
— normals (per face, Phong)

au+ Ov+yw — Ny + Ny +vNj3



Distance Queries

* parametric
— for smooth surfaces: find orthogonal base point

p — f(u,v)] xn(u,v) = 0

— for triangle meshes
* use kd-tree or BSP to find closest triangle

- find base point by Newton iteration
(use Phong normal field)



Modifications

* parameteric

— control vertices
— free-form deformation
— boundary constraint modeling

f(u,v)= Z Zciszf"’ (u) N;™ (v)

i=0 j=0




Modifications

* parameteric

— control vertices
— free-form deformation

i=0 =0

— boundary constraint modeling

f(u,v) = Z Zciszf"' (u) N;* (v)
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Modifications

» parameteric

— control vertices
— free-form deformation
— boundary constraint modeling




Mesh Data Structures

How to store geometry & connectivity?

. Compact storage
— File formats

Efficient algorithms on meshes

— identify time-critical operations

- all vertices/edges of a face

- allincident vertices/edges/faces of a vertex




Face Set (STL)

- face:
— 3 positions

Triangles

X11 Y11 Z11

X12 Y12 212

X13 Y13 Z13

X21 Y21 Z21

X22 Y22 Z22

X23 Y23 223

Xr1 YF1 ZF1

Xr2 YF2 Zr2

XrFr3 YF3 ZF3

36 B/f =72 Blv
no connectivity!




Shared Vertex (OBJ, OFF)

* vertex: Vertices Triangles
— position X1 Y1 21 Vil Vi2 Vi3
- face:
Xv Vv Zv

— vertex indices

VF1 VF2 VF3

12 B/v + 12 B/f = 36 B/v



Face-Based Connectivity

Vertex
-~ Position
- 1 Face

Face
- 3 Vertices
- 3 Face neighbors




Edge-Based Connectivity

. Vertex
— Position
- 1 Edge
. Edge
— 2 vertices
— 2 faces
- 4 edges
. Face
- 1edge

120 B/v
edge orientation?



Halfedge-Based Connectivity

. Vertex o
- Position /\
- 1 halfedge o .
. Halfedge \ /
- 1 vertex &
- 1 face
- 1,2,0r 3 halfedges 96 to 144 Blv
. Face no case distinctions

_ 1 halfedge during traversal



One-Ring Travers

AV

VA



One-Ring Traversal

. Start at vertex

. Outgoing halfedge 7
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One-Ring Traversal

. Start at vertex

. Outgoing halfedge /v/o\
®

. Opposite halfedge O
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One-Ring Traversal

. Start at vertex
o

. Outgoing halfedge \
' O

. Opposite halfedge

. Next halfedge \ / |
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One-Ring Traversal

. Start at vertex

. Outgoing halfedge
. Opposite halfedge
. Next halfedge

. Opposite




One-Ring Traversal

. Start at vertex

. Outgoing halfedge
. Opposite halfedge
. Next halfedge

. Opposite

. Next
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Halfedge-Based Libraries

. CGAL

_ www.cgal.org

- computational geometry
— free for non-commercial use

. OpenMesh

_ www.openmesh.org

- Mesh processing
— free, LGPL license


http://www.cgal.org/
http://www.openmesh.org/

A Bit Differential Geometry



Differential Geometry: Surfaces

z(u,v)
x(12, 1) = ( y(u,w) ) , (u,v) € R?

z(u,v)




Differential Geometry: Surfaces

 Continuous surface
z(u,v)
x(u,v) = | y(w,v) |, (w,v)€ R?
z(u,v)
* Normal vector

n= (X, X Xy)/||%0 X X

— assuming regular parameterization, i.e.

Xy X Xy 70




Normal Curvature

+sm¢

[|% |



Surface Curvature

* Principal Curvatures

— maximum curvature K1 = ma.xn.n(gb)

¢
— minimum curvature  Kg = n’gn"»n(‘ﬁ)
K1 + K2 _
e Mean Curvature H = / Kn (P)de

* Gaussian Curvature K = kg - #g



Principal Curvature

planes normal
of principal / vector
curvatures !

Euler’s Theorem: Planes of principal curvature are orthogonal
and independent of parameterization.

x(0) = x, cos’ 0+, sin’ 0 = angle with «;



Curvature




Surface Classification

k.= k,>0

Isotropic

Equal in all directions

spherical planar

Anisotropic

Distinct principal

directions
elliptic parabolic hyperbolic
K>0 K=0 K<0

developable



Principal Directions




Gauss-Bonnet Theorem

For ANY closed manifold surface with Euler number

Y=2-2g:
-2z



Smoothing



Laplacian Diffusion

- Diffusion equation

diffusion constant

>\

— = AR

ot \

Laplace operator




Diffusion

+ Diffusion equation

diffusion constant

>\

—x = uAzx

ot \

Laplace operator




Laplacian Smoothing

» Discretization of diffusion equation

5’

Ap;
gt Pi — HeP

» Leads to simple update rule
— iterate

p; = P; + i dt Ap; explicit Euler integration

— until convergence



A Simple Example




A Simple Example



A Simple Example
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A Simple Example
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A Simple Example

/
/ \\

/ Flow of vertex positions \



Laplacian Smoothing

O lterations 5 lterations 20 lterations



Curvature Flow

- Curvature is independent of parameterization

 Flow equation
surface normal

0 /
ap = —2uHn
\

mean curvature

- We have Asp = —2Hn

/'

Laplace-Beltrami operator



Curvature Flow

* Mean curvature flow %p = uAgp

— use discrete Laplace-Beltrami operator (cot weights)

» Compare to uniform discretization of Laplacian

Umbrella tangential drift

Laplace-Beltrami

.@ vertices move only

along normal



Comparison
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Other approaches

. Smoothing
- Membrane energy
- Thin-plate energy

. Alternative approaches
- Anisotropic diffusion
- Normal filtering
- Non-linear PDEs
— Bilateral filtering



Remeshing



Remeshing

. Altering the mesh geometry and connectivity
to improve quality

. Replacing an arbitrarily structured mesh by a
structured one
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Iterative Mesh Optimization

. (Area weighted) random scatter (area
weighted) random scatter or simply start
with the given mesh

. Improve vertex distribution

. Update mesh connectivity



Isotropic remeshing prefers.

Locally uniform edge length
- Remove too short edges -- edge collapses
- Remove too long edges — 2-4 edge split

Regular valences
- Valence balance edge flip

Uniform vertex distribution
- Tangential smoothing Laplacian operator



Local Remeshing Operators

@@@0%@@

Edge Edge Edge Vertex
Collapse Spht Fllp Shift

%@@X}@
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Mesh Simplification &
Approximation



Problem Statement

« Given: M =V, F)
* Find: M" = (V', 7') such that

1. V| =n<|V| and M — M| is minimal, or

2. M — M| <e and |V'| is minimal




Problem Statement

- Given: M = (V,F)

Find: M" = (V', F') such that
1. V| =n<|V| and ||[M — M| is minimal, or

2. |IM— M| <e and |V'| is minimal

hard!

— look for sub-optimal solution



Problem Statement

Given: M =V, F)

Find: M" = (V', ') such that
1. [V|=n<|V| and |[IM — M| is minimal, or

2. |IM—M| <e and |V'| is minimal

Respect additional fairness criteria

— normal deviation, triangle shape, scalar attributes,
etc.



Vertex clustering

. Cluster Generation

. Computing a representative
. Mesh generation

. Topology changes



Vertex Clustering

* Cluster Generation
— Uniform 3D grid
— Map vertices to cluster cells



Vertex Clustering

* Cluster Generation
— Hierarchical approach
— Top-down or bottom-up

- Computing a representative
* Mesh generation

» Topology changes

P L i
b,

e
Wb




Vertex Clustering

- Computing a representative
— Average/median vertex position
— Error quadrics



Computing a Representative

Average vertex position = Low-pass filter



Computing a Representative

Median vertex position = Sub-sampling



Computing a Representative

Median vertex position = Sub-sampling



Computing a Representative

Error quadrics



Error Quadrics

- Squared distance to plane

p=(z,9,2, )", ¢=(a,b,c,d)’

dist(q,p)* = (¢"p)*> = p" (qq" )p =: p" Qup

a2 ab ac ad |
ab b be bd
ac bec b*> cd

ad bd cd d?

Qq:




Error Quadrics

- Sum distances to vertex’ planes

Z diSt(Qiap)z — ZPTqup — pT (Z qu) p=: pTQpp

* Point that minimizes the error

d11
21

d31
0

d12
q22

d32
0

d13
23

433
0

d14
424

34
1

—_— o O O




Comparison

average




Vertex Clustering

- Mesh generation

— Clusters p<{pg,---.Pn}, 9<{do;---,qm}
— Connect (p,q) if there was an edge (p;,q;)



Vertex Clustering

» Topology changes & A

— If different sheets pass
through one cell

— Not manifold



Incremental Decimation

- General Setup
Decimation operators
Error metrics
Fairness criteria

. Topology changes



General Setup

Repeat:
pick mesh region
apply decimation operator

Until no further reduction possible



Greedy Optimization

For each region
evaluate quality after decimation
engeue (quality, region)

Repeat:
pick best mesh region
apply decimation operator
update queue
Until no further reduction possible



Global Error Control

For each region
evaluate quality after decimation
enqgeue (quality, region)

Repeat:
pick best mesh region

if error < €
apply decimation operator
update queue
Until no further reduction possible



Incremental Decimation

- Decimation operators



Decimation Operators
. Whatis a "region" ?
. What are the DOF for re-triangulation?

. Classification
- Topology-changing vs. topology-preserving
- Subsampling vs. filtering
- Inverse operation - progressive meshes



Vertex Removal

Select a vertex to
be eliminated




Vertex Removal

Select all triangles
sharing this vertex




Vertex Removal

Remove the
selected triangles,
creating the hole




Vertex Removal

Fill the hole
with triangles




Decimation Operators

Vertex Removal

Vertex Insertion

« Remove vertex

 Re-triangulate hole
— Combinatorial DOFs
— Sub-sampling



Decimation Operators

Edge Collapse

Vertex Split

- Merge two adjacent triangles

 Define new vertex position
— Continuous DOF
— Filtering



Decimation Operators

Half-Edge Collapse

® ° ° Restricted Vertex Split

- Collapse edge into one end point

— Special vertex removal
— Special edge collapse

« No DOFs

— One operator per half-edge
— Sub-sampling!



Local Error Metrics
« Local distance to mesh [Schroeder et al. 92]

— Compute average plane
— No comparison to original geometry

v -V



Global Error Metrics

- Simplification envelopes [Cohen et al. 96]
— Compute (non-intersecting) offset surfaces
— Simplification guarantees to stay within bounds

S

N\




Global Error Metrics

» (Two-sided) Hausdorff distance: Maximum
distance between two shapes
— In general d(A,B) # d(B,A)
— Computationally involved

A\

B \d(B,A )

d(A,B)

—




Global Error Metrics

« Scan data: One-sided Hausdorff distance
sufficient

— From original vertices to current surface




Global Error Metrics

» Error quadrics [Garland, Heckbert 97]
— Squared distance to planes at vertex
— No bound on true error

Q; =0,+0;

Q

Q>

P2

solve v;IQ;v; = min
<&g? ok

piiOp; =0, i={1,2}



Complexity
. N = number of vertices

. Priority queue for half-edges
- 6N*log(6N)

. Error control
— Local O(1) -> global O(N)
— Local O(N) -> global O(N?)



Fairness Criteria

. Rate quality of decimation operation
- Approximation error




Fairness Criteria

. Rate quality of decimation operation

_ Triangle shape @




Fairness Criteria

. Rate quality of decimation operation

— Triangle shape




Fairness Criteria

. Rate quality of decimation operation

— Triangle shape




Fairness Criteria

. Rate quality of decimation operation

- Dihedral angles
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Fairness Criteria

Rate quality of decimation operation
- Approximation error
— Triangle shape

— Dihedral angles

- Valence balance

- Color differences




Comparison

Vertex clustering

— fast, but difficult to control simplified mesh
— topology changes, non-manifold meshes
— global error bound, but often not close to optimum

Iterative decimation with quadric error

metrics

— good trade-off between mesh quality and speed
— explicit control over mesh topology
— restricting normal deviation improves mesh quality



Mesh Repair



Surface-Oriented Algorithms

. Surface oriented approaches
explicitly identify and resolve
artifacts

. Methods
- Snapping
- Splitting
— Stitching



Surface-Oriented Algorithms

. Advantages
—- Fast
- Conceptually easy
- Memory friendly

— Structure preserving, minimal modification of
the input



Surface-Oriented Algorithms

. Problems

— Not robust

« Numerical issues
« Inherent non-robustnhess

- No quality guarantees on the output



Filling Holes in Meshes

* compute a coarse triangulation T




Filling Holes in Meshes

« compute a coarse triangulation T
of minimal weight w(T)

n vertices,
n-2 triangles




Filling Holes in Meshes

- weight w(T) is a mixture of

— area(T) =ﬂZTarea(A) /\

— maximum dihedral angle in T

* thus, we favour triangulations of low area and low
normal variation



Filling Holes in Meshes

- let w[a,c] be the minimal weight that can be
achieved in triangulating the polygon a,a+1,...,c

0 10

w[2,9] = ?




Filling Holes in Meshes

let w[a,c] be the minimal weight that can be
achieved in triangulating the polygon a,a+1,...,C

0 10

w[2,9] = min( 11

W(A(2,3,9)) + w[3,9],




Filling Holes in Meshes

- let w[a,c] be the minimal weight that can be
achieved in triangulating the polygon a,a+1,...,c

0 10

w[2,9] = min(
W(A(2,3,9)) + w[3,9],
w[2,4] + w(A(2,4,9)) + w[4,9],




Filling Holes in Meshes

- let w[a,c] be the minimal weight that can be
achieved in triangulating the polygon a,a+1,...,c

0 10

w[2,9] = min( 11
W(A(2,3,9)) + w[3,9],
w[2,4] + w(A(2,4,9)) + w[4,9],
w[2,5] + w(A(2,5,9)) + w[5,9],
w[2,6] + w(A(2,6,9)) + w[6,9],
w[2,7] + W(A(2,7,9)) + w[7,9], °
w[2,8] + w(A(2,8,9))




Filling Holes in Meshes

- let w[a,c] be the minimal weight that can be
achieved in triangulating the polygon a,a+1,...,c

* recursion formula

w[a,c] = min w[a,b] + w(A(a,b,c)) + w[b,C]

a<b<c

w[x,x+1] =0

+ dynamic programming leads to an O(n3) algorithm



Additional Steps

. Refine the triangulation such that its vertex
density matches that of the surrounding area

. Smooth the filling such that its geometry
matches that of the surrounding area



4 m,c.'ﬂﬂ"zﬁi

Input model )

Minimal triangulation

Refined triangulation

)

Output model )

Output model




Filling Holes in Meshes

. What problems do we encounter?
— Islands are not incorporated
- Self-intersections cannot be excluded
-~ Quality depends on boundary distortion



Volumetric Algorithms

1. convert the input model into an intermediate
volumetric representation = loss of information

A ™N N
AR / A
A / //

2 / 2

voxel grid adaptive octree BSP tree



Volumetric Algorithms

1. convert the input model into an intermediate
volumetric representation = loss of information

2. discrete volumetric representation = robust
and reliable processing

— morphological operators (dilation, erosion)
— smoothing
— flood-fill to determine interior/exterior



Volumetric Algorithms

1. convert the input model into an intermediate
volumetric representation = loss of information

2. discrete volumetric representation => robust
and reliable processing

— morphological operators (dilation, erosion)
— smoothing
— flood-fill to determine interior/exterior

3. extract the surface of a solid object from the
volume = manifold and watertight



Volumetric Algorithms

. Advantages
— fully automatic
- few (intuitive) user parameters
-~ Robust
- guaranteed manifold output



Volumetric Algorithms

Problems
- slow and memory intensive
adaptive data structures
- aliasing and loss of features
feature sensitive reconstruction (EMC, DC)
- loss of mesh structure
bad luck (... hybrid approaches)

- large output
mesh decimation



Nooruddin and Turk’s Method

Point classification: Layered depth images (LDI)
— Record n layered depth images
— Project the query point x into each depth image

— If any of the images classifies x as exterior, then x is
globally classified as exterior else as interior

&



Summary

Learn basic operations under the mesh
representation

Learn how to convert other representations
into the mesh representation



