GAMES 3D Deep Learning

Qixing Huang September 2th 2021

AlexNet

Image Generation

Image

Real images (ImageNet)

Generated images

3D Surface Representations

3D Voxel Grids

3D Deep Learning

3D Shape as Volumetric Representation

mesh

3D ShapeNets

3D voxel input Convolutional Deep Belief Network $p(\mathbf{x}, y)$ A **Deep Belief Network** is a generative graphical model that describes the distribution of input x over class y.

- Convolution to enable compositionality
- No pooling to reduce reconstruction error

configurations

Layer 1-3	convolutional RBM
Layer 4	fully connected RBM
Layer 5	multinomial label + Bernoulli feature form an associate memory

3D ShapeNets

* 3D ShapeNets can be converted into a CNN, and discriminatively trained with back-propagation.

As a 3D Shape Prior

9

3D Generative Adversarial Network [Wu et al. 16]

Sparse 3D Convolutional Networks [Ben Graham 2016]

40x40x40 Grid

Sparsity for lower layers Low resolution for upper layers

Octree classification networks

[Wang et al. 18]

The responses of some convolutional filters at different levels on two models are rendered. Red represents a large response and blue a low response.

Discussion

- + Easy to implement
- + Hardware friendly

- Low resolution
- No structural information
- Cannot utilize 2D training data

Light Field Representation

3D shape model rendered with different virtual cameras

Method	Trai	ining Config.		Test Config.	Classification	Retrieval	
	Pre-train	Pre-train Fine-tune		#Views	(Accuracy)	(mAP)	
(1) SPH [16]	-	-	-	-	68.2%	33.3%	
(2) LFD [5]	-	-	-	-	75.5%	40.9%	
(3) 3D ShapeNets [37]	ModelNet40	elNet40 ModelNet40		-	77.3%	49.2%	
(4) FV	-	ModelNet40	12	1	78.8%	37.5%	
(5) FV, $12 \times$	-	ModelNet40	12	12	84.8%	43.9%	
(6) CNN	ImageNet1K	-	-	1	83.0%	44.1%	
(7) CNN, f.t.	ImageNet1K	ModelNet40	12	1	85.1%	61.7%	
(8) CNN, 12×	ImageNet1K	-	-	12	87.5%	49.6%	
(9) CNN, f.t., $12 \times$	ImageNet1K	ModelNet40	12	12	88.6%	62.8%	
(10) MVCNN, 12×	ImageNet1K	-	-	12	88.1%	49.4%	
(11) MVCNN, f.t., $12 \times$	ImageNet1K	ModelNet40	12	12	89.9%	70.1%	
(12) MVCNN, f.t.+metric, $12 \times$	ImageNet1K	ModelNet40	12	12	89.5%	80.2 %	
(13) MVCNN, 80×	ImageNet1K	-	80	80	84.3%	36.8%	
(14) MVCNN, f.t., 80×	ImageNet1K	ModelNet40	80	80	90.1 %	70.4%	
(15) MVCNN, f.t.+metric, $80 \times$	ImageNet1K	ModelNet40	80	80	90.1 %	79.5%	

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Discussion

- + Can utilize 2D training data
- + Efficient since using 2D convolutions
- + Top-performing algorithms
- -- Redundancy
- -- Loss of information per view
- -- How to pick views?
- ? Convolutions on Spheres

Point cloud Representation [Su et al. 17a, Su et al. 17b]

Object Classification on Partial Scans

Object Part Segmentation

Semantic Segmentation for Indoor Scenes

Input: Point cloud (XYZRGB) of a room

Output (*current performance*): Semantic segmentation of the room

Uniform Framework: PointNet

. . .

Theorem 1. Suppose $f : \mathcal{X} \to \mathbb{R}$ is a continuous set function w.r.t Hausdorff distance $d_H(\cdot, \cdot)$. $\forall \epsilon > 0$, \exists a continuous function h and a symmetric function $g(x_1, \ldots, x_n) = \gamma \circ MAX$, such that for any $S \in \mathcal{X}$,

$$\left| f(S) - \gamma \left(\max_{x_i \in S} \{ h(x_i) \} \right) \right| < \epsilon$$

where x_1, \ldots, x_n is the full list of elements in S ordered arbitrarily, γ is a continuous function, and MAX is a vector max operator that takes n vectors as input and returns a new vector of the element-wise maximum.

Figure 2. PointNet Architecture. The classification network takes *n* points as input, applies input and feature transformations, and then aggregates point features by max pooling. The output is classification score for *k* classes. The segmentation network is an extension to the classification net. It concatenates global and local features and outputs per point scores. "mlp" stands for multi-layer perceptron, the numbers in brackets are its layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

ModelNet shape 40-class classification

Model	Accuracy
MLP	40%
LSTM	75%
Conv-Max-FC (1 max)	84%
Conv-Max-FC (2 max)	86%
Conv-Max-FC (2 max) + Input Transform	87.8%
Conv-Max-FC (2 max) + Feature Transform	86.8%
Conv-Max-FC (2 max) + Feature Transform + orthogonal regularization	87.4%
Conv-Max-FC (2 max) + Input Transform + Feature Transform + orthogonal regularization	88.9%

Best Volumetric CNN: 89.1% However, PointNet is around 5x - 10x faster than Volumetric CNN

3D Surface Representations

Matching in Embedding Spaces [Wei, Huang, Ceylan, Vouga, Li 16]

Existing methods usually follow a two-step approach (e.g., SIFT flow)

Local descriptor computation

- Dense pixel labeling via MRF inference
 - Preserve descriptors
 - Preserve smoothness

Issues of such two-step approach

Partial similarity

Inefficient when matching multiple objects

Embedding --- establishing correspondences in the embedding space

Spectral embedding [Liu et al. 06]

Sensitive to 1) partial similarity, and 2) geometric and topological changes

Properties of the desired embedding space

Corresponding points are matched in the embedding space

Embedding preserves continuity

The benefits of object embedding

- Correspondences become nearest neighbor query
 - Efficiency for multiple object matching
 O(n) embeddings + O(n²) queries
 - Partial similarity

Fuzzy correspondences

The biggest message of deep neural networks

• Approximate any function given sufficient data

Focus on depth images

• Scanning devices generate depth images

- Complete shape embedding are aggregated from depth image embeddings
 - 3D convolution is not ready yet

Architecture

	0	1	2	3	4	5	6	7	8	9	10
layer	image	conv	max	conv	max	$2 \times conv$	conv	max	$2 \times conv$	int	conv
filter-stride	-	11-4	3-2	5-1	3-2	3-1	3-1	3-2	1-1	-	3-1
channel	1	96	96	256	256	384	256	256	4096	4096	16
activation	-	relu	lrn	relu	lrn	relu	relu	idn	relu	idn	relu
size	512	128	64	64	32	32	32	16	16	128	512
num	1	1	4	4	16	16	16	64	64	1	1

The input is a depth image

The output is a per-pixel descriptor (dim 16)

Convolution + Deconvolution

Training data

• 4 animation sequences (dense correspondences)

• 2500 shapes from Yobi3D (33 feature points)

Direct versus Indirect

• Descriptor learning (e.g., triplet loss [Schroff et al. 15])

 Classification loss (e.g., the second last layer of AlexNet)

We employ a classification loss

Classes are defined in terms of super-patches

We use multiple segmentations --- so the probability of two points belong to the same segment is related to their distance

We employ the classification loss

$$\{\mathbf{w}_i^{\star}\}, \mathbf{w}^{\star} = \operatorname*{arg\,min}_{\{\mathbf{w}_i\}, \mathbf{w}} \sum_{i=1}^M l(\mathbf{w}_i, \mathbf{w})$$

Evaluation on the FAUST dataset

Cumulative error distribution, intra-subject

Evaluation on the FAUST dataset

Cumulative error distribution, inter-subject

Multi-view 3D Models from Single Images With a Convolutional Network [ECCV' 16]

Fig. 5. Depth map predictions (top row) and the corresponding ground truth (bottom row). The network correctly estimates the shape.

Multi-view 3D Models from Single Images with a Convolutional Network

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

Department of Computer Science University of Freiburg {tatarchm, dosovits, brox}@cs.uni-freiburg.de

ECCV 2016

Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision [Yan et al. 16]

Figure 1: (a) Understanding 3D object from learning agent's perspective; (b) Single-view 3D volume reconstruction with perspective transformation. (c) Illustration of perspective projection. The minimum and maximum disparity in the screen coordinates are denoted as d_{min} and d_{max} .

$$\mathcal{L}_{vol}(I^{(k)}) = ||f(I^{(k)}) - \mathbf{V}||_2^2$$
$$\mathcal{L}_{proj}(I^{(k)}) = \sum_{j=1}^n \mathcal{L}_{proj}^{(j)}(I^{(k)}; S^{(j)}, \alpha^{(j)}) = \frac{1}{n} \sum_{j=1}^n ||P(f(I^{(k)}); \alpha^{(j)}) - S^{(j)}||_2^2$$

$$\mathcal{L}_{comb}(I^{(k)}) = \lambda_{proj} \mathcal{L}_{proj}(I^{(k)}) + \lambda_{vol} \mathcal{L}_{vol}(I^{(k)})$$

Encoder

Decoder

Learning Semantic Deformation Flows with 3D Convolutional Networks [Yumer and Mitra 2016]

Semantic Scene Completion from a Single Depth Image [Song et al. 17]

A Point Set Generation Network for 3D Object Reconstruction from a Single Image [Fan, Su, Guibas, 2017]

Input

Reconstructed 3D point cloud

Network Architecture

Distance Metrics

• Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

• Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

$$\phi: S_1 \to S_2 \text{ is a bijection}$$

Visual results

CD (Left) versus EMD (Right)

GRASS: Generative Recursive Autoencoders for Shape Structures [Li, Xu, Chaudhuri, Yumer, Zhang, Guibas, SIGGRAPH' 17]

Huge Variety of (Attributed) Graphs

 Arbitrary numbers/types of vertices (parts), arbitrary numbers of connections (adjacencies/symmetries)

• For linear graphs (chains) of arbitrary length, we can use a recurrent neural network (RNN/LSTM)

Key Insight

 Edges of a graph can be collapsed sequentially to yield a hierarchical structure

 Looks like a parse tree for a sentence!

Recursive Neural Network (RvNN)

- Repeatedly merge two nodes into one
- Each node has an n-D feature vector, computed recursively

$$p = f(W[c_1;c_2] + b)$$

Socher et al. 2011

Recursively Merging Parts

Different types of merges, varying cardinalities!

Training with Reconstruction Loss

 Learn weights from a variety of randomly sampled merge orders for each box structure

Results: Shape interpolation

Discussion