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Different formulations of non-Euclidean CNNs

Spatial domain

Parametric domain



Key properties of CNNs
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© Convolutional filters (Translation invariance+Self-similarity)
© Multiple layers (Compositionality)
© Filters localized in space (Locality)

© O(1) parameters per filter (independent of input image size n)

© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989



Going non-Euclidean



Prototypical non-Euclidean objects

Manifolds



Challenges of geometric deep learning

@ Extend neural network techniques to graph- or manifold-structured
data

@ Assumption: Non-Euclidean data are locally stationary and manifest
hierarchical structures

@ How to define compositionality? (convolution and pooling on
graphs/manifolds)

@ How to make them fast? (linear complexity)



Spectral analysis on
graphs and manifolds



Graph theory in one minute

@ Weighted undirected graph G with
vertices V = {1,...,n}, edges E CV x V
and edge weights w;; > 0 for (i,j) € £

@ Functions over the vertices
L*(V)={f:V — R} represented as
vectors £ = (f1,..., fn)

@ Hilbert space with inner product

(f? g)L2(v) Zfz g; — fT

ieV




Graph Laplacian

e Unnormalized Laplacian A : L*(V) — L?(V)
(Af)i — Z wz’j(fz'_fj)

g:(2,5)€EE

(up to scale) difference between f and its
local average

@ Represented as a positive semi-definite
n X n matrix A = D — W where
W = (w;;) and D = diag(}_,; wij;)

@ Dirichlet energy of f

||f||é - % Z wij(fi — fj)2 — fTAf

ij=1

measures the smoothness of f (how fast it changes locally)



Riemannian manifolds in one minute

e Manifold X = topological space

@ Tangent plane T, X = local
Euclidean representation of
manifold A around =

@ Riemannian metric describes the
local intrinsic structure at x

(-, -)me . TQ,X X TQ,X — R

@ Scalar fields f : X — R and vector
fields FF: X - TX

@ Hilbert spaces with inner products

(f. Bz /f

(F,G)r2(Tx) = L F(z),G(x))r, xdx



Manifold Laplacian

o Laplacian A : L?(X) — L*(X)
Af(x) = —divVf(z)

where gradient V: L?(X)— L*(TX)
and divergence div:L*(TX)— L*(X)

are adjoint operators

(E.V f)r2rxy = (—divE, f)r2(x)

@ Laplacian is self-adjoint

(AF, ey = (L AF) L2

@ Continuous limit of graph
Laplacian under some conditions

@ Dirichlet energy of f
(V.Y ) 2 = /X F(2)A f(x)da

measures the smoothness of f (how fast it changes locally)



Discrete Laplacian

J
Undirected graph (), &) Triangular mesh (V, &, F)
~ - f. — f. 1 COL cvij TCOL Pij
(Af): = Z wi;(fi — f) (Af), = — Z . ;r Le (fi—=1;)
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a; = local area element

In matrix-vector notation
Af = AH(D - W)f

where £ = (f1,..., fn)", W is the stiffness matrix, A = diag(ay,...,a,)
is the mass matrix, and D = diag(zj#l Wijy -y Zj#n W)

Tutte 1963; MacNeal 1949:; Duffin 1959: Pinkall, Polthier 1993



Orthogonal bases on graphs and manifolds

Find the smoothest orthogonal basis {¢1, . ... Oont C L*(V)

min trace(®'A®) st. ®'d =1
(I)ERRXTL



Orthogonal bases on graphs and manifolds
Find the smoothest orthogonal basis {¢1,....0,} C L*(V)

min trace(® ' A®P) st. TP =1
(I)E]RRXTL

Solution: ® = Laplacian eigenvectors



Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian
A=0AD'

where ® = (¢p,...., ¢, ) are orthogonal eigenvectors (® '@ =I) and
A = diag(Aq....,A,) the corresponding non-negative eigenvalues

First eigenfunctions of 1D Euclidean Laplacian



Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian
A=PAD'

where ® = (¢1..... ¢, ) are orthogonal eigenvectors (®'® = 1) and
A = diag(Aq.....\,) the corresponding non-negative eigenvalues

First eigenfunctions of a graph Laplacian



Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

A =DPADT

where & = (¢,
A= diag()\l, AL

/

¢3

First eigenfunctions of a manifold Laplacian



Fourier analysis on Euclidean spaces

A function f : [—7, 7| — R can be written as a Fourier series

E : —ikx’ dI!Bz.‘c:c
2T
>0



Fourier analysis on Euclidean spaces

A function f : [—m, 7| — R can be written as a Fourier series

f(I) _ Z (f Bik:g)LQ([_W?W]) eikfc

k>0

=f1 +f2\-//\ +f3%%+...




Fourier analysis on Euclidean spaces

A function f : [—m, 7| — R can be written as a Fourier series

f(l') — Z <f" eiki‘)LQ([—Wﬂr]leikx

E>0 ~—
fr Fourier coefficient

:f1 +f2\//\ +fgﬂvﬂv+...




Fourier analysis on Euclidean spaces

A function f : [—m, 7| — R can be written as a Fourier series

f(J.") Z <f B )LQ( W?W]leikm

kZO - ~~ _
fr Fourier coefficient

—A_+n2 /\+A3/\/\ T
- SN VARV,

) ] ) ] ] 2 . -7,
Fourier basis = Laplacian eigenfunctions: dd Y



Fourier analysis on graphs and manifolds

A function f : X — R can be written as Fourier series

f=> (fion)rex) o

5 o1 02

Fourier basis = Laplacian eigenfunctions: A¢ = Ao



Heat diffusion on manifolds

{ Blmt) = —=Af(m,6)
f(:lj,O) = fo(ZC)

@ f(z,t) = amount of heat at point x at time ¢

@ fo(x) = initial heat distribution

Solution of the heat equation expressed through the heat operator

f(z,8) = e fo(w)



Heat diffusion on manifolds

{ film, ) = —i\f (1)
f(2,0) = fo(x)

@ f(z,t) = amount of heat at point z at time ¢

@ fo(x) = initial heat distribution

Solution of the heat equation expressed through the heat operator

flz,t) = & flw) = Z(fb, O r2xye” M dr ()

k=1

_ / fole') 3 e gp(2) i (o)
k>1

J
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heat kernel h¢(z,x’)



Heat kernels




Heat kernels




Heat kernels




Convolution: Euclidean space

Given two functions f, g : [—m, 7| — R their convolution is a function

m

(f*xg)(x) = fla"g(x — a")da'

— T

@ Shift-invariance: f(z — xo) *g(x) = (f x g)(x — x0)

@ Convolution theorem: Fourier transform diagonalizes the convolution
operator = convolution can be computed in the Fourier domain as

e —

(fx9)=1-d



Convolution Theorem

Convolution of two vectors f = ( f.

fxg

g1

9n
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g2
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..... fo)' and g
e On 1
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g1 g2
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Y

circulant matrix

f,




Convolution Theorem

Convolution of two vectors f = (f1.....f,) and g
[ g g2 ... ... gn
gn g1 g2 cer Gn—1
frg S S
g3 g4 ... 01 92
i go gz ... ... 5]

diagonalized by Fourier basis

f:n



Convolution Theorem

Convolution of two vectors f = (f1,....f,)' and g = (gi.....
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Convolution Theorem

C lon = (]
onvolution of two vectors f (
1
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Convolution Theorem

Convolution of two vectors f = (f}

g1 g2
9n g1
gz g4
ge g3

-----

f.n



Spectral convolution

Spectral convolution of f.g € L?(X) can be defined by analogy

frg = D {f-ordre (g or)rax) o
k>1 ———— —
product in the Fourier domain

inverse Fourier transform



Spectral convolution
Spectral convolution of f,g € L?(X) can be defined by analogy

frg = D or)ra)(9: o)) On
k>1

In matrix-vector notation

@ Not shift-invariant! (G has no circulant structure)

o Filter coefficients depend on basis @1, ..., O,



Spectral CNN

Convolution expressed in the spectral domain
c=PWd'f

where W is n X n diagonal matrix of learnable spectral filter coefficients

@ Filters are basis-dependent = do not generalize across domains

© O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms

® ' ® (no FFT on graphs)

© No guarantee of spatial localization of filters

Bruna et al. 2014



Laplacian eigenbases on non-isometric domains




Functional maps

(>
Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013




Basis synchronization with functional maps

()
Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013



Filtering in different bases

Spectral filter

0 200 400 600 800 1,000

Br(As)®T 80 Tr(Ag)T T 80

Apply spectral filter 7(\) in different bases ® and W
= different results!




Filtering in different bases

&7(As)P " oo Canonical shape Ur(Ag)P T 8o
with basis 2, A

Apply spectral filter 7(\) in different bases ® and W
= different results!



Filtering in synchronized bases

@C@T(A)C}Z@—réo Canonical shape @C@T(A)C:'I_,\IIT&)
with basis 22, A

Apply spectral filter 7(\) in synchronized bases #Cs and ¥ Cy
= similar results!

Yi et al. 2017



Spectral CNN

FT Spectral filter IFT RelLU

Convolutional filter of a Spectral CNN

© Fixed basis = Does not generalize across domains

© Possible O(n) complexity avoiding explicit FT and [FT

Bruna et al. 2014



Spectral Transformer Network

Shape

FT Sync  Spectral filter  Sync IFT RelLU

Convolutional filter of a Spectral Transformer Network

© Basis synchronization allows generalization across domains

© Explicit FT and IFT

(Jaderberg et al. 2015); Yi et al. 2017



Example: normal prediction with SpecTN

Groundtruth

i &ral. 2017



Example: shape segmentation with SpecTN

Predicted

Groundtruth

Yi et al. 2017



