GAMES Geometric Deep Learning II

Qixing Huang Sep. 23th 2021

Slide credit: Michael Bronstein

Spectral CNN

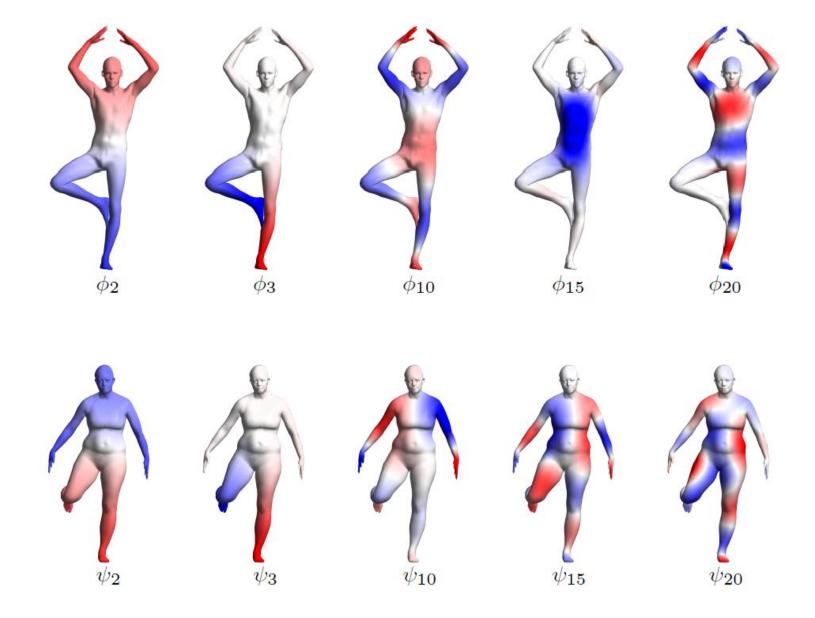
Convolution expressed in the spectral domain

$$\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^{\mathsf{T}} \mathbf{f}$$

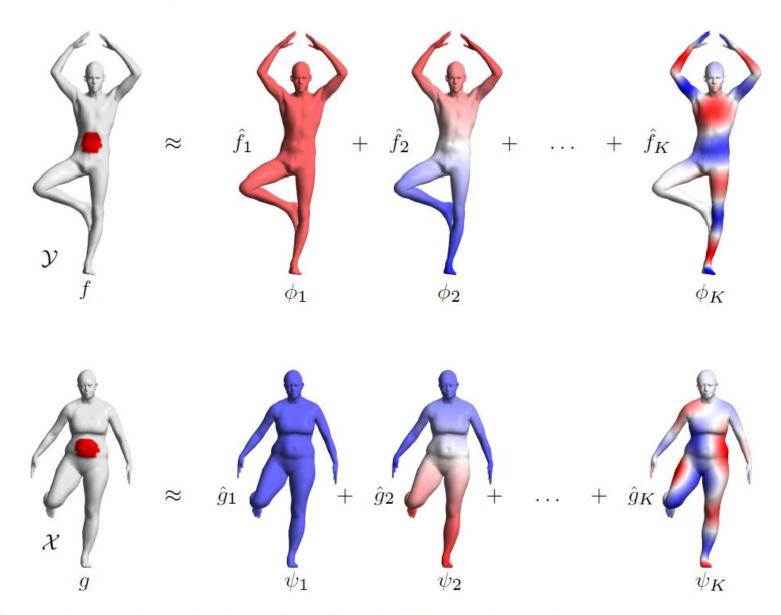
where W is $n \times n$ diagonal matrix of learnable spectral filter coefficients

- \odot Filters are basis-dependent \Rightarrow do not generalize across domains
- $\mathfrak{S}(n)$ parameters per layer
- $\mathfrak{O}(n^2)$ computation of forward and inverse Fourier transforms Φ^\top, Φ (no FFT on graphs)
- No guarantee of spatial localization of filters

Laplacian eigenbases on non-isometric domains

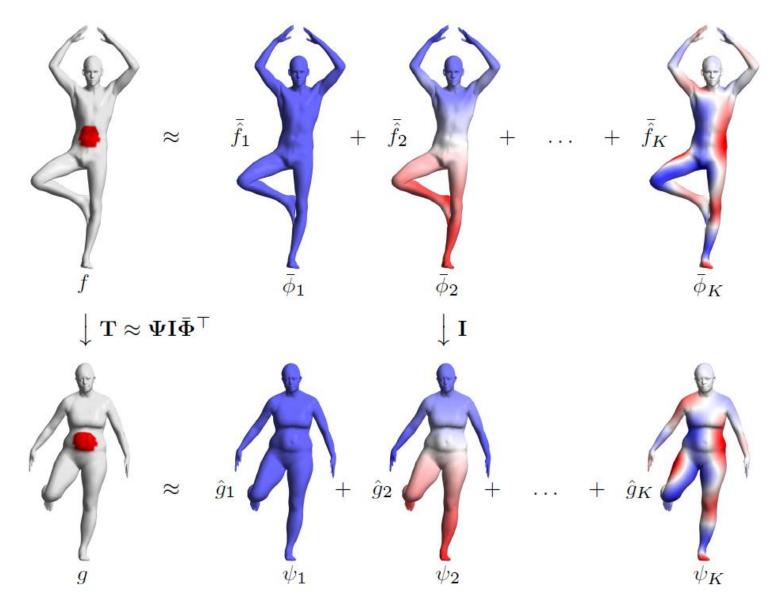


Functional maps



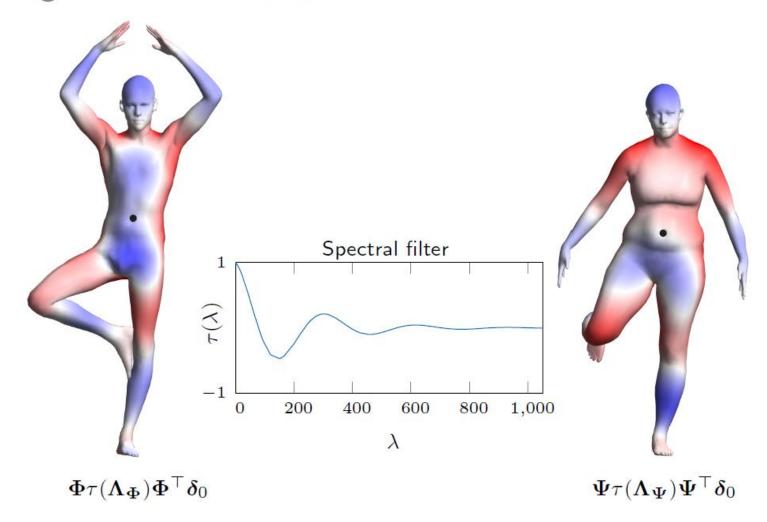
Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013

Basis synchronization with functional maps



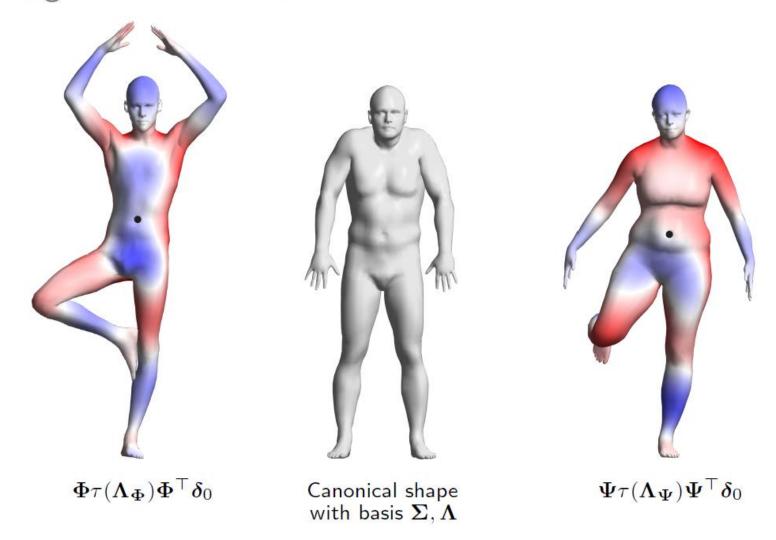
Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013

Filtering in different bases



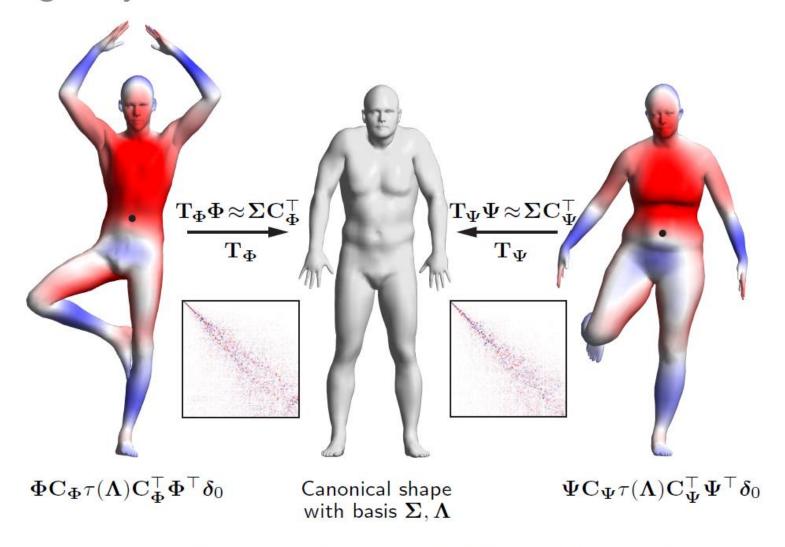
Apply spectral filter $\tau(\lambda)$ in different bases Φ and Ψ \Rightarrow different results!

Filtering in different bases



Apply spectral filter $\tau(\lambda)$ in different bases Φ and Ψ \Rightarrow different results!

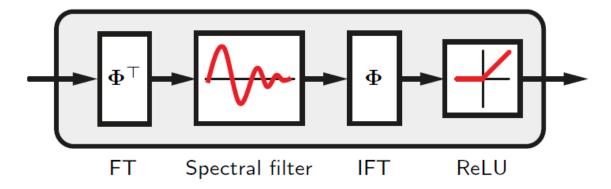
Filtering in synchronized bases



Apply spectral filter $\tau(\lambda)$ in synchronized bases ΦC_{Φ} and ΨC_{Ψ} \Rightarrow similar results!

Yi et al. 2017

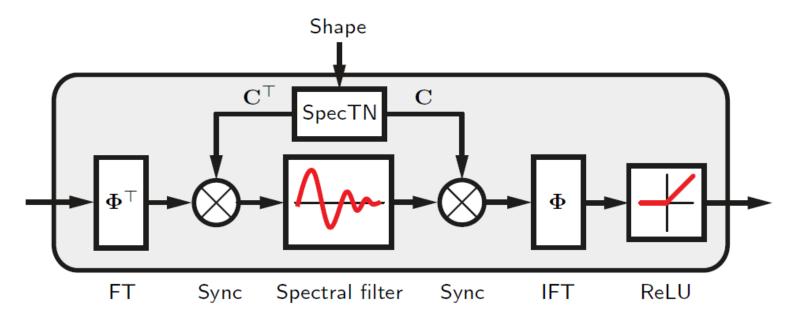
Spectral CNN



Convolutional filter of a Spectral CNN

- \odot Fixed basis \Rightarrow Does not generalize across domains
- $\ \ \,$ Possible $\mathcal{O}(n)$ complexity avoiding explicit FT and IFT

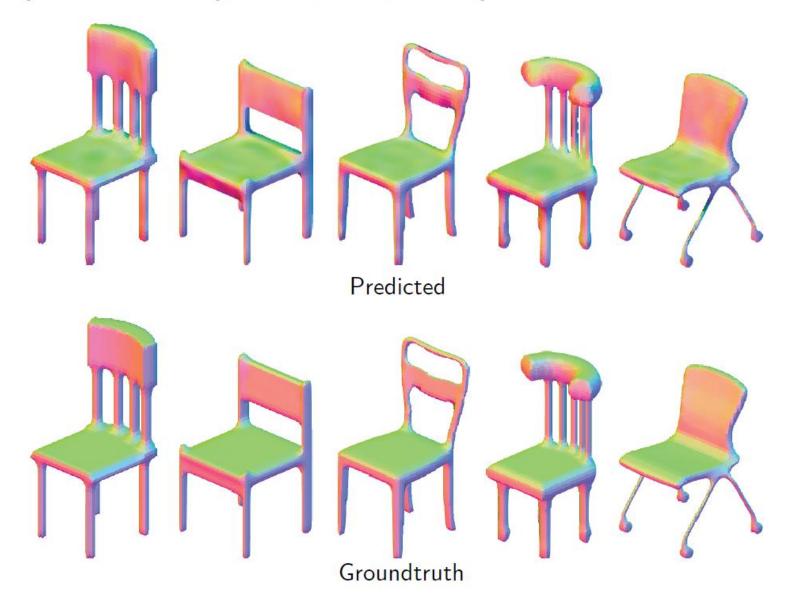
Spectral Transformer Network



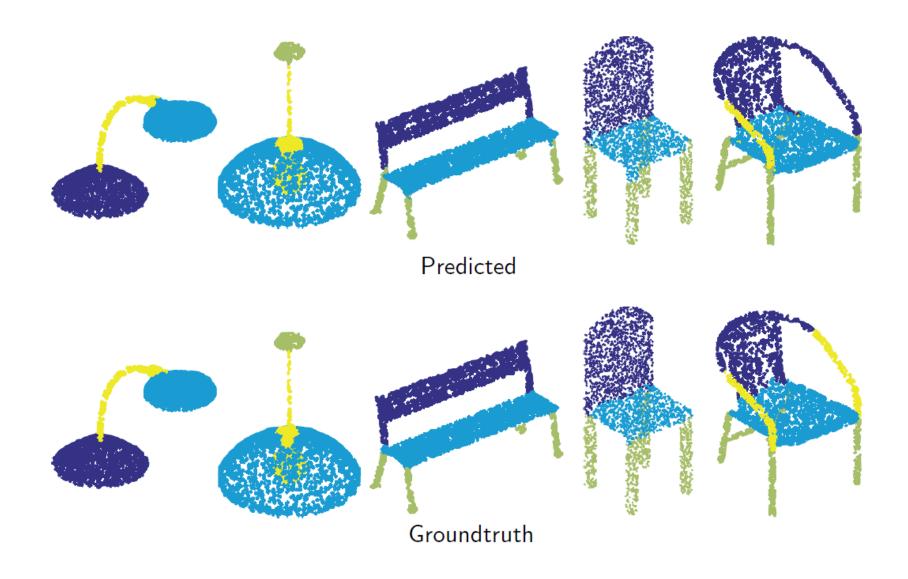
Convolutional filter of a Spectral Transformer Network

- Basis synchronization allows generalization across domains
- Explicit FT and IFT

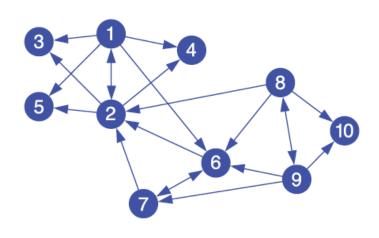
Example: normal prediction with SpecTN



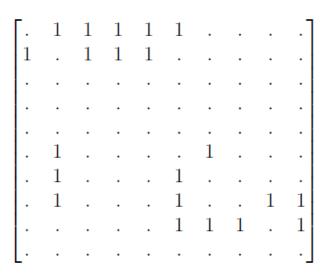
Example: shape segmentation with SpecTN



Directed graphs

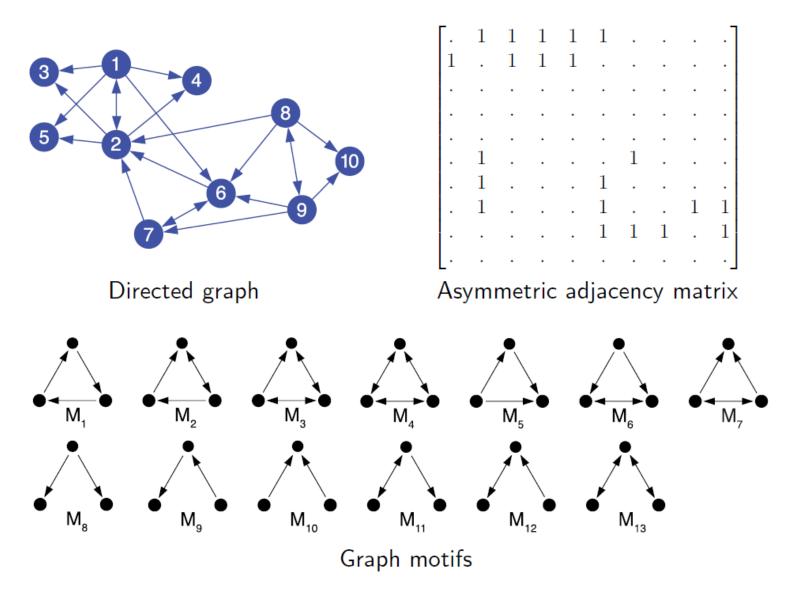


Directed graph



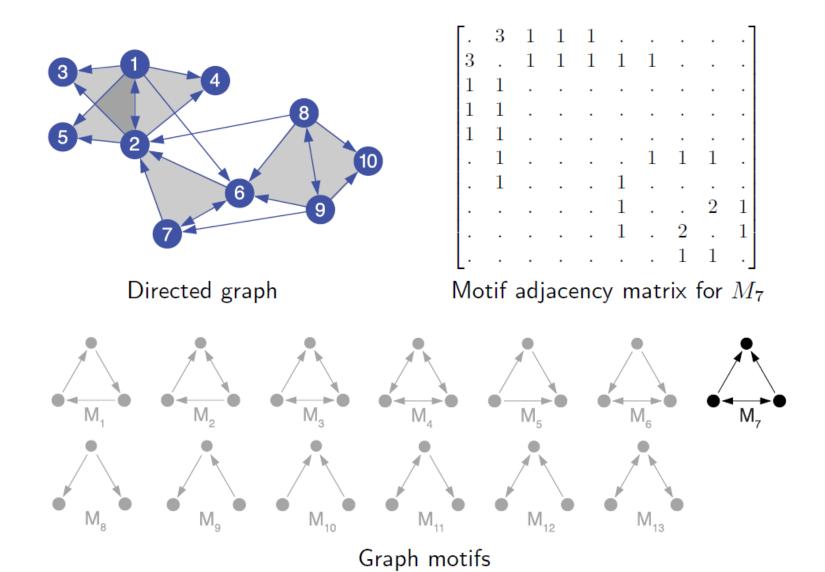
Asymmetric adjacency matrix

Motif-based graph analysis



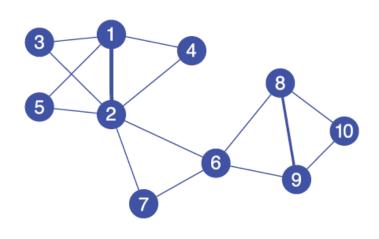
Benson et al. 2016

Motif-based graph analysis



Benson et al. 2016

Motif Laplacians



Undirected weighted graph

Γ.	3	1	1	1					.]
3		1	1	1	1	1			
1	1								.
1	1								
1	1								
	1					1	1	1	
	1				1				
					1			2	1
					1		2		1
L.							1	1	.]

Motif adjacency matrix for M_7

Motif Laplacian for motif $k = 1, \ldots, K$

$$\tilde{\mathbf{\Delta}}_k = \mathbf{I} - \tilde{\mathbf{D}}_k^{-1/2} \tilde{\mathbf{W}}_k \tilde{\mathbf{D}}_k^{-1/2}$$

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

- © Explicitly accounts for directed graph structures
- Anisotropic kernels
- $\ \odot \ \mathcal{O}(1)$ parameters per layer

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

- © Explicitly accounts for directed graph structures
- Anisotropic kernels
- $\odot \frac{1+K^{r+1}}{K-1}$ parameters per layer, intractable in practice

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

- © Explicitly accounts for directed graph structures
- Anisotropic kernels
- \odot Kr+1 parameters per layer using recurrent multivariate polynomials with dependent coefficients

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

- © Explicitly accounts for directed graph structures
- Anisotropic kernels
- \odot Kr+1 parameters per layer using recurrent multivariate polynomials with dependent coefficients
- \odot Filters have guaranteed r-hops support

Apply K-variate polynomial or order r to the motif Laplacians

$$\tau_{\boldsymbol{\alpha}}(\tilde{\boldsymbol{\Delta}}_1, \dots, \tilde{\boldsymbol{\Delta}}_K) = \alpha_0 \mathbf{I} + \sum_{j=1}^r \sum_{k_1, \dots, k_j \in \{1, \dots, K\}} \alpha_{k_1, \dots, k_j} \tilde{\boldsymbol{\Delta}}_{k_1} \cdots \tilde{\boldsymbol{\Delta}}_{k_j}$$

- © Explicitly accounts for directed graph structures
- Anisotropic kernels
- \odot Kr+1 parameters per layer using recurrent multivariate polynomials with dependent coefficients
- \odot Filters have guaranteed r-hops support
- \odot $\mathcal{O}(n)$ computational complexity

Example: directed citation networks

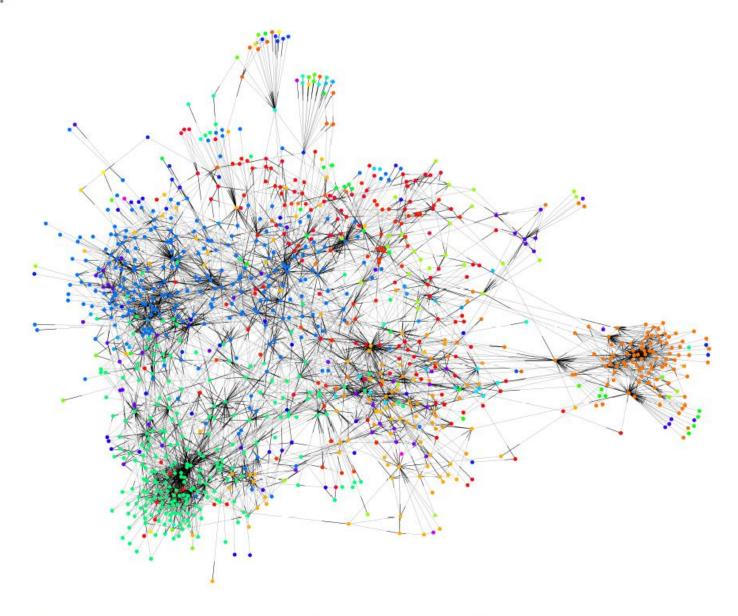
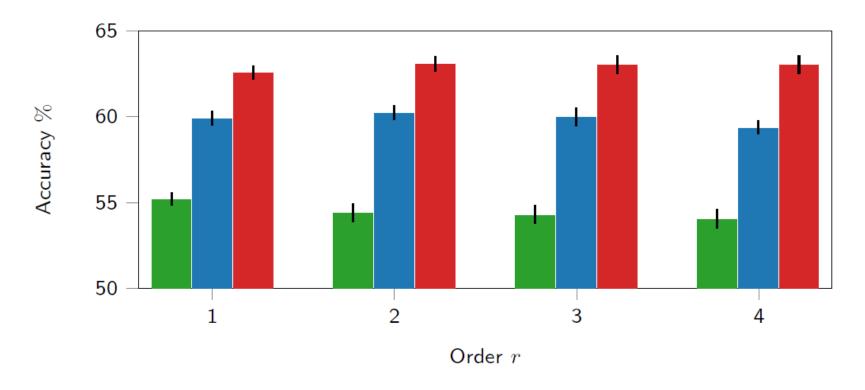


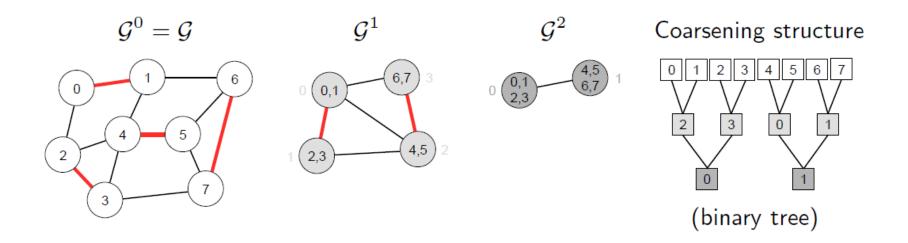
Figure: Monti, Otness, Bronstein 2018; data: Bojchevski, Günnemann 2017

Example: directed citation networks



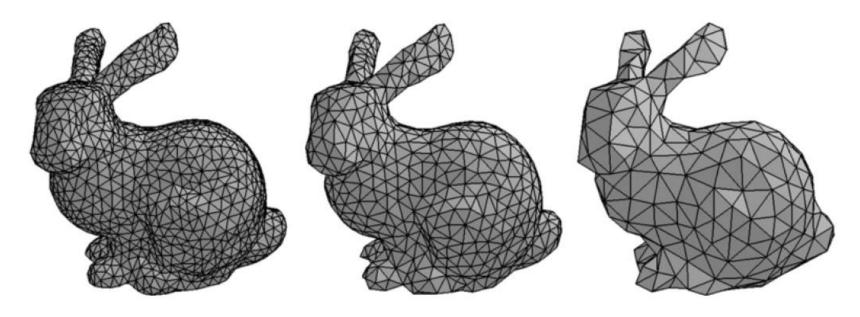
Classification accuracy on directed CORA obtained with ChebNet applied with directed adjacency matrix \mathbf{W} (blue) and \mathbf{W}^{\top} (green), and MotifNet-m (red)

Graph pooling



- Produce a sequence of coarsened graphs
- Max or average pooling of collapsed vertices
- Binary tree arrangement of node indices

Mesh pooling



Example of progressive coarsening of a mesh

Spatial domain (charting-based) geometric deep learning methods

Convolution

Euclidean

Spatial domain

$$(f\star g)(x) = \int_{-\pi}^{\pi} f(x')g(x-x')dx'$$

Spectral domain

$$\widehat{(f\star g)}(\omega) = \hat{f}(\omega)\cdot \hat{g}(\omega)$$

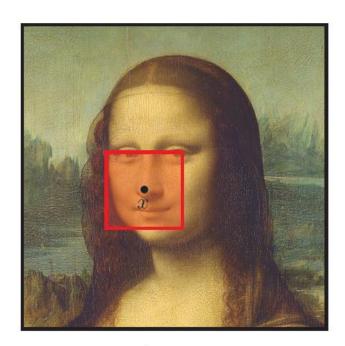
'Convolution Theorem'

Non-Euclidean

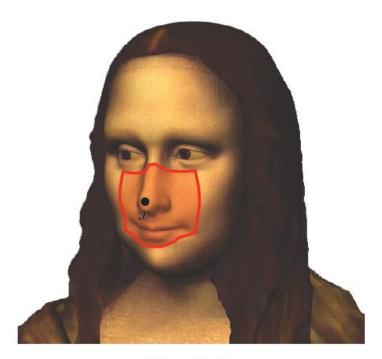
?

$$\widehat{(f \star g)}_k = \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})}$$

Patch operators

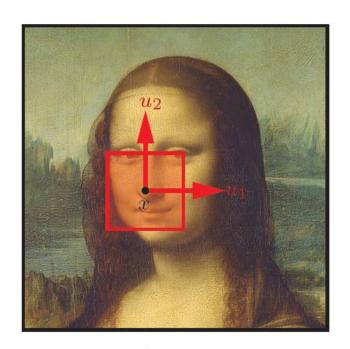


Image

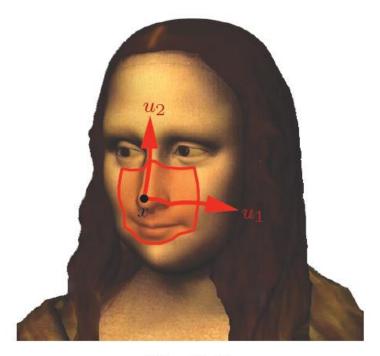


Manifold

Patch operators

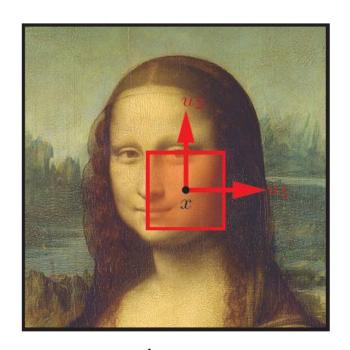


Image

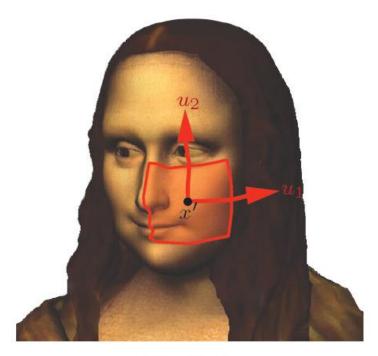


Manifold

Patch operators

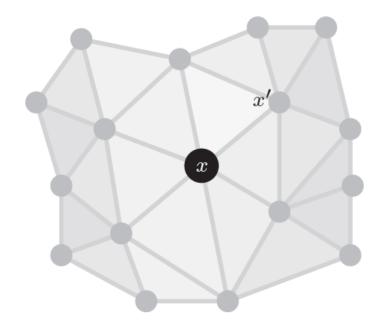


Image

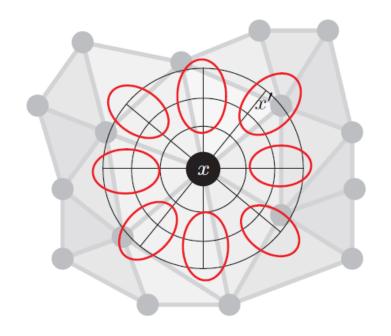


Manifold

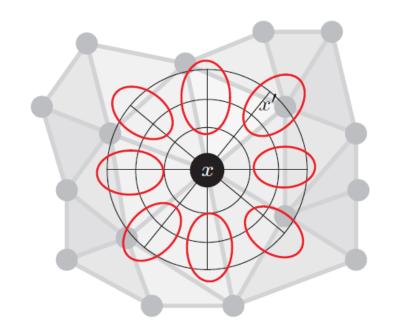
• Local system of coordinates $\mathbf{u}(x,x')$ around x' (e.g. geodesic polar)



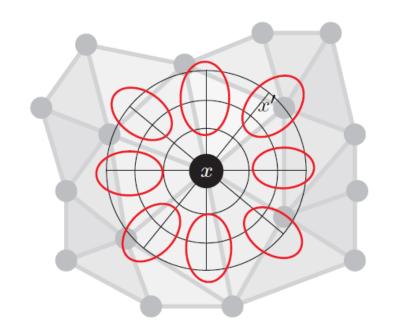
- Local system of coordinates $\mathbf{u}(x, x')$ around x' (e.g. geodesic polar)
- Local weights $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t. \mathbf{u}



- Local system of coordinates $\mathbf{u}(x,x')$ around x' (e.g. geodesic polar)
- Local weights $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t. \mathbf{u} , e.g. Gaussians $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$



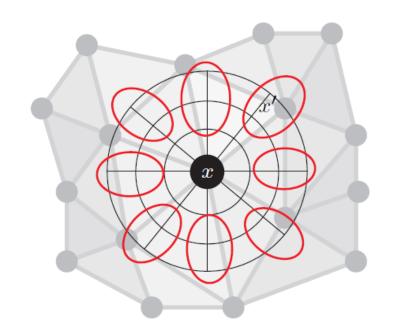
- Local system of coordinates $\mathbf{u}(x,x')$ around x' (e.g. geodesic polar)
- Local weights $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t. \mathbf{u} , e.g. Gaussians $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$



Spatial convolution with filter g

$$(f\star g)(x) \propto \sum_{\ell=1}^{L} g_{\ell} \int_{\mathcal{X}} w_{\ell}(\mathbf{u}(x,x')) f(x') dx'$$

- Local system of coordinates $\mathbf{u}(x,x')$ around x' (e.g. geodesic polar)
- Local weights $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t. \mathbf{u} , e.g. Gaussians $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$



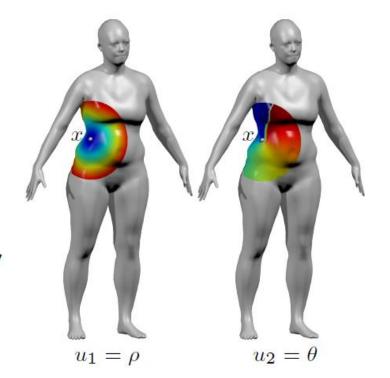
Spatial convolution with filter g

$$(f \star g)(x) \propto \sum_{\ell=1}^{L} g_{\ell} \underbrace{\int_{\mathcal{X}} w_{\ell}(\mathbf{u}(x, x')) f(x') dx'}_{\text{patch operator}}$$

Geodesic polar coordinates

$$\mathbf{u}(x, x') = (\rho(x, x'), \theta(x, x'))$$

 $\rho(x,x')$ geodesic distance from x to x' $\theta(x,x')$ direction of geodesic from x to x'

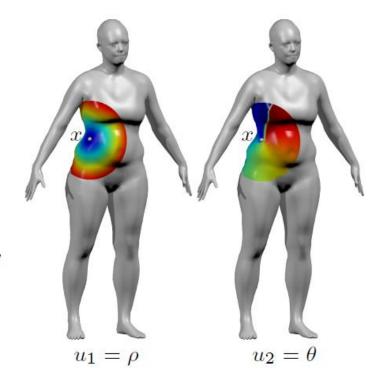


Geodesic polar coordinates

$$\mathbf{u}(x, x') = (\rho(x, x'), \theta(x, x'))$$

ho(x,x') geodesic distance from x to x' $\theta(x,x')$ direction of geodesic from x to x'

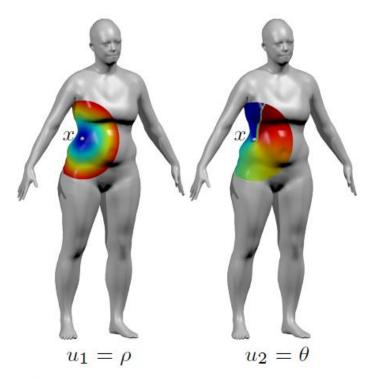
Orientation ambiguity!



Geodesic polar coordinates

$$\mathbf{u}(x, x') = (\rho(x, x'), \theta(x, x'))$$

 $\rho(x,x')$ geodesic distance from x to x' $\theta(x,x')$ direction of geodesic from x to x'



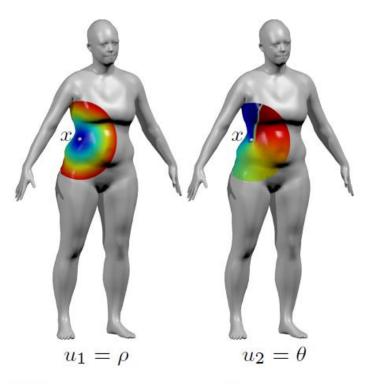
- Orientation ambiguity!
 - Canionical direction (e.g. intrinsic vector field, max curvature direction)
 - Angular max pooling: apply a rotating filter

$$(f \star g)(x) \propto \max_{\Delta \theta \in [0,2\pi)} \sum_{\ell=1}^{L} g_{\ell} \int_{\mathcal{X}} w_{\ell}(\rho(x,x'), \theta(x,x') + \Delta \theta) f(x') dx'$$

Geodesic polar coordinates

$$\mathbf{u}(x, x') = (\rho(x, x'), \theta(x, x'))$$

ho(x,x') geodesic distance from x to x' $\theta(x,x')$ direction of geodesic from x to x'

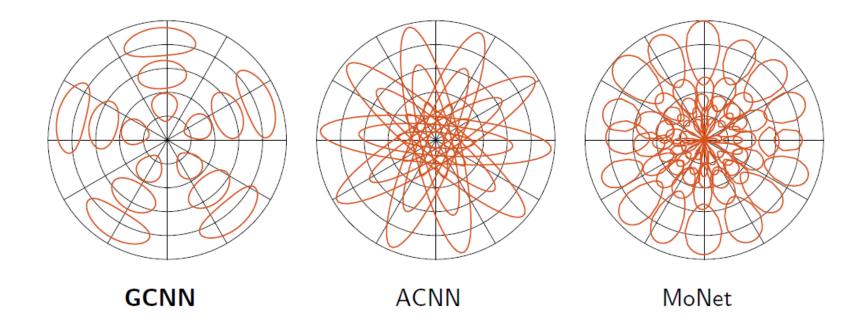


- Orientation ambiguity!
 - Canionical direction (e.g. intrinsic vector field, max curvature direction)
 - Angular max pooling: apply a rotating filter

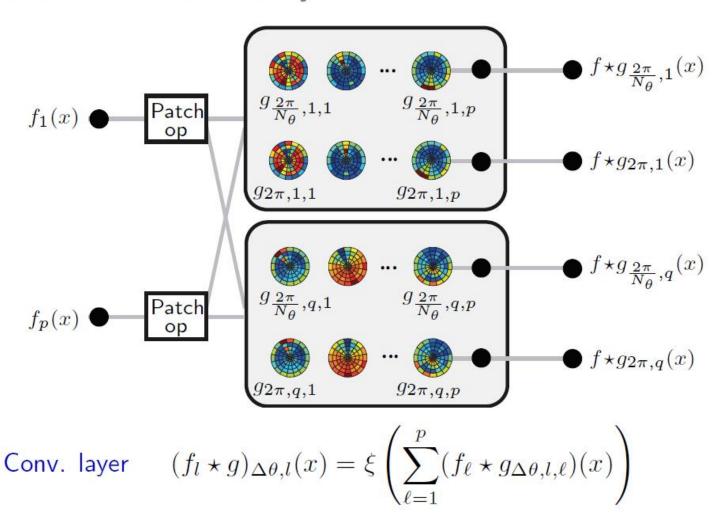
$$(f \star g)(x) \propto \max_{\Delta \theta \in [0,2\pi)} \sum_{\ell=1}^{L} g_{\ell} \int_{\mathcal{X}} w_{\ell}(\rho(x,x'), \theta(x,x') + \Delta \theta) f(x') dx'$$

• Fourier transform magnitute w.r.t. θ

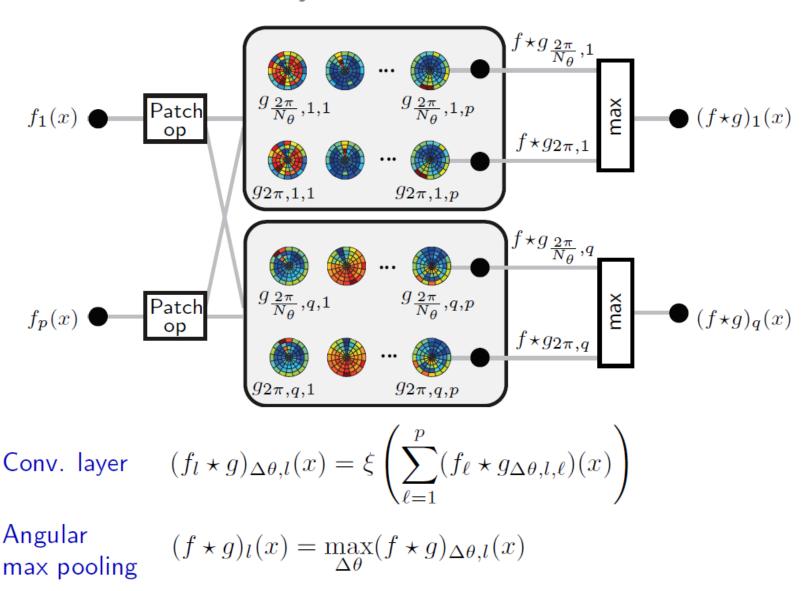
Patch operator weight functions



Geodesic convolution layer

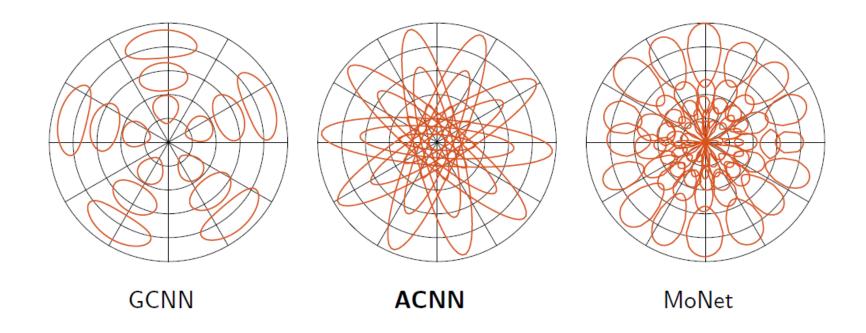


Geodesic convolution layer



Masci et al. 2015

Patch operator weight functions



Homogeneous diffusion

$$f_t(x) = -\operatorname{div}(c\nabla f(x))$$

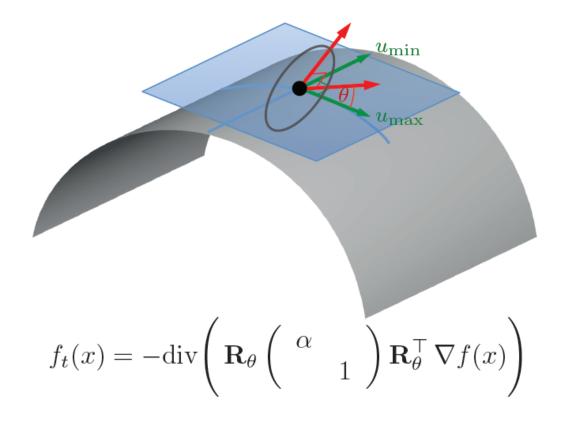
c = thermal diffusivity constant describing heat conduction properties of the material (diffusion speed is equal everywhere)

Anisotropic diffusion

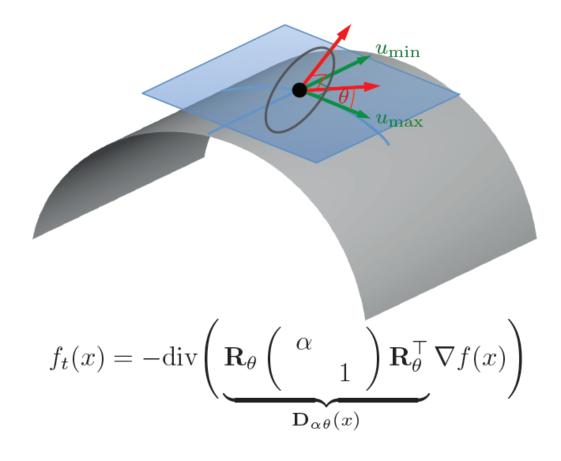
$$f_t(x) = -\text{div}(\mathbf{A}(x)\nabla f(x))$$

 $\mathbf{A}(x) = \text{heat conductivity tensor describing heat conduction properties of the material (diffusion speed is position + direction dependent)$

Anisotropic diffusion on manifolds



Anisotropic diffusion on manifolds



- Anisotropic Laplacian $\Delta_{\alpha\theta} f(x) = \operatorname{div} (D_{\alpha\theta}(x) \nabla f(x))$
- $oldsymbol{\bullet}$ θ = orientation w.r.t. max curvature direction
- $\alpha =$ 'elongation'

Learnable patch operator

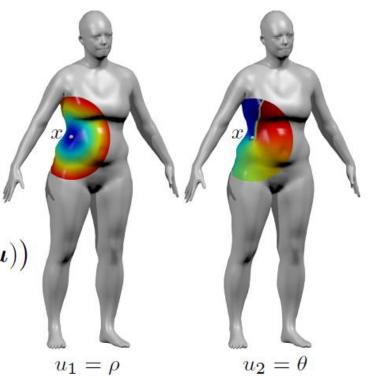
Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,x'), \theta(x,x'))$$

Gaussian weighting functions

$$w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u} - \mu)^{\top} \Sigma^{-1}(\mathbf{u} - \mu)\right)$$
 with learnable covariance Σ and

mean μ



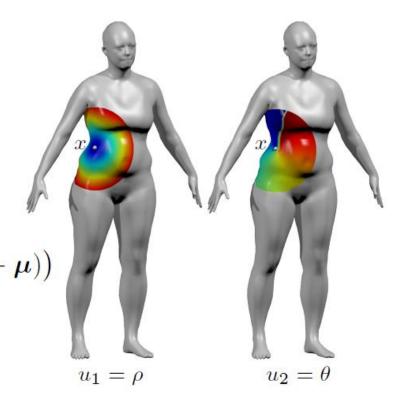
Learnable patch operator

Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,x'), \theta(x,x'))$$

Gaussian weighting functions

$$\begin{split} w_{\pmb{\mu},\pmb{\Sigma}}(\mathbf{u}) &= \exp \left(-\frac{1}{2}(\mathbf{u}-\pmb{\mu})^{\mathsf{T}}\pmb{\Sigma}^{-1}\!(\mathbf{u}-\pmb{\mu})\right) \\ \text{with learnable covariance } \pmb{\Sigma} \text{ and} \\ \text{mean } \pmb{\mu} \end{split}$$



Spatial convolution

$$(f \star g)(x) \propto \sum_{\ell=1}^{L} g_{\ell} \int_{\mathcal{X}} w_{\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}}(\mathbf{u}(x, x')) f(x') dx'$$

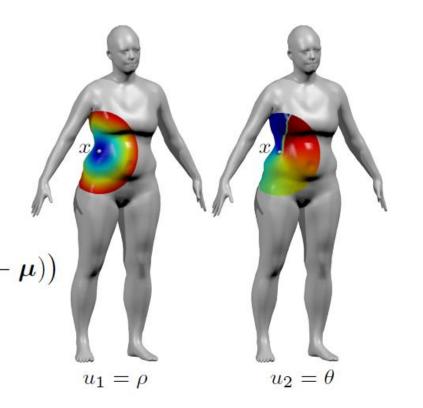
Learnable patch operator

Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,x'), \theta(x,x'))$$

Gaussian weighting functions

$$w_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu})\right)$$
 with learnable covariance $\boldsymbol{\Sigma}$ and mean $\boldsymbol{\mu}$



Spatial convolution

$$(f \star g)(x) \propto \int_{\mathcal{X}} \sum_{\ell=1}^{L} g_{\ell} w_{\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}}(\mathbf{u}(x, x')) f(x') dx'$$

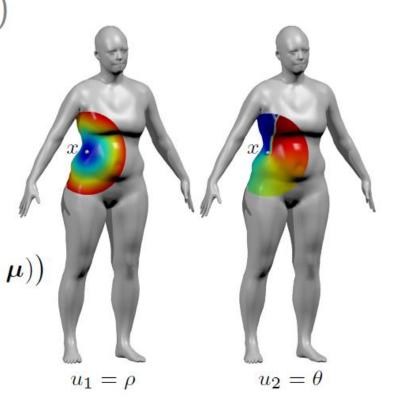
Mixture Model Network (MoNet)

Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,x'), \theta(x,x'))$$

Gaussian weighting functions

$$w_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu})\right)$$
 with learnable covariance $\boldsymbol{\Sigma}$ and mean $\boldsymbol{\mu}$



Spatial convolution

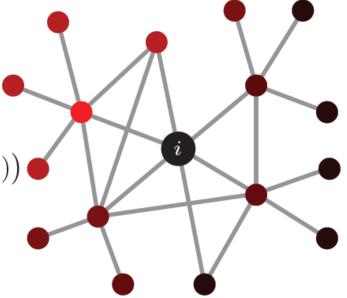
$$(f \star g)(x) \propto \int_{\mathcal{X}} \underbrace{\sum_{\ell=1}^{L} g_{\ell} w_{\mu_{\ell}, \Sigma_{\ell}}(\mathbf{u}(x, x')) f(x') dx'}_{\text{Gaussian mixture}}$$

Mixture Model Network on graphs

- Local coordinates \mathbf{u}_{ij} , e.g. vertex degree, geodesic distance,...
- Gaussian weighting functions

$$w_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{u} - \boldsymbol{\mu})\right)$$

with learnable covariance Σ and mean μ



Local coordinates on graph

Spatial convolution

$$(f \star g)_i \propto \sum_{\ell=1}^L g_\ell \sum_{j=1}^n w_{\mu_\ell, \Sigma_\ell}(\mathbf{u}_{i,j}) f_j$$

MoNet as generalization of previous methods

Method	Coordinates $\mathbf{u}(x, x')$	Weight function $w_{\mathbf{\Theta}}(\mathbf{u})$
CNN ¹	$\mathbf{u}(x') - \mathbf{u}(x)$	$\delta(\mathbf{u} - \mathbf{v})$ fixed parameters $\mathbf{\Theta} = \mathbf{v}$
GCN^2	$\deg(x), \deg(x')$	$\left(1 - 1 - \frac{1}{\sqrt{u_1}} \right) \left(1 - 1 - \frac{1}{\sqrt{u_2}} \right)$
GCNN ³	$\rho(x,x'), \theta(x,x')$	$\exp\left(-\frac{1}{2}(\mathbf{u}-\mathbf{v})^{\top}\!\!\left(\begin{smallmatrix}\sigma_{\rho}^2\\\sigma_{\theta}^2\end{smallmatrix}\right)\!\!\!\left(\mathbf{u}-\mathbf{v}\right)\right)$ fixed parameters $\mathbf{\Theta}=(\mathbf{v},\sigma_{\rho},\sigma_{\theta})$
$ACNN^4$	$\rho(x, x'), \theta(x, x')$	$\exp\left(-t\mathbf{u}^{\top}\mathbf{R}_{\varphi}(^{\alpha}_{1})\mathbf{R}_{\varphi}^{\top}\mathbf{u}\right)$ fixed parameters $\mathbf{\Theta}=(\alpha,\varphi,t)$
$MoNet^5$	$\rho(x, x'), \theta(x, x')$	$\exp\big(-\tfrac{1}{2}(\mathbf{u}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu})\big)$ learnable parameters $\boldsymbol{\Theta}=(\boldsymbol{\mu},\boldsymbol{\Sigma})$

Some CNN models can be considered as particular settings of MoNet with weighting functions of different form

Methods: $^1\text{LeCun}$ et al. 1998; $^2\text{Kipf}$, Welling 2016; $^3\text{Masci}$ et al. 2015; $^4\text{Boscaini}$ et al. 2016; $^5\text{Monti}$ et al. 2017

Spectral vs Spatial methods

ChebNet filter

Spatial filter

$$\mathbf{h} = \tau_{\alpha}(\mathbf{\Delta})\mathbf{f}$$

$$\mathbf{h} = (\mathcal{D}\mathbf{f})\mathbf{g}$$

Spectral vs Spatial methods

ChebNet filter

$$\mathbf{h} = \sum_{\ell=0}^{r} \alpha_{\ell} \mathbf{\Delta}^{\ell} \mathbf{f}$$

Spatial filter

$$\mathbf{h} = (\mathcal{D}\mathbf{f})\mathbf{g}$$

Spectral vs Spatial methods

ChebNet filter

$$h_i = \sum_{\ell=0}^r \alpha_\ell (\mathbf{\Delta}^\ell \mathbf{f})_i$$

Spatial filter

$$h_i = \sum_{\ell=1}^{L} g_{\ell}(\mathbf{W}_{\ell}\mathbf{f})_i$$

ChebNet is a particular setting of spatial convolution with local weighting functions given by the powers of the Laplacian $\mathbf{W}_\ell = \mathbf{\Delta}^\ell$

Graph Attention Networks (GAT)

Main idea: neighborhood average

$$\mathbf{f}_i' = \sum_{j:(i,j)\in\mathcal{E}} \alpha_{ij} \mathbf{f}_j$$

weighted by attention score

$$\alpha_{ij} = \frac{e^{\xi([\mathbf{f}_i \mathbf{W}, \mathbf{f}_j \mathbf{W}]\mathbf{a})}}{\sum_{k:(i,k)\in\mathcal{E}} e^{\xi([\mathbf{f}_i \mathbf{W}, \mathbf{f}_k \mathbf{W}]\mathbf{a})}}$$

which is a learnable transformation of the local features with learnable parameters $\mathbf{W},\ \mathbf{a}$

Graph Attention Networks (GAT)

Main idea: neighborhood average

$$\mathbf{f}_i' = \sum_{j:(i,j)\in\mathcal{E}} \alpha_{ij} \mathbf{f}_j$$

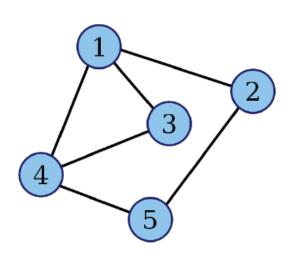
weighted by attention score

$$\alpha_{ij} = \frac{e^{\xi([\mathbf{f}_i \mathbf{W}, \mathbf{f}_j \mathbf{W}]\mathbf{a})}}{\sum_{k:(i,k)\in\mathcal{E}} e^{\xi([\mathbf{f}_i \mathbf{W}, \mathbf{f}_k \mathbf{W}]\mathbf{a})}}$$

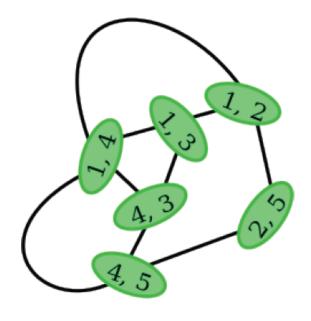
which is a learnable transformation of the local features with learnable parameters $\mathbf{W},\,\mathbf{a}$

Particular case of MoNet-type architectures!

Primal and Dual graphs



Primal graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$



Dual or line graph $\tilde{\mathcal{G}} = (\tilde{\mathcal{V}} = \mathcal{E}, \tilde{\mathcal{E}})$

Dual/Primal Graph CNN (DPGCNN)

Alternate GAT-type convolutions applied on primal and dual graphs

• Dual convolution on $\widetilde{\mathcal{G}}$:

$$\begin{split} \tilde{\mathbf{f}}'_{ij} &= \xi \left(\sum_{r \in \mathcal{N}_i} \tilde{\alpha}_{ij,ir} \tilde{\mathbf{f}}_{ir} \tilde{\mathbf{W}} + \sum_{t \in \mathcal{N}_j} \tilde{\alpha}_{ij,tj} \tilde{\mathbf{f}}_{tj} \tilde{\mathbf{W}} \right) \\ \tilde{\alpha}_{ij,ik} &= \frac{e^{\xi([\tilde{\mathbf{f}}_{ij}\tilde{\mathbf{W}}, \tilde{\mathbf{f}}_{ik}\tilde{\mathbf{W}}]\tilde{\mathbf{a}})}}{\sum_{r \in \mathcal{N}_i} e^{\xi([\tilde{\mathbf{f}}_{ij}\tilde{\mathbf{W}}, \tilde{\mathbf{f}}_{ir}\tilde{\mathbf{W}}]\tilde{\mathbf{a}})} + \sum_{t \in \mathcal{N}_j} e^{\xi([\tilde{\mathbf{f}}_{ij}\tilde{\mathbf{W}}, \tilde{\mathbf{f}}_{tj}\tilde{\mathbf{W}}]\tilde{\mathbf{a}})} \end{split}$$

• Primal convolution on \mathcal{G} :

$$\mathbf{f}_{i}' = \xi \left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij} \mathbf{f}_{j} \mathbf{W} \right) \qquad \alpha_{ij} = \frac{e^{\xi(\tilde{\mathbf{f}}_{ij}' \mathbf{a})}}{\sum_{k \in \mathcal{N}_{i}} e^{\xi(\tilde{\mathbf{f}}_{ik}' \mathbf{a})}}$$

Example: citation networks

Method	\mathbf{Cora}^1	CiteSeer ²
Manifold Regularization ³	59.5%	60.1%
${\sf Semidefinite\ Embedding}^4$	59.0%	59.6%
Label Propagation ⁵	68.0%	45.3%
$DeepWalk^6$	67.2%	43.2%
$Planetoid^7$	75.7%	64.7%
GCN ⁸	81.6%	70.3%
$MoNet^9$	81.7%	_
GAT^{10}	83.0%	72.5%
DPGCN ¹¹	83.3%	72.6%

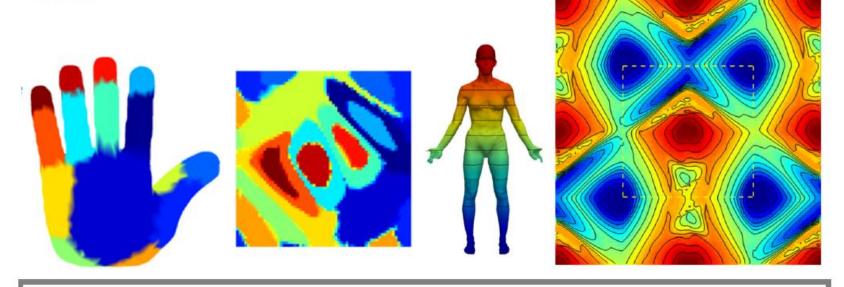
Classification accuracy of different methods on citation network datasets

Data: 1,2 Sen et al. 2008; methods: 3 Belkin et al. 2006; 4 Weston et al. 2012; 5 Zhu et al. 2003; 6 Perozzi et al. 2014; 7 Yang et al. 2016; 8 Kipf, Welling 2016; 9 Monti et al. 2017; 10 Veličković et al. 2018; 11 Monti et al. 2018

Parametric domain geometric deep learning methods

Global parametrization

Map the input surface to some parametric domain with shift-invariant structure



- Allows to use standard CNNs (pull back convolution from the parametric space)
- © Guaranteed invariance to some classes of transformations
- © Parametrization may not be unique
- Embedding may introduce distortion