GAMES Geometric Deep Learning III

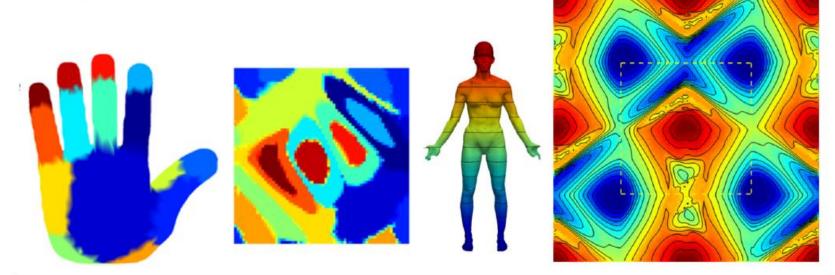
Qixing Huang Oct. 14th 2021

Slide credit: Michael Bronstein

Parametric domain geometric deep learning methods

Global parametrization

Map the input surface to some parametric domain with shift-invariant structure



- Allows to use standard CNNs (pull back convolution from the parametric space)
- © Guaranteed invariance to some classes of transformations
- ② Parametrization may not be unique
- ☺ Embedding may introduce distortion

Sinha et al. 2016; Maron et al. 2017; Ezuz et al. 2017

 $\label{eq:Translation} Translation \ on \ manifold = locally \ Euclidean \ translation$

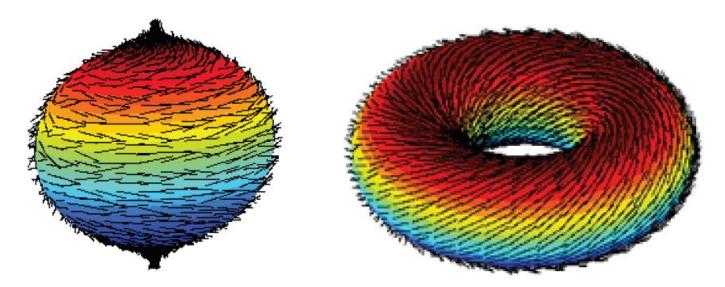
 $\label{eq:translation} Translation on manifold = locally Euclidean translation = flow along a non-vanishing vector field$

 $\label{eq:translation} Translation on manifold = locally Euclidean translation = flow along a non-vanishing vector field$

Poincaré-Hopf Theorem Non-vanishing vector field on a closed orientable compact 2-manifold implies manifold of genus 1 (torus)

Translation on manifold = locally Euclidean translation = flow along a non-vanishing vector field

Poincaré-Hopf Theorem Non-vanishing vector field on a closed orientable compact 2-manifold implies manifold of genus 1 (torus)



'Hairy Ball Theorem' states that a sphere cannot be combed

Poincaré 1881; Hopf 1926

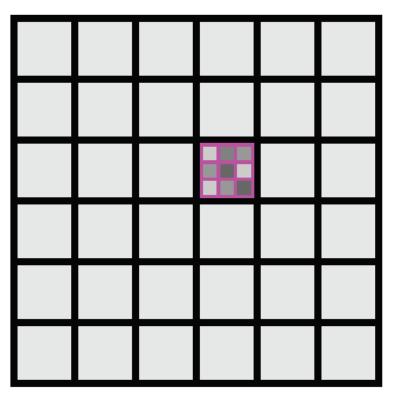
Translation invariance on the torus



Torus is the only closed orientable surface admitting a translation group

Convolution on torus

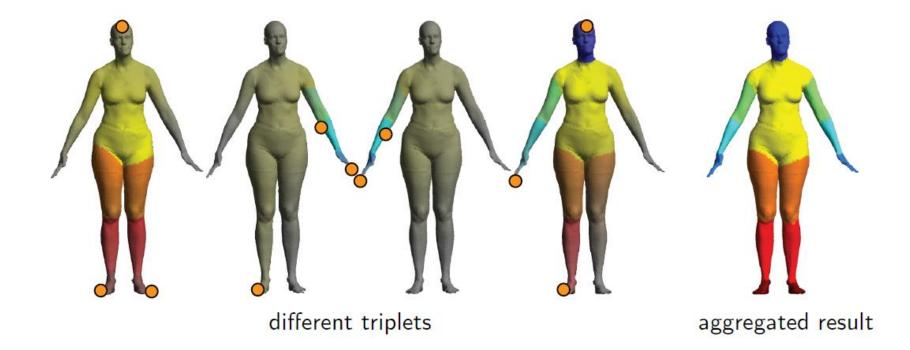
For any triplet of points on $\mathcal X,$ construct conformal homeomorphism from the 4-cover $\mathcal X^4$ to $\mathcal T$ using orbifold-Tutte method



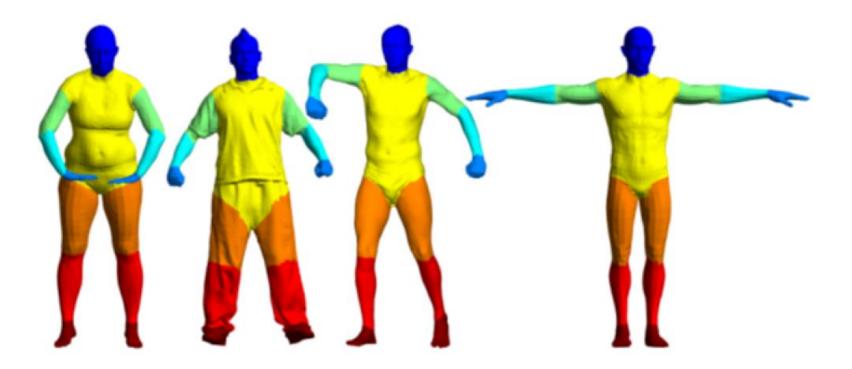
Maron et al. 2017

Conformal zoom

- Embedding depends on the choice of the triplets of points
- 'Conformal zoom' effect
- Choose multiple triples and aggregate results in training / test phase



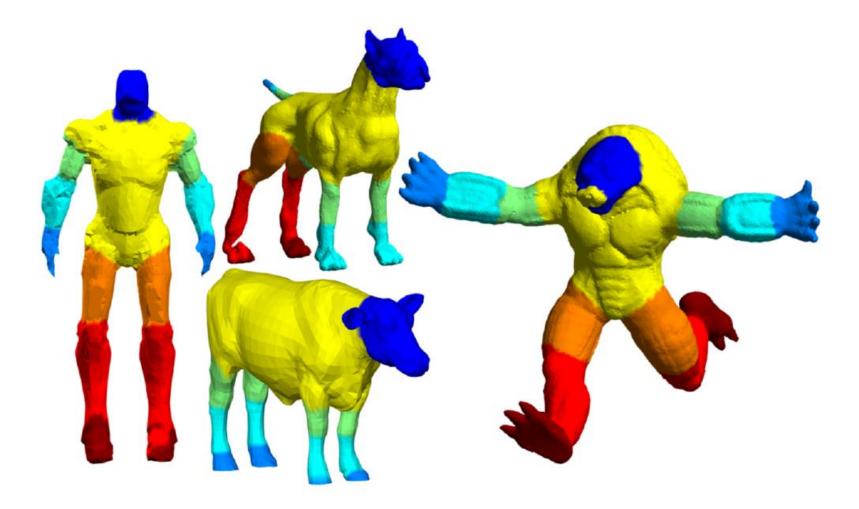
Example: shape segmentation with Toric CNN



Examples of shape segmentation obtained with Toric CNN

Maron et al. 2017

Example: shape segmentation with Toric CNN



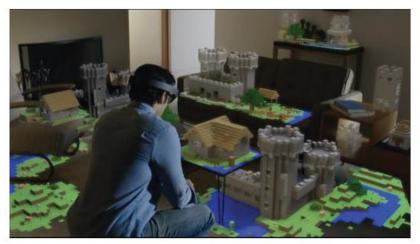
Examples of shape segmentation obtained with Toric CNN

Maron et al. 2017

Application in Computer Graphics and 3D Vision

Application dealing with 3D data

Computer graphics



Virtual/augmented reality

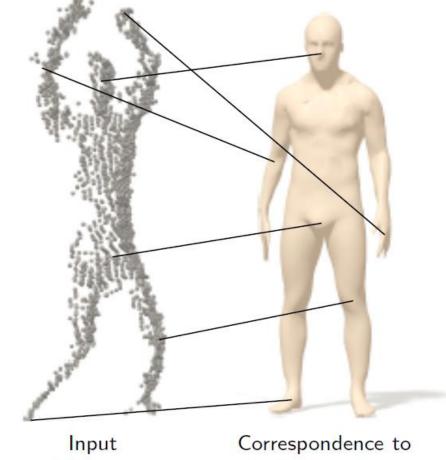
Robotics

Autonomous driving

Medicine

Drug design

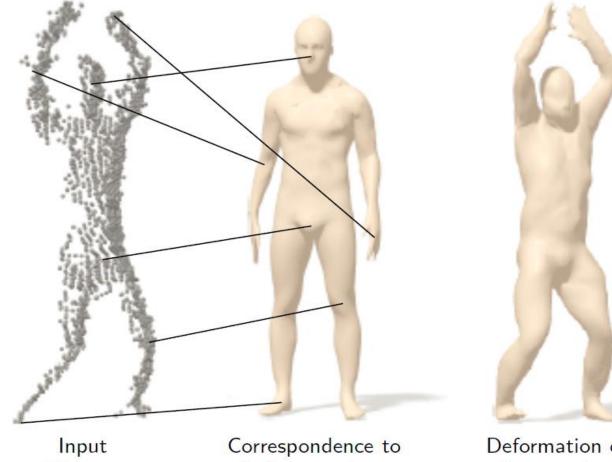
Analysis and synthesis



3D scan

Correspondence to Reference shape

Analysis and synthesis

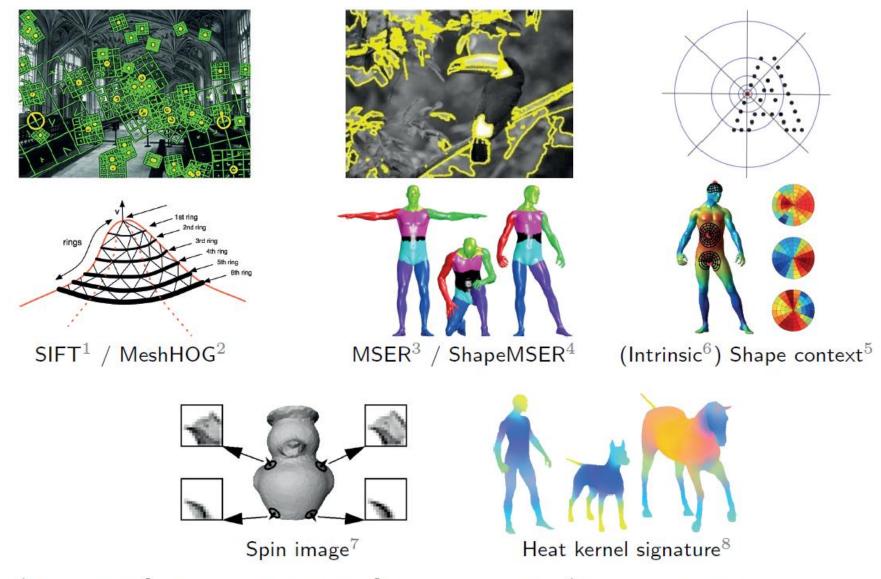


3D scan

Reference shape

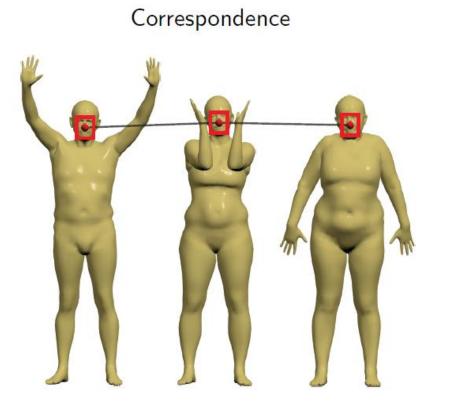
Deformation of reference shape

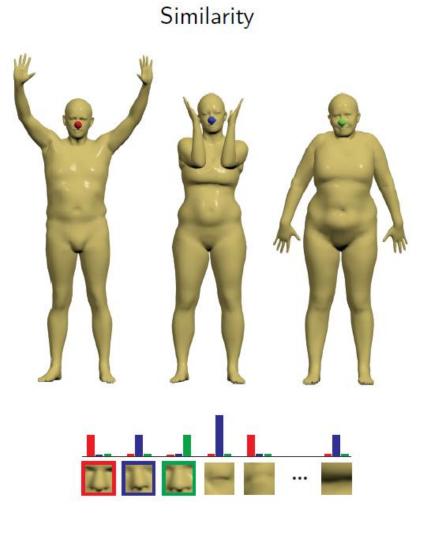
3D feature descriptors



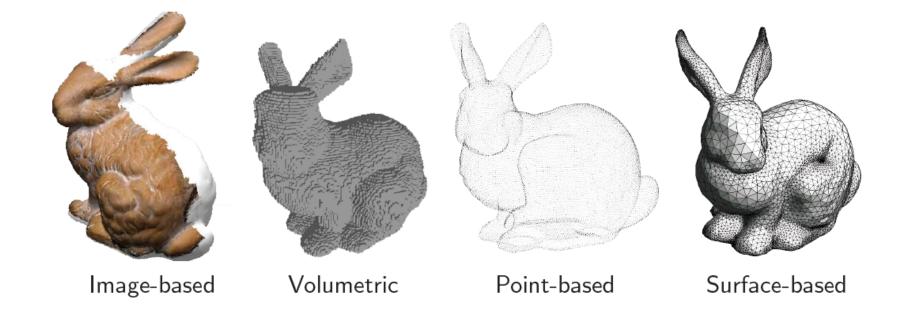
¹Lowe 2004; ²Zaharescu et al. 2009; ³Matas et al. 2002; ⁴Litman et al. 2010; ⁵Belongie et al. 2000; ⁶Kokkinos et al. 2012; ⁷Johnson et al. 1999; ⁸Sun et al. 2009

Task-specific features





Shape representation

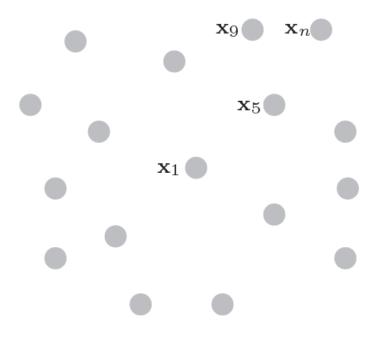


PointNet: learning on sets

• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where $\mathbf{x}_i \in \mathbb{R}^d$ is feature at vertex i



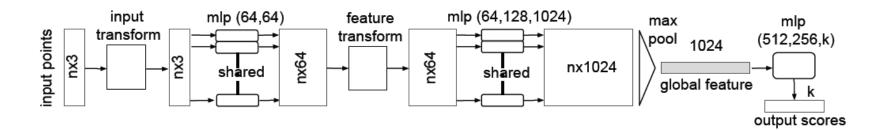
(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017

PointNet: learning on sets

• Permutation-invariant function

 $f(\mathbf{x}_1, \dots, \mathbf{x}_n) = f(\mathbf{x}_{\pi_1}, \dots, \mathbf{x}_{\pi_n})$ where $\mathbf{x}_i \in \mathbb{R}^d$ is feature at vertex i

 Shared function h_☉(·) applied to each point + permutationinvariant aggregation (max or ∑)



(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017

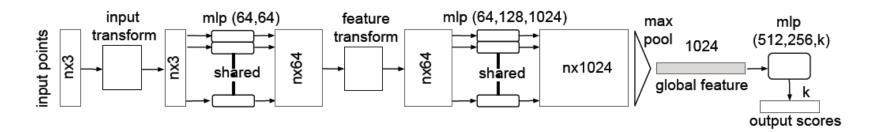
PointNet: learning on sets

• Permutation-invariant function

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) = f(\mathbf{x}_{\pi_1}, \dots, \mathbf{x}_{\pi_n})$$

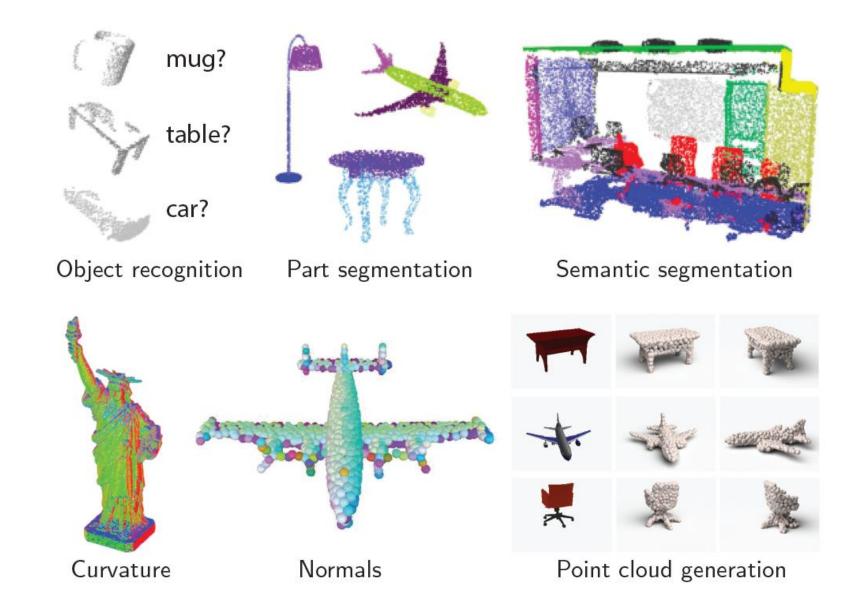
where $\mathbf{x}_i \in \mathbb{R}^d$ is feature at vertex i

- Shared function h_☉(·) applied to each point + permutationinvariant aggregation (max or ∑)
- Spatial transformer units
- Local grouping (PointNet++, PCPNet)



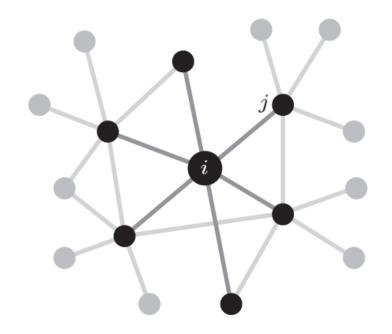
(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017; Qi, Yi et al. 2017; Guerrero et al. 2018

PointNet applications



Graph-based edge convolution

- Local neighborhood structure modeled as a graph
- Edge feature function $h_{\Theta}(\cdot, \cdot)$ parametrized by Θ
- Permutation-invariant aggregation operator □ (e.g. ∑ or max) on the neighborhood of i
- Edge convolution (EdgeConv) $\mathbf{x}'_i = \prod_j h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j)$



Learnable local (nonlinear) operator

Wang et al. 2018

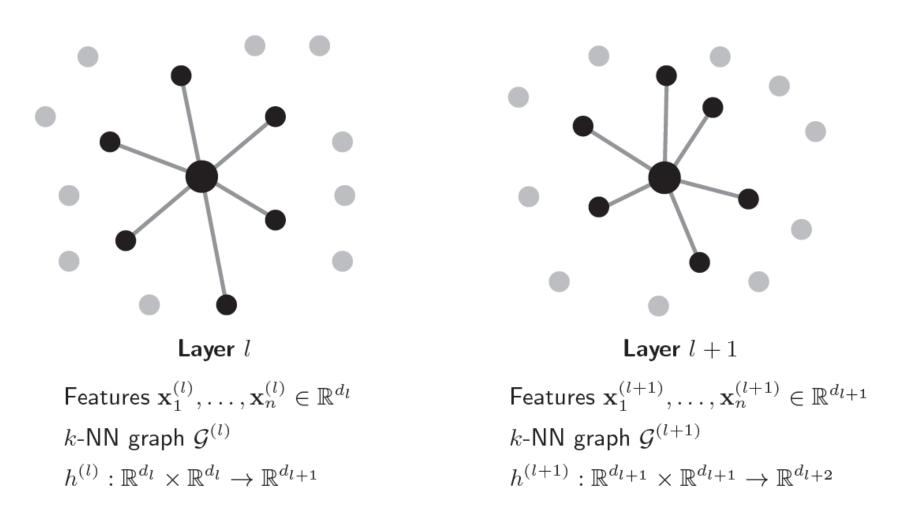
Particular cases

Method	Aggregation \Box	Edge feature $h(\mathbf{x}_i, \mathbf{x}_j)$
Laplacian	\sum	$w_{ij}(\mathbf{x}_j - \mathbf{x}_i)$
$PointNet^1$	_	$h(\mathbf{x}_i)$
$PointNet+^2$	max	$h(\mathbf{x}_i)$
$MoNet^3$	\sum	$\sum_{\ell} g_{\ell} w_{\ell}(\mathbf{u}_{ij}) \mathbf{x}_{j}$
PCNN ⁴	\sum	$\sum_{\ell m} c(\mathbf{x}_i \cdot \mathbf{k}_{\ell m}) w_i q_{\mathbf{\Theta}_{\ell}}(\mathbf{x}_i, \mathbf{x}_j)$

Wang et al. 2018; $^1{\rm Qi}$ et al. 2017; $^2{\rm Qi}$, Su et al. 2017; $^3{\rm Monti}$ et al. 2017; $^4{\rm Atzmon}$ et al. 2018

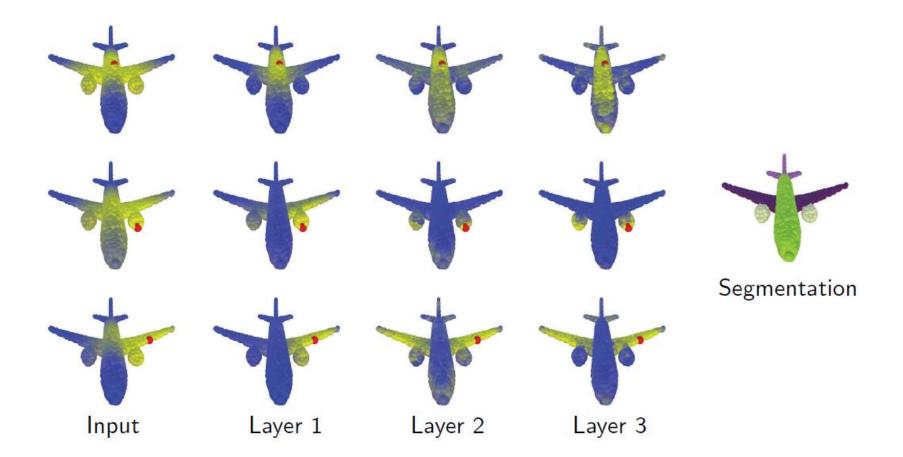
Dynamic Graph CNN (DynGCNN)

Construct k-NN graph in feature space and update it after each layer



Wang et al. 2018

Learning semantic features



Left: Distance from red point in the feature space of different DynGCNN layers Right: semantic segmentation results

Wang et al. 2018

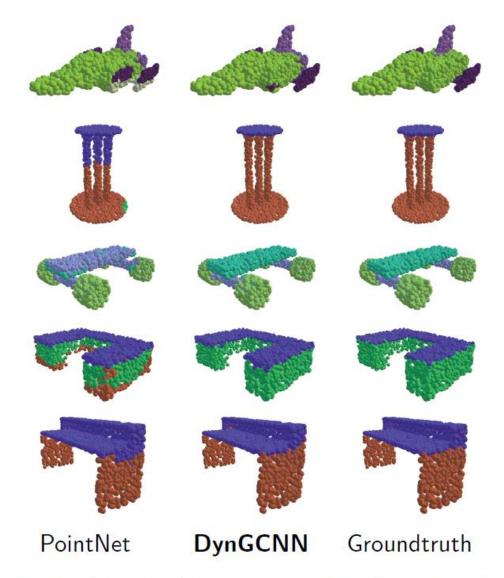
Shape classification (ModelNet40)

	Mean	Overall
Method	class accuracy	accuracy
$3DShapeNet^1$	77.3%	84.7%
$VoxNet^2$	83.0%	85.9%
${\sf Subvolume}^3$	86.0%	89.2%
ECC^4	83.2%	87.4%
$PointNet^5$	86.0%	89.2%
$PointNet{++^6}$	_	90.7%
$Kd\operatorname{-Net}^7$	-	91.8%
DynGCNN (baseline) ⁸	88.8%	91.2%
DynGCNN ⁸	90.2%	92.2%

Classification accuracy of different methods on ModelNet40

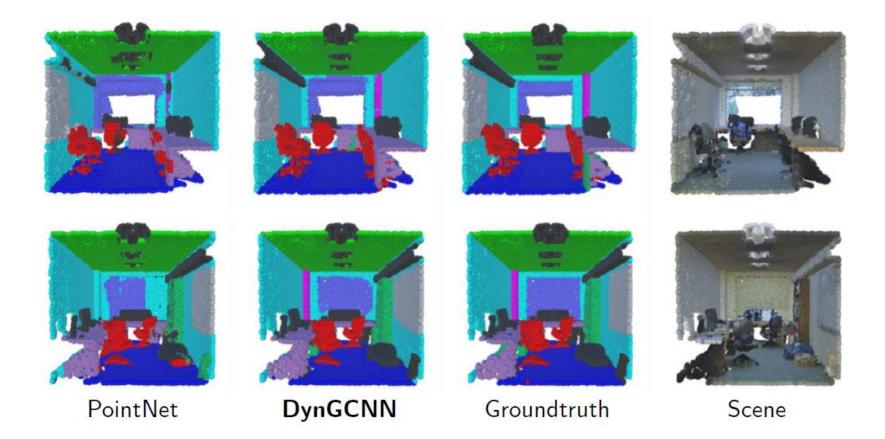
Methods: ¹Wu et al. 2015; ²Maturana et al. 2015; Qi et al. 2016; ⁴Simonovsky, Komodakis 2017; ⁵Qi et al. 2017; ⁶Qi, Su et al. 2017; ⁷Klokov, Lempitsky 2017; ⁸Wang et al. 2018; data: Wu et al. 2015 (ModelNet)

Semantic segmentation: synthetic (ShapeNet)



Methods: Qi et al. 2017 (PointNet); Wang et al. 2018 (DynGCNN); data: Yi et al. 2016 (ShapeNet)

Semantic segmentation: indoor scans (S3DIS)



Results of semantic segmentation of point cloud+RGB data using different architectures

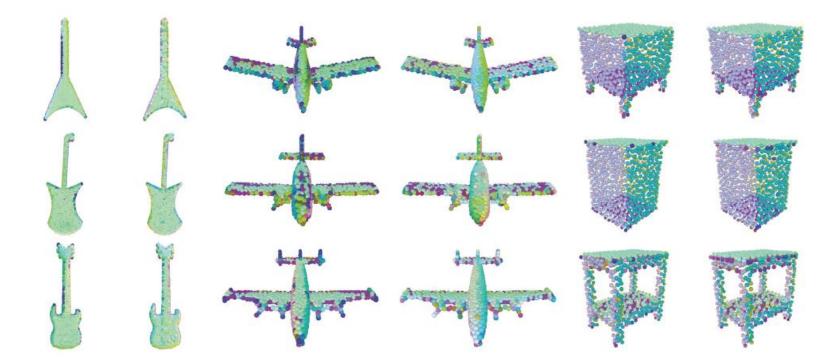
Methods: Qi et al. 2017 (PointNet); Wang et al. 2018 (DynGCNN); data: Armeni et al. 2016 (S3DIS)

	Mean	Overall
Method	loU	accuracy
PointNet (Baseline) ¹	20.1%	53.2%
$PointNet^1$	47.6%	78.5%
$MS + CU(2)^2$	47.8%	79.2%
$G + RCU^2$	49.7%	81.1%
DynGCNN ³	56.1%	84.1%

S3DIS indoor scene semantic segmentation accuracy

Methods: ¹Qi et al. 2017; ²Engelmann et al. 2017 ³Wang et al. 2018; data: Armeni et al. 2016 (S3DIS)

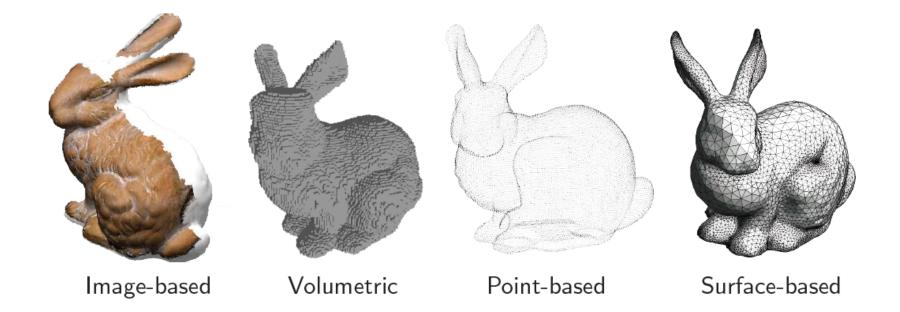
Surface normal prediction



Surface normal predicted using DynGCNN (odd columns) and groundtruth (even columns). Normal direction is color-coded

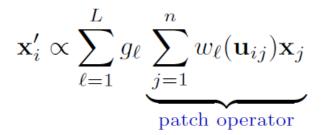
Wang et al. 2018; data: Wu et al. 2015 (ModelNet)

Shape representation

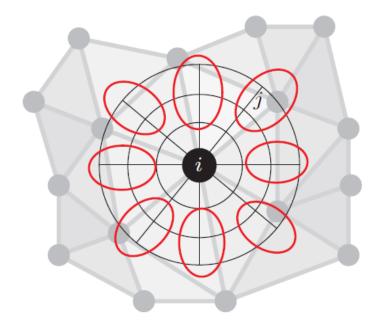


Convolution on meshes

- Local system of coordinates \mathbf{u}_{ij} around *i* (e.g. geodesic polar)
- Local weights $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t. \mathbf{u} , e.g. Gaussians $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$
- Spatial convolution with filter g

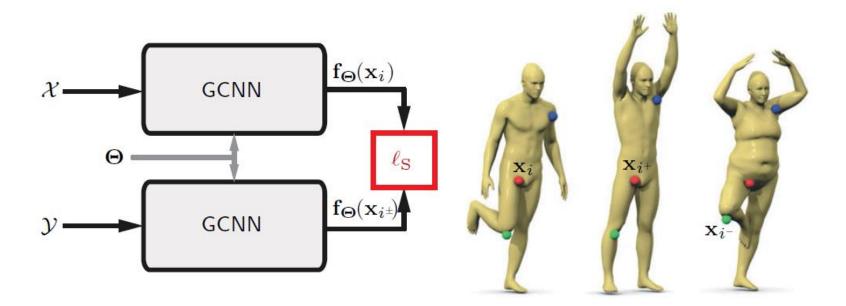


where $\mathbf{x}_i \in \mathbb{R}^d$ is feature at vertex i



Masci et al. 2015; Boscaini et al. 2016; Monti et al. 2017

Learning local descriptors with intrinsic CNN



Training set Siamese net positive (i, i^+) and negative (i, i^-) pairs of points two net instances with shared parameters Θ $\ell_{\rm S}(\Theta) = \gamma \sum_{i,i^+} \|\mathbf{f}_{\Theta}(\mathbf{x}_i) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^+})\|_2^2$ $+ (1 - \gamma) \sum_{i,i^-} [\mu - \|\mathbf{f}_{\Theta}(\mathbf{x}_i) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^-})\|_2^2]_+$

Poitwise feature cost

Masci et al. 2015

HKS descriptor

Distance in the space of local Heat Kernel Signature (HKS) features (shown is distance from a point on the shoulder marked in white)

Descriptor: Sun, Ovsjanikov, Guibas 2009 (HKS); data: Bronstein, Bronstein, Kimmel 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)

WKS descriptor

Distance in the space of local Wave Kernel Signature (WKS) features (shown is distance from a point on the shoulder marked in white)

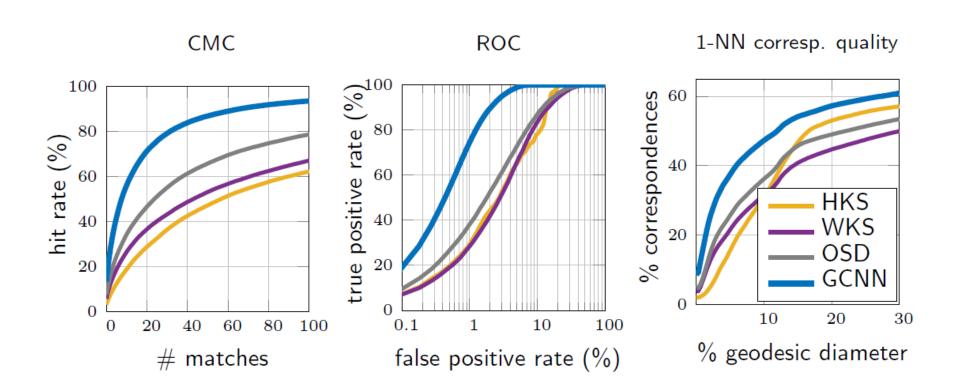
Descriptor: Aubry, Schlickewei, Cremers 2011 (WKS); data: Bronstein, Bronstein, Kimmel 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)

Descriptor learned with GCNN

Distance in the space of local GCNN features (shown is distance from a point on the shoulder marked in white)

Descriptor: Masci et al. 2015 (GCNN); data: Bronstein, Bronstein, Kimmel 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)

Descriptor quality comparison



Descriptor performance using symmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

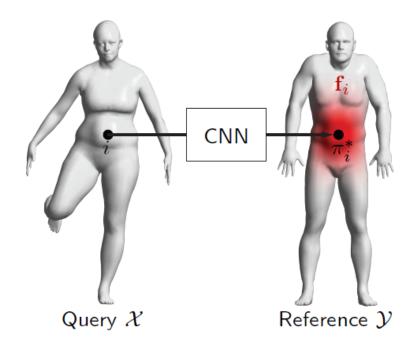
Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, B 2014 (OSD); Masci et al. 2015 (GCNN); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

Learning deformation-invariant correspondence

- Groundtruth correspondence $\pi^* : \mathcal{X} \to \mathcal{Y}$ from query shape \mathcal{X} to some reference shape \mathcal{Y}
- Correspondence = label each query vertex $i \in \{1, ..., n\}$ as reference vertex $\pi_i \in \{1, ..., m\}$
- Net output at i after softmax layer

$$\mathbf{f}_{\Theta}(\mathbf{x}_i) = (f_{i1}, \dots, f_{im})$$

= probability distribution on \mathcal{Y}



Minimize on training set the cross entropy between groundtruth correspondence and output probability distribution w.r.t. net parameters Θ

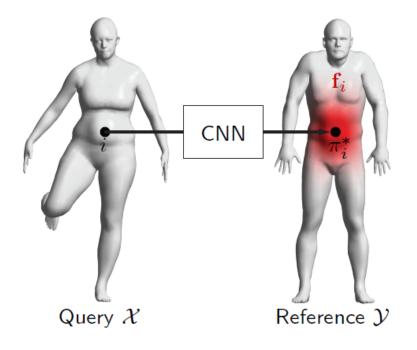
$$\min_{\boldsymbol{\Theta}} \sum_{i=1}^{n} H(\boldsymbol{\delta}_{\pi_{i}^{*}}, \mathbf{f}_{\boldsymbol{\Theta}}(\mathbf{x}_{i}))$$

Rodolà et al. 2014; Masci et al. 2015

Learning deformation-invariant correspondence

- Groundtruth correspondence $\pi^*: \mathcal{X} \to \mathcal{Y}$ from query shape \mathcal{X} to some reference shape \mathcal{Y}
- Correspondence = label each query vertex $i \in \{1, ..., n\}$ as reference vertex $\pi_i \in \{1, ..., m\}$
- Net output at i after softmax layer

 $\mathbf{f}_{\Theta}(\mathbf{x}_i) = (f_{i1}, \dots, f_{im})$ = probability distribution on \mathcal{Y}

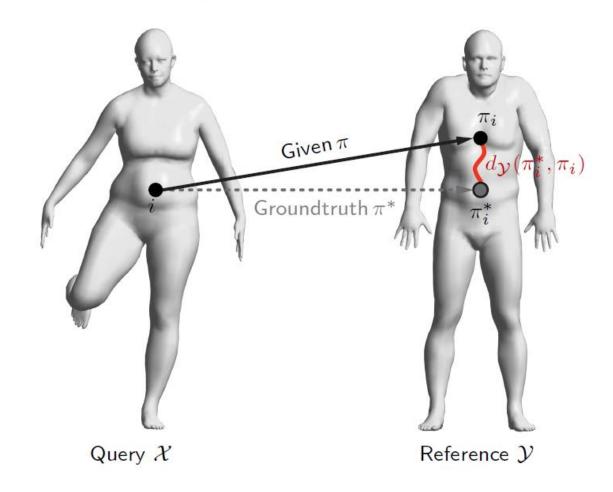


Minimize on training set the cross entropy between groundtruth correspondence and output probability distribution w.r.t. net parameters Θ

$$\min_{\boldsymbol{\Theta}} \sum_{i=1}^{n} H(\boldsymbol{\delta}_{\pi_{i}^{*}}, \mathbf{f}_{\boldsymbol{\Theta}}(\mathbf{x}_{i}))$$

Rodolà et al. 2014; Masci et al. 2015

Correspondence evaluation: Princeton benchmark

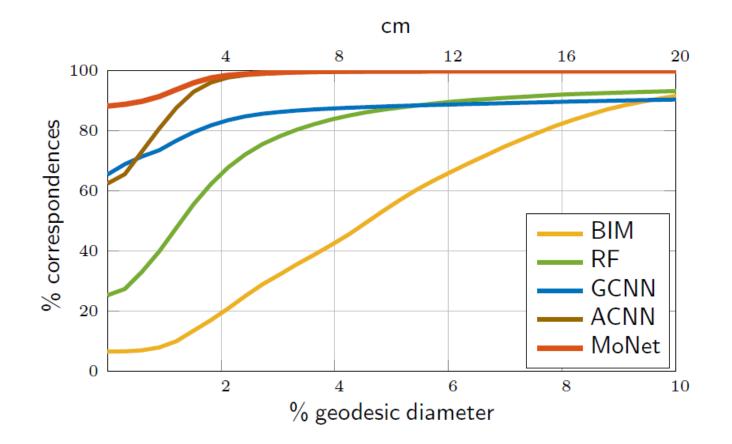


Pointwise correspondence error = geodesic distance from the groundtruth

$$\epsilon_i = d_{\mathcal{Y}}(\pi_i^*, \pi_i)$$

Kim et al. 2011

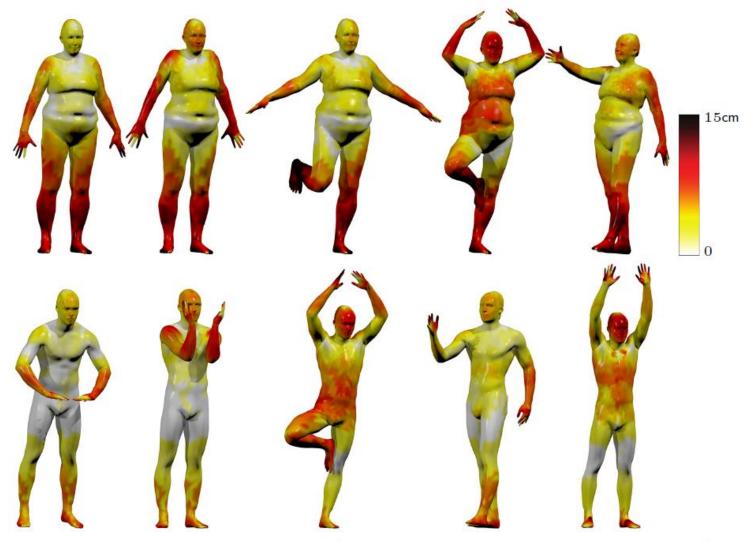
Correspondence quality comparison



Correspondence evaluated using asymmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Kim et al. 2011 (BIM); Rodolà et al. 2014 (RF); Boscaini et al. 2015 (ADD); Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

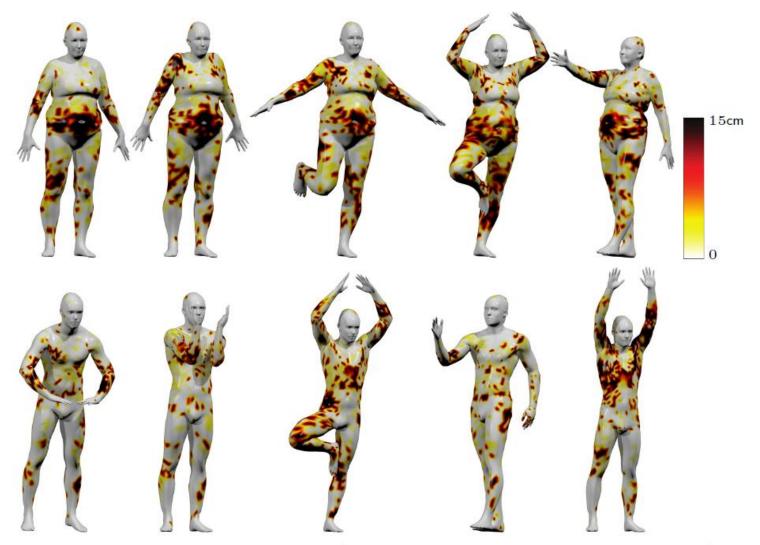
Shape correspondence error: Blended Intrinsic Map



Pointwise correspondence error (geodesic distance from groundtruth)

Kim, Lipman, Funkhouser 2011

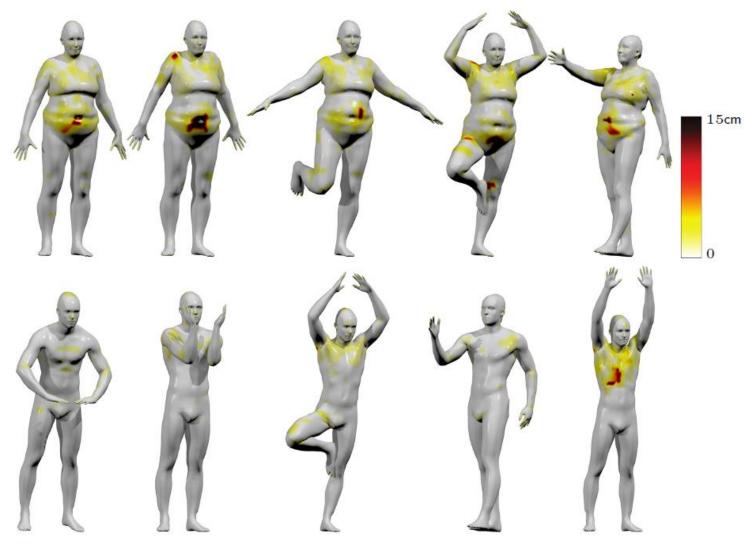
Shape correspondence error: Geodesic CNN



Pointwise correspondence error (geodesic distance from groundtruth)

Masci et al. 2015

Shape correspondence error: Anisotropic CNN



Pointwise correspondence error (geodesic distance from groundtruth)

Boscaini et al. 2016

Shape correspondence error: MoNet

Pointwise correspondence error (geodesic distance from groundtruth)

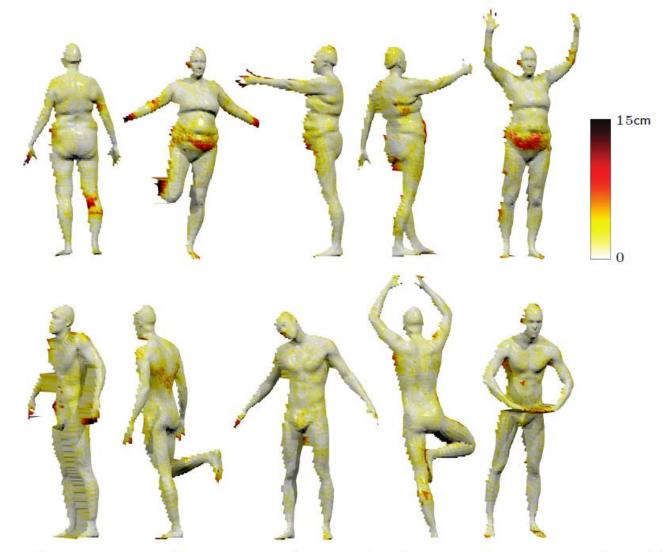
Monti et al. 2016

Shape correspondence visualization: MoNet

Texture transferred from reference to query shapes

Monti et al. 2016

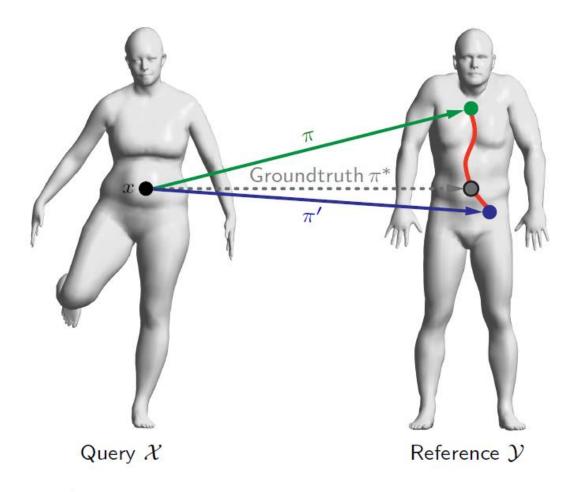
Correspondence on range images: MoNet



Pointwise correspondence error (geodesic distance from groundtruth)

Monti et al. 2016

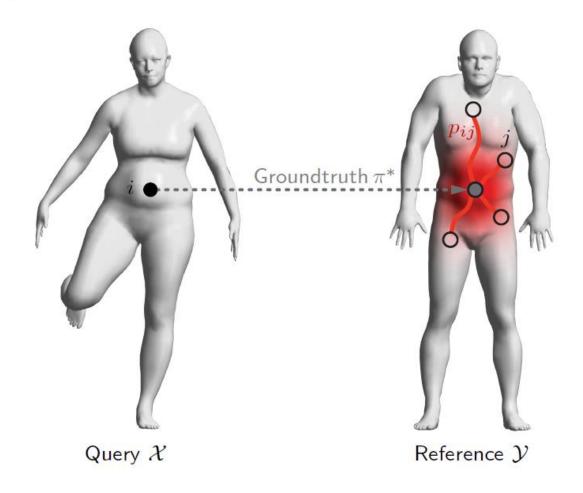
Correspondence as classification problem, revisited



Classification cost considers equally correspondences that deviate from the groundtruth (no matter how far)

Kim et al. 2011

Soft correspondence error

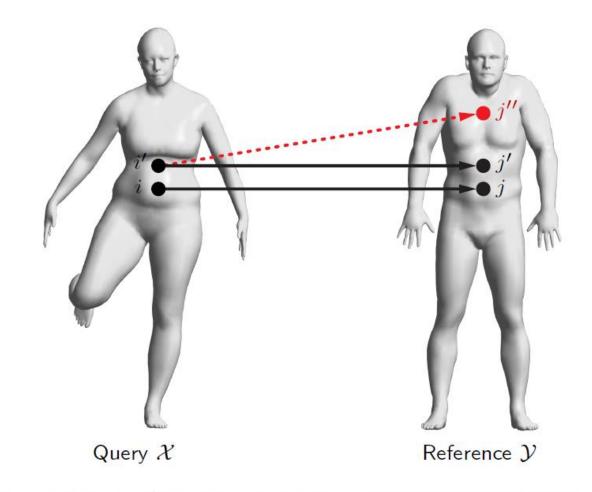


Soft correspondence error = probability-weighted geodesic distance from the groundtruth $\bar{\epsilon}_i = \sum_{j=1}^{m} p_{ij} dy(\pi^*_{j}, i)$

$$\bar{\epsilon}_i = \sum_{j=1} p_{ij} d\mathcal{Y}(\pi_i^*, j)$$

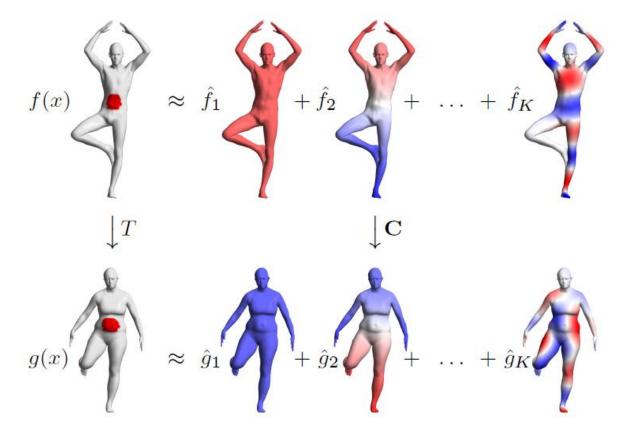
Kovnatsky et al. 2015; Litany et al. 2017

Pointwise vs Structured learning



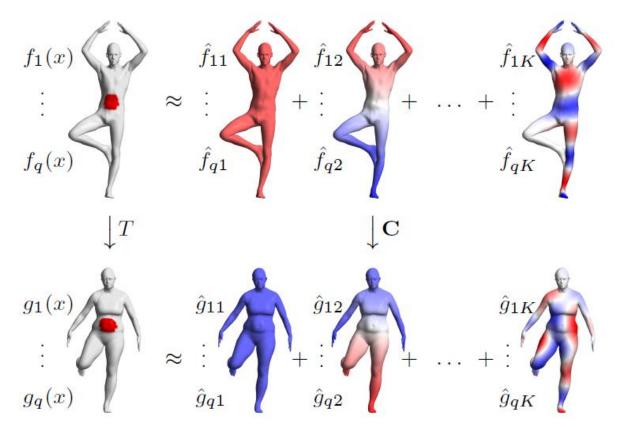
Nearby points i, i' on query shape are **not guaranteed** to map to nearby points j, j' on reference shape at **test time**

Litany et al. 2017



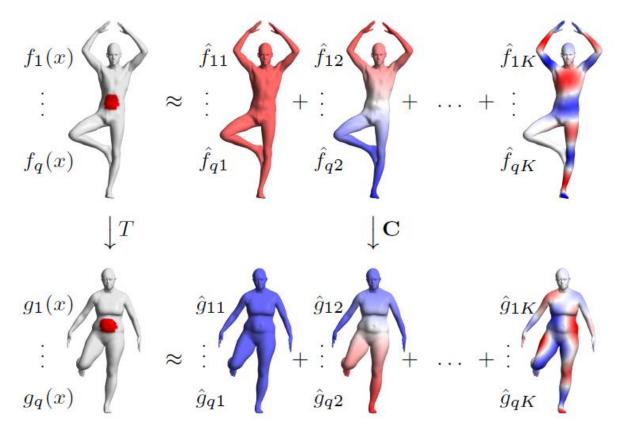
Functional correspondence $T={\sf linear}\ {\sf map}\ {\bf C}$ between Fourier coefficients

$$\hat{\mathbf{g}}^{\mathsf{T}} = \hat{\mathbf{f}}^{\mathsf{T}} \mathbf{C}$$



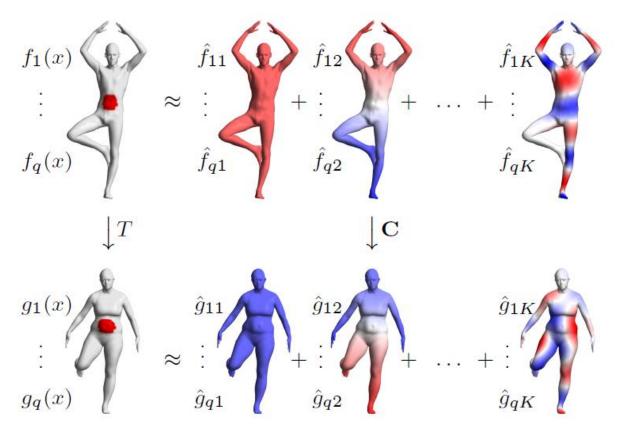
Recover correspondence from $q \ge k$ dimensional pointwise features

$$\begin{pmatrix} \hat{g}_{11} & \hat{g}_{12} & \dots & \hat{g}_{1K} \\ \vdots & \vdots & & \vdots \\ \hat{g}_{q1} & \hat{g}_{q2} & \dots & \hat{g}_{qK} \end{pmatrix} = \begin{pmatrix} \hat{f}_{11} & \hat{f}_{12} & \dots & \hat{f}_{1K} \\ \vdots & \vdots & & \vdots \\ \hat{f}_{q1} & \hat{f}_{q2} & \dots & \hat{f}_{qK} \end{pmatrix} \mathbf{C}$$
Ovsjanikov et al. 2012



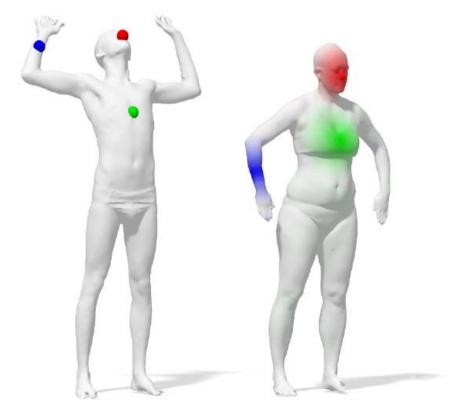
Recover correspondence from $q \ge k$ dimensional pointwise features

 $\hat{\mathbf{G}}=\hat{\mathbf{F}}\mathbf{C}$



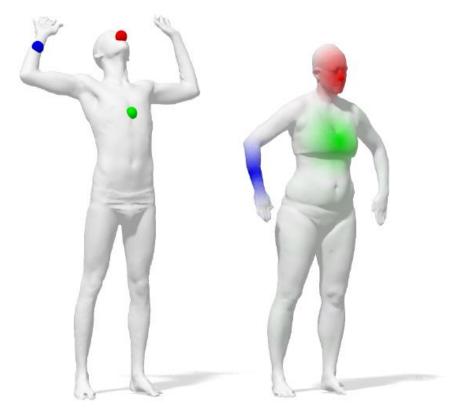
Recover correspondence from $q \ge k$ dimensional pointwise features

$$\mathbf{C}^* = \underset{\mathbf{C}}{\operatorname{argmin}} \|\hat{\mathbf{F}}\mathbf{C} - \hat{\mathbf{G}}\|_{\mathrm{F}}^2$$



Rank-K approximation of spatial correspondence

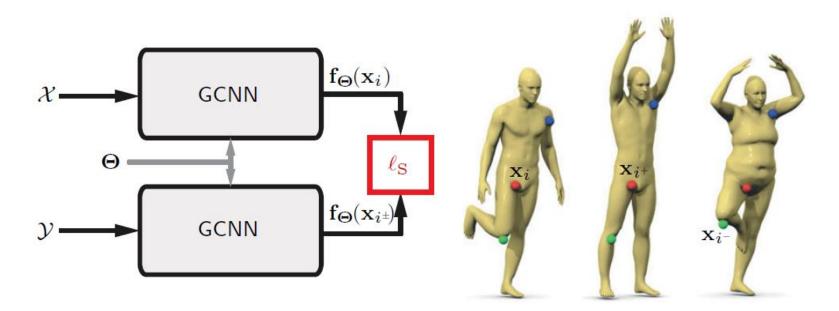
 $\mathbf{T}\approx \mathbf{\Psi}\mathbf{C}\mathbf{\Phi}^\top$



Probability p_{ij} of point j mapping to i

$$\mathbf{P} pprox |\Psi \mathbf{C} \mathbf{\Phi}^{ op}|_{\|\cdot\|}$$

Siamese metric learning



Training set Siamese net

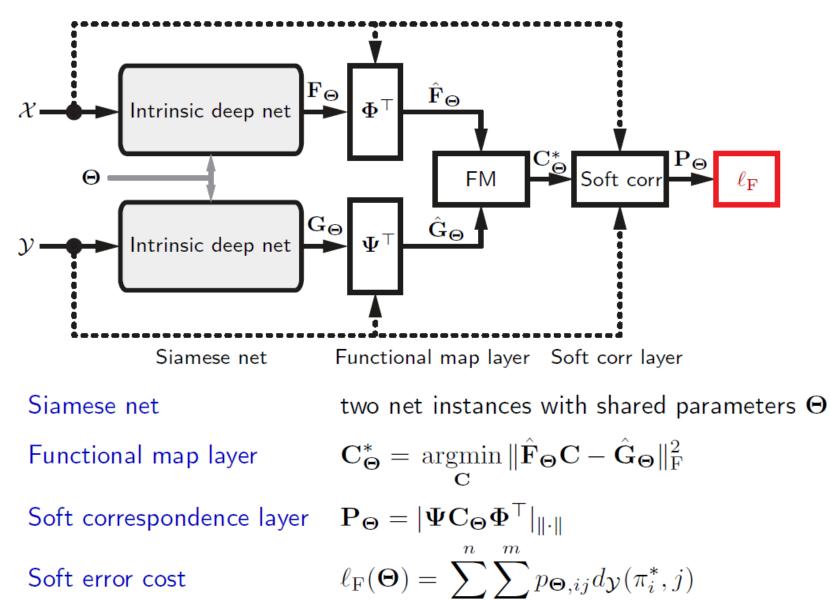
two net instances with shared parameters Θ Poitwise feature cost $\ell_{\mathrm{S}}(\boldsymbol{\Theta}) = \gamma \sum_{\mathbf{x}} \|\mathbf{f}_{\boldsymbol{\Theta}}(\mathbf{x}_{i}) - \mathbf{f}_{\boldsymbol{\Theta}}(\mathbf{x}_{i^{+}})\|_{2}^{2}$ $i.i^+$

positive (i, i^+) and negative (i, i^-) pairs of points

$$+ (1 - \gamma) \sum_{i,i^{-}} \left[\mu - \| \mathbf{f}_{\Theta}(\mathbf{x}_{i}) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^{-}}) \|_{2}^{2} \right]_{+}$$

Masci et al. 2015

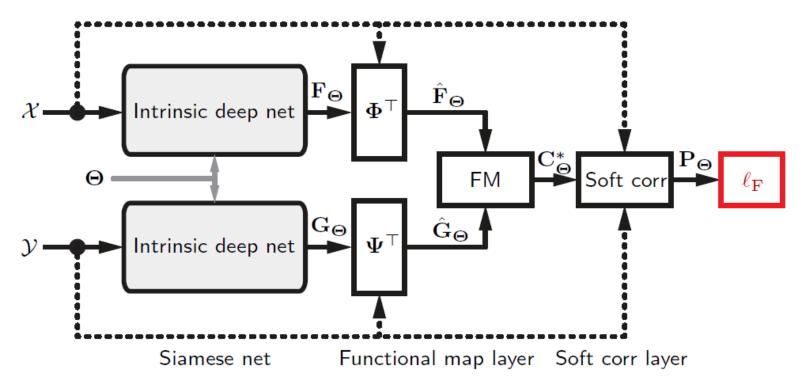
Structured correspondence with FMNet



i=1 i=1

Litany et al. 2017

Structured correspondence with FMNet



Siamese net

Functional map layer

Soft correspondence layer $\mathbf{P}_{\Theta} = |\Psi \mathbf{C}_{\Theta} \Phi^{\top}|_{\|\cdot\|}$

Soft error cost

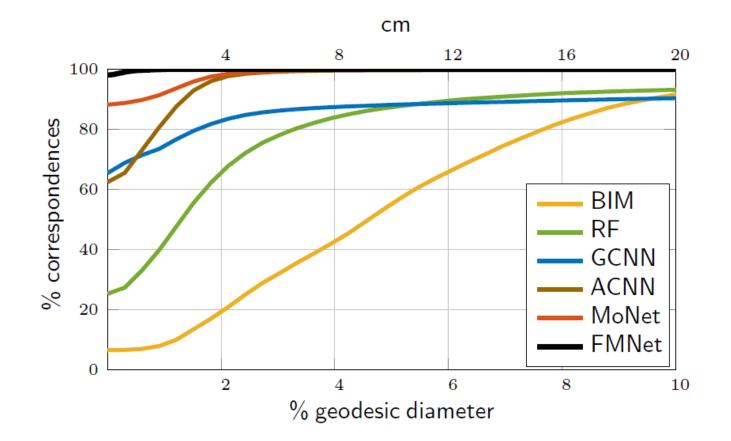
two net instances with shared parameters Θ

$$\mathbf{C}_{\Theta}^{*}=\hat{\mathbf{F}}_{\Theta}^{\dagger}\hat{\mathbf{G}}_{\Theta}$$

 $\ell_{\mathrm{F}}(\boldsymbol{\Theta}) = \|\mathbf{P}_{\boldsymbol{\Theta}} \circ \mathbf{D}_{\mathcal{V}}\|$

Litany et al. 2017

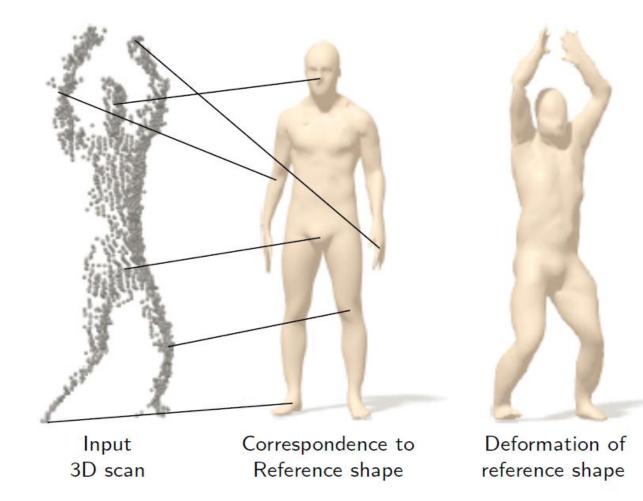
Correspondence quality comparison



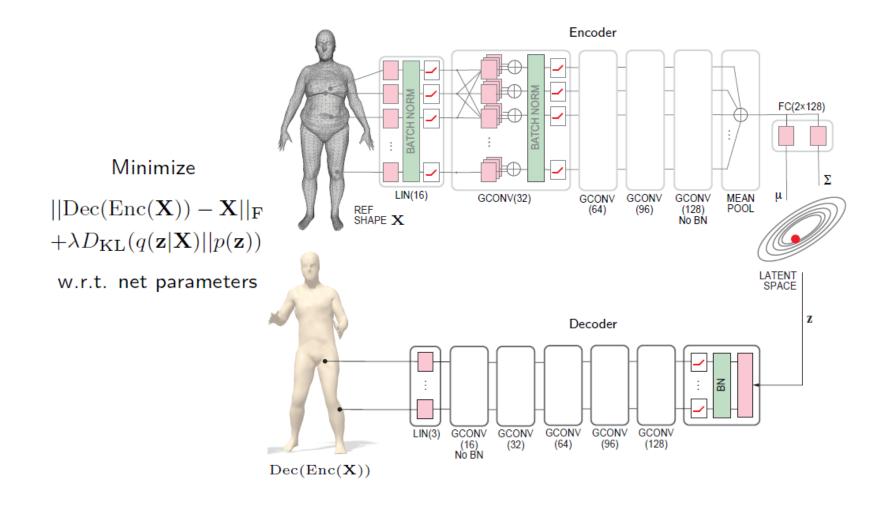
Correspondence evaluated using asymmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Kim et al. 2011 (BIM); Rodolà et al. 2014 (RF); Boscaini et al. 2015 (ADD); Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet); Litany et al. 2017 (FMNet); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

3D shape analysis and synthesis

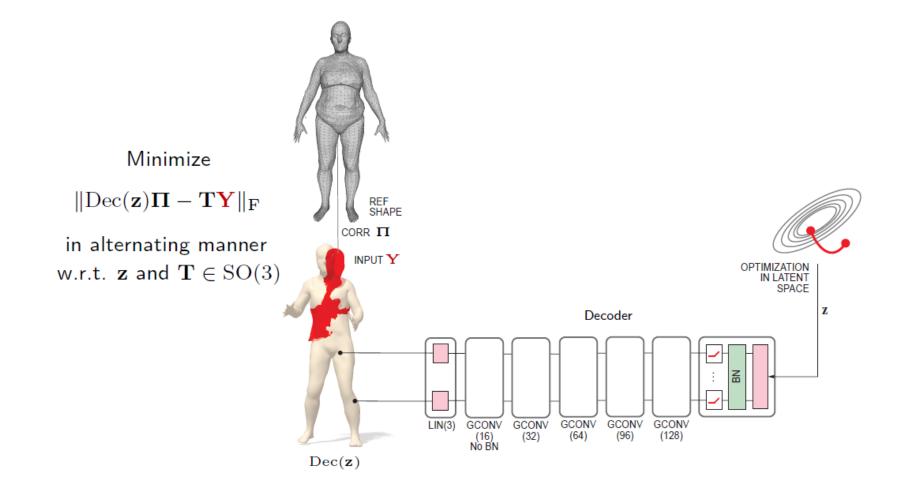


Intrinsic Variational Autoencoder (VAE)



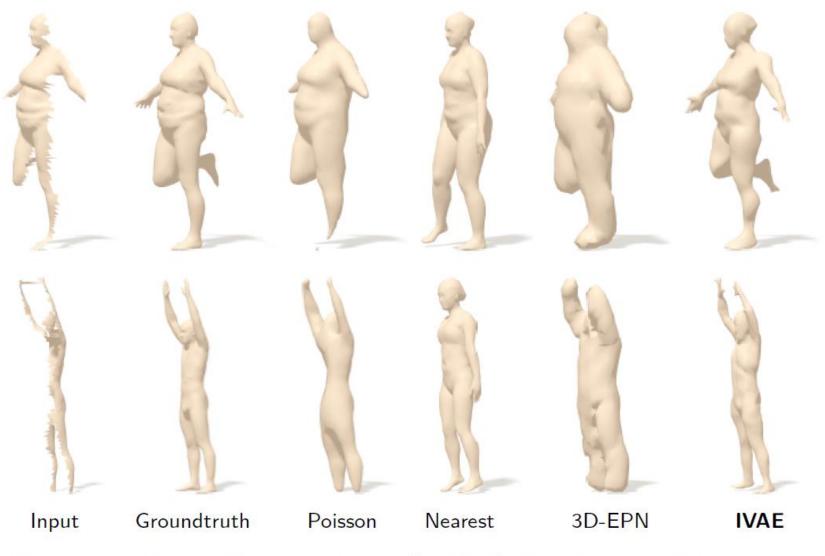
Litany et al. 2017; training on Dynamic FAUST (Bogo et al. 2017)

Shape completion



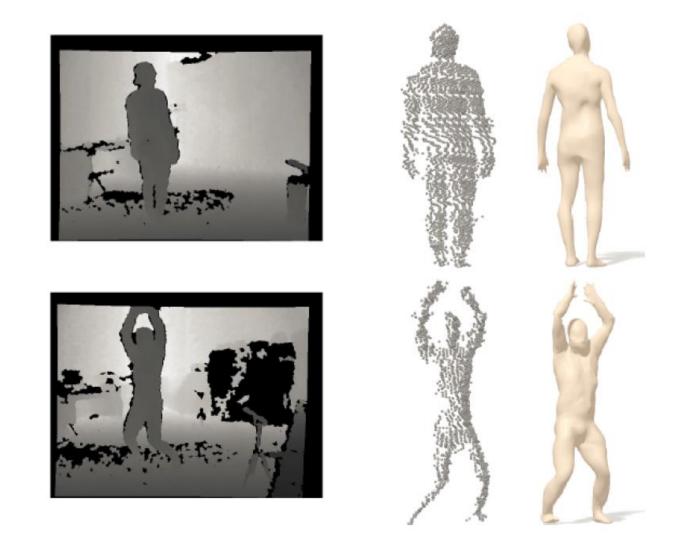
Litany et al. 2017

Shape completion comparison



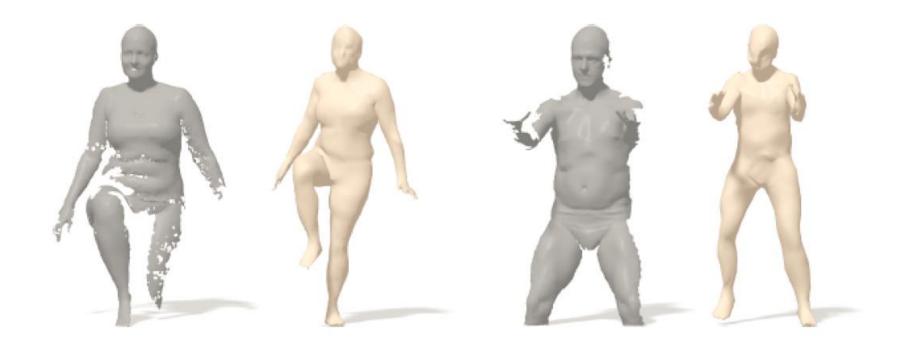
Methods: Litany et al. 2017; Dai et al. 2016 (3D-EPN); Kazhdan et al. 2013 (Poisson)

Shape completion examples



Litany et al. 2017; data: Ofli et al. 2014 (MHAD)

Shape completion examples



Litany et al. 2017; data: Bogo et al. 2014 (FAUST)