CS354 Computer Graphics Introduction

Qixing Huang Januray 17^{8h} 2017

CS 354– Computer Graphics

- Instructor: Qixing Huang
 - <u>huangqx@cs.utexas.edu</u>
 - Office: GDC 5.422
 - Office hours: Friday 3:00 pm 5:00 pm
- Teaching Assistant: Zaiwei Zhang
 - <u>zaiweizhang@utexas.edu</u>
 - Office Hours: TBD
- Location: GDC 1.304
- Lectures: MW 3:30 pm to 4:45 pm

What is Computer Graphics?

3D Modeling

Rendering

First 3D model (1972)

(45 year old 3d computer graphics pixar 1972)

Stanford Model Repository (1994-2000)

69451 triangles

Stanford Model Repository (1994-2000)

28,055,742 triangles 7,218,906 triangles 10,000,000 triangles

The Digital Michelangelo Project (2000)

Takeo Igarashi Hidehiko Tanaka University of Tokyo Satoshi Matsuoka Tokyo Institute of Technology

Teddy: A Sketching Interface for 3D Freeform Design

Princeton Shape Benchmark

1800 models in 90 categories

Shilane et al. 04

Large-scale online repositories

3D Warehouse

Yobi3D

3M models in more than 4K categories

Rendering

3D Modeling

Rendering

Image Formation

- In computer graphics, we form images which are generally two dimensional using a process analogous to how images are formed by physical imaging systems
 - Cameras
 - Microscopes
 - Telescopes
 - Human visual system

Elements of Image Formation

- Objects
- Viewer
- Light source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, the viewer, and the light source(s)

Light

- Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems
- Generally these are wavelengths in the range of about 350-750 nm
- Long wavelengths appear as reds and short wavelengths as blues

Ray Tracing and Geometric Optics

 One way to form an image is to follow rays of light from a point source finding which rays enter the lens of the camera. However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity

Rendering

- Spatial data structure
 - Cannot compute color and shade of each object independently
- Physics
 - The interactions between light and objects
- Probability
 - Integration as sampling

Two Other Topics

Computational Photography

[Kalantari et al. 15]

Animation/Simulation

[CMU Mocap]

Animation/Simulation

[Stanford, Fedikw Lab]

Sub-Fields of Computer Graphics

Modeling

• Rendering

Animation/Simulation

Computational Photography

Textbook

- Interactive Computer Graphics: A Top-Down Approach with WebGL – 7/E
 - By Edward Angel and Dave Shreiner
 - Pearson, 7th edition
- Currently only recommended
 - It costs \$147 list
 - Very helpful, but we don't require it
 - Older editions also useful

Other Useful Resources

OpenGL

- See links on course webpage

Supplemental books

Eric Lengyel Mathematics for 3D Game Programming and Computer Graphics

Real-Time Rendering Eric Haines, Tomas Akenine -Moller, Naty Hoffman

Why Computer Graphics

Movie, television

Product design

[Solidworks 2014]

Video Games

Training

GUIs

[Android 4.0]

Apps

[Audi]

2d and 3d printing

[HP]

Digital imaging, Computational photography

Graphics @Al

Computer Graphics/Machine Learning

A Probabilistic Model for Component-Based Shape Synthesis [Kalogerakis et al. 12]

Computer Graphics/Machine Learning

Graphics + Vision

[Su et al. 15]

SIGGRAPH ASIA' 2016

Graphics + Vision

Graphics + NLP

[Chang et al. 15]

Figure 2: Illustration of the text to 3D scene generation pipeline. The input is text describing a scene (left), which we parse into an abstract scene template representation capturing objects and relations (middle). The scene template is then used to generate a concrete 3D scene visualizing the input description (right). The 3D scene is constructed by retrieving and arranging appropriate 3D models.

What you will learn in this class?

• Fundamentals of Computer Graphics

Geometry/Geometric Representations
Which will be useful for Vision and Robotics

• System building

Fundamentals of computer graphics

- Transformations and viewing
- Rasterization and ray tracing
- Lighting and shading
- Graphics hardware technology
- Mathematics for computer graphics
- OpenGL programming
- Shader programming

Course Expectations

- You should
 - Attend regularly and keep up in class short quizzes
- Do the programming assingments
 - Nearly everything you learn in this course will come from these
 - You need to know C/C++
 - Use office hours if you need help
 - No cheating (see syllabus and UT Austin policy)
 - Let us have fun, and you are motivated to do the homeworks
- Tests and homework
 - Less fun, and useful, than programming projects
 - Good for covering math and concepts

Grading – (Subject to minor changes)

- Programming projects 60%
- Homework and quizzes 10% (if relevant, otherwise this 10% goes to programming projects)
- Exams 30%
 - 2 exams Middle semester and end of class 15% each
 - No final

Next Lecture

• Vector and affine math

- Assignments
 - Make sure your CS Unix account is active

• Thanks to Mark Kilgard, Ed Angel and Don Fussell for material in many of these slides

Questions?