CS354 Computer Graphics Surface Representation I

Qixing Huang February 26th 2018

What We Have Covered So Far

• Ray Tracing

• Shading

• Aliasing

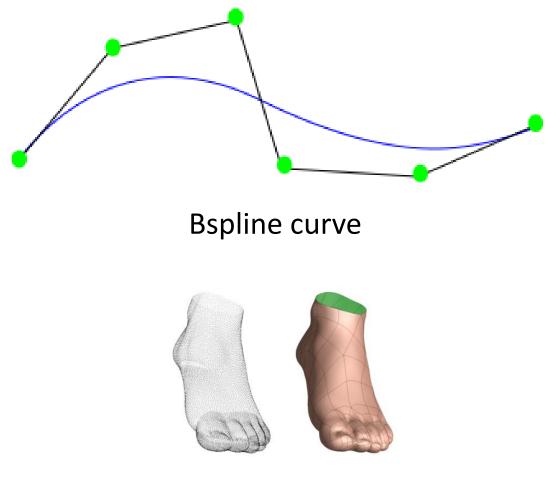
• OpenGL

Now We Move to the Second Topic -Modeling

- Parametric Surfaces
- Implicit Surfaces
- Triangular Meshes
- Part-Based Models

 Hierarchical Modeling

Parametric Surfaces



Eck and Hoppe' 96

Implicit Surfaces

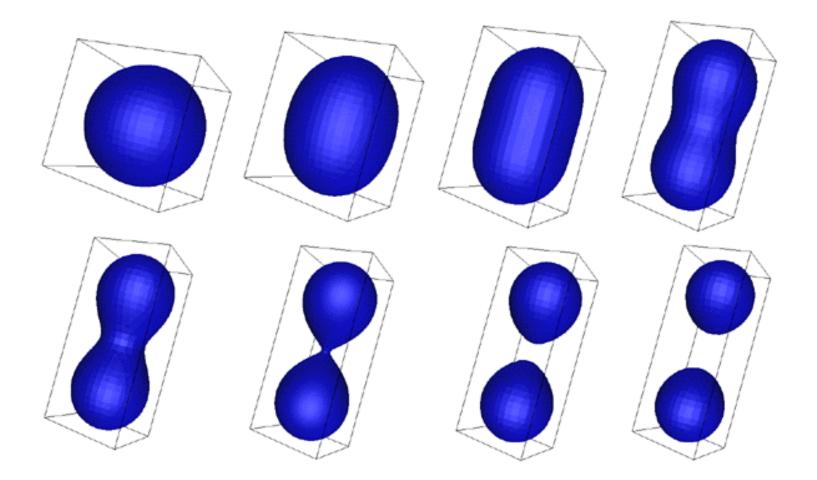
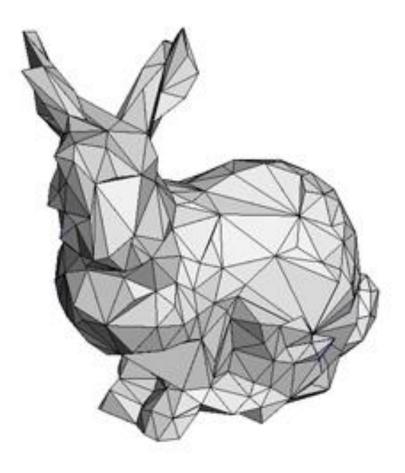


Image from http://paulbourke.net/geometry/implicitsurf/implicitsurf4.gif

Triangular Mesh



Part-based Models

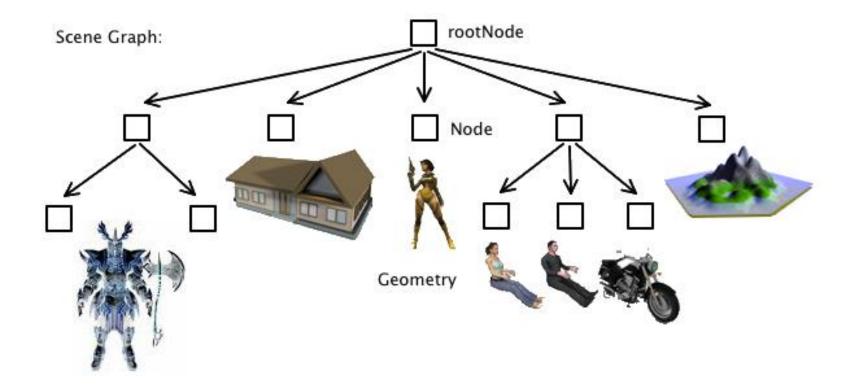


Image from https://gamedev.stackexchange.com/tags/scene-graph/info

What we need to know

• Pros and Cons of each representation

• The surface "space"

Normal computation

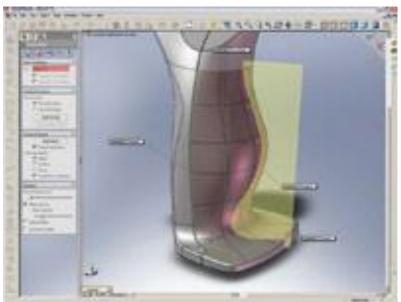
• Ray-surface intersection

Parametric Representation

Parametric Representation

 Widely used in Graphics/CAD/Industrial design

- What we will learn
 - Hermite
 - Bézier
 - Bspline
 - Many of their variants



Parametric surfaces

Hermite curves

A cubic polynomial

- Polynomial can be specified by the position of, and gradient at, each endpoint of curve
- Determine: x = X(t) in terms of x_0, x_0', x_1, x_1' Now:

X(t) =
$$a_3t^3 + a_2t^2 + a_1t + a_0$$

and X'(t) = $3a_3t^2 + 2a_2t + a_1$

Finding Hermite coefficients

Substituting for t at each endpoint:

$$x_0 = X(0) = a_0$$

 $x_1 = X(1) = a_3 + a_2 + a_1 + a_0$
 $x_1' = X'(0) = a_1$
 $x_1' = X'(1) = 3a_3 + 2a_2 + a_1$

And the solution is:

$$a_0 = x_0$$

 $a_1 = x_0'$
 $a_2 = -3x_0 - 2x_0' + 3x_1 - x_1'$
 $a_3 = 2x_0 + x_0' - 2x_1 + x_1'$

The Hermite matrix: M_H

• The resultant polynomial can be expressed in matrix form:

X(t) = t^TM_Hq (q is the control vector) $X(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 & 1 \\ -3 & -2 & 3 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{0}' \\ x_{1} \\ x_{1}' \end{bmatrix}$

We can now define a parametric polynomial for each coordinate required independently, ie. X(t), Y(t) and Z(t)

Hermite Basis (Blending) Functions

$$X(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 & 1 \\ -3 & -2 & 3 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{0}' \\ x_{1} \\ x_{1}' \end{bmatrix}$$
$$= \underbrace{(2t^{3} - 3t^{2} + 1)x_{0}}_{=} + \underbrace{(t^{3} - 2t^{2} + t)x_{0}'}_{=} + \underbrace{(-2t^{3} + 3t^{2})x_{1}}_{=} + \underbrace{(t^{3} - t^{2})x_{1}'}_{=}$$

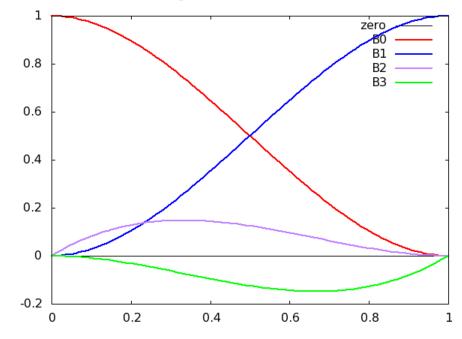
Hermite Basis (Blending) Functions

$$X(t) = \underbrace{(2t^3 - 3t^2 + 1)x_0}_{0} + \underbrace{(t^3 - 2t^2 + t)x_0}_{0} + \underbrace{(-2t^3 + 3t^2)x_1}_{1} + \underbrace{(t^3 - t^2)x_1}_{1} + \underbrace{(t^3$$

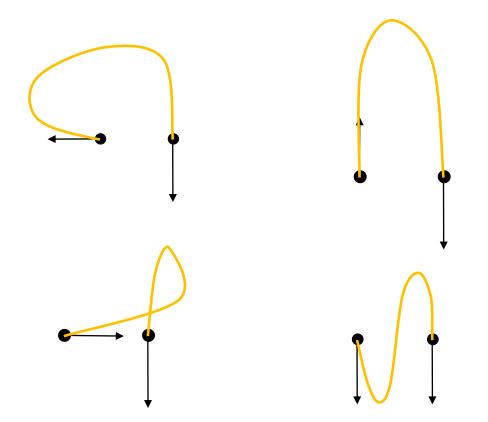
The plot shows the shape of the so-called *blending functions.*

Note that at each end only position is nonzero, so the curve must touch the endpoints

Blending Functions for Hermite Curves



Hermite curves can be hard to model



Note that the shape of the curve may not be intuitive from the boundary constraints

Bézier Curves

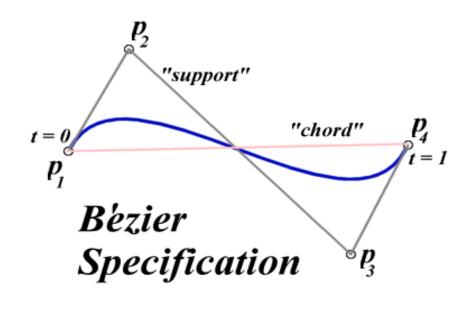
 Hermite cubic curves are mainly designed to be stitched into long curves

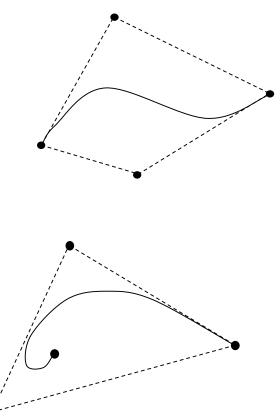
– Yet the shapes are hard to control

- More intuitive to only specify points.
- Pierre Bézier (an engineer at Renault) specified 2 endpoints and 2 additional control points to specify the gradient at the endpoints.
- Strongly related to the Hermite curve

Bézier Curves

 Note the Convex Hull has been shown as a dashed line – used as a bounding extent for intersection purposes





Bézier Matrix

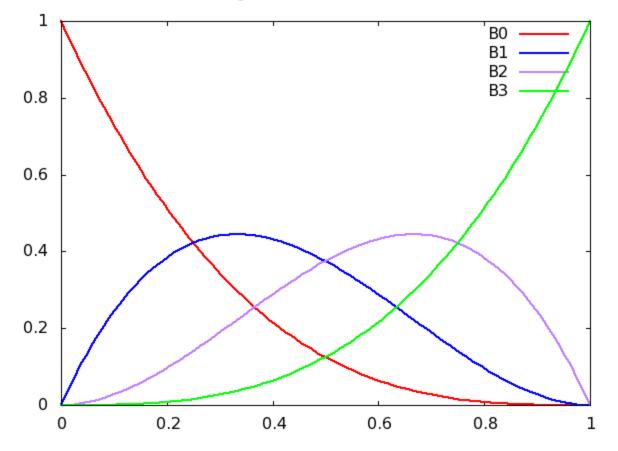
- The cubic form is the most popular
 X(t) = t^TM_Bq (M_B is the Bézier matrix)
- With *n=4* and *r=0,1,2,3* we get:

$$X(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

• Similarly for Y(t) and Z(t)

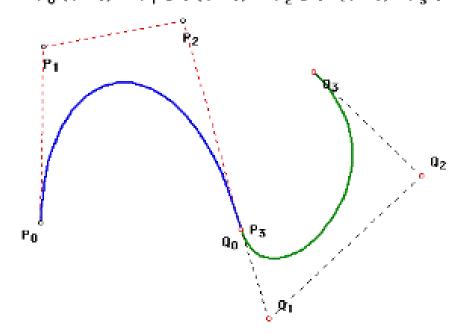
Bézier blending functions

Blending Functions for Bezier Curves



Joining Bezier Curves

- G continuity is provided at the endpoint when $P_2 P_3 = k (Q_1 Q_0)$
- if k=1, C continuity is obtained $P_0(1-t)^3 + P_1(3)t(1-t)^2 + P_2(3)t^2(1-t) + P_3(t^3)$



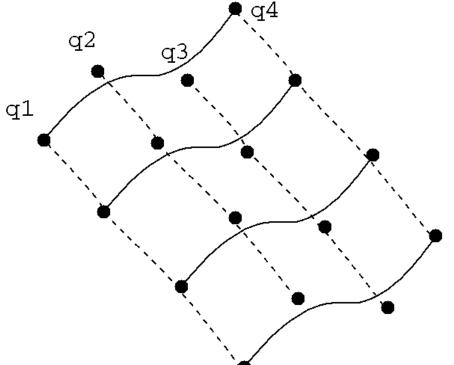
Bicubic patches

• The concept of parametric curves can be extended to surfaces

 The cubic parametric curve is in the form of Q(t)=s^TM q where q=(q1,q2,q3,q4) : qi control points, M is the basis matrix (Hermite or Bezier,...), s^T=(s³, s², s, 1)

Bicubic patches

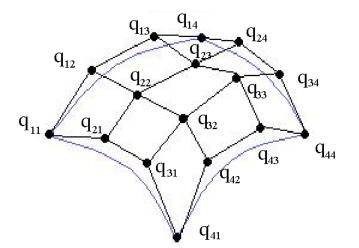
- Now we assume q_i to vary along a parameter s,
- $Q_i(s,t) = s^T M [q_1(t), q_2(t), q_3(t), q_4(t)]$
- $q_i(t)$ are themselves cubic curves, we can write them in the form ... q_2



Bézier example

• We compute (x,y,z) by

$$P(s,t) = \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_i(s) B_j(t)$$



$$x(s,t) = \begin{pmatrix} B_{1}(s) & B_{2}(s) & B_{3}(s) & B_{4}(s) \end{pmatrix} \begin{pmatrix} P_{11}^{x} & P_{12}^{x} & P_{13}^{x} & P_{14}^{x} \\ P_{21}^{x} & P_{22}^{x} & P_{23}^{x} & P_{24}^{x} \\ P_{31}^{x} & P_{32}^{x} & P_{33}^{x} & P_{34}^{x} \\ P_{41}^{x} & P_{42}^{x} & P_{43}^{x} & P_{44}^{x} \end{pmatrix} \begin{pmatrix} B_{1}(t) \\ B_{2}(t) \\ B_{3}(t) \\ B_{4}(t) \end{pmatrix}$$

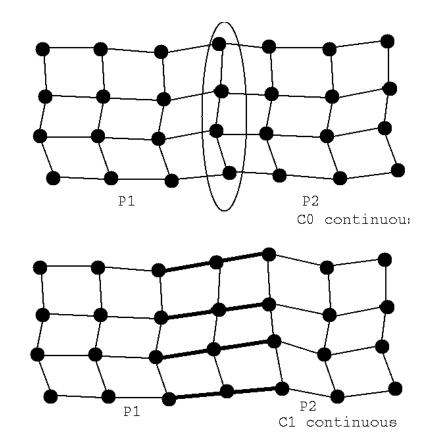
$$\mathbf{s}^{\mathsf{T}}\mathsf{M}$$

$$\mathsf{Mt}$$

Replace x by y and z

Continuity of Bicubic Patches

- Hermite and Bézier patches
 - C⁰ continuity when sharing boundary control points
 - C¹ continuity when sharing boundary control points and boundary edge vectors



Next Lecture

• Bspline

• Normal calculation

• Ray-surface intersection

Questions?