
Mesh and Mesh Simplification

Qixing Huang

Mar. 21st 2018

Slide Credit: Mirela Ben-Chen

Mesh DataStructures

Data Structures

• What should bestored?

– Geometry: 3D coordinates

– Attributes

• e.g. normal, color, texture coordinate

• Per vertex, per face, peredge

– Connectivity

• Adjacency relationships

Data Structures

• What should itsupport?

– Rendering

– Geometry queries

• What are the vertices offace #2?

• Is vertex A adjacent to vertex H ?

• Which faces are adjacent toface #1?

– Modifications

• Remove/add a vertex/face

• Vertex split, edgecollapse

Data Structures

• How good is adata structure?

– Time to construct (preprocessing)

– Time to answer aquery

– Time to perform anoperation

– Space complexity

– Redundancy

Mesh DataStructures

• FaceSet

• Shared Vertex

• HalfEdge

• Face BasedConnectivity

• Edge BasedConnectivity

• AdjacencyMatrix

• Corner Table

FaceSet

TRIANGLES

Vertex coord. Vertex coord. Vertex coord.

[10 2030] [40 520] [10 43]

.

.

.

• Simple

• STLFile

• No connectivity

• Redundancy

SharedVertex

TRIANGLES

Vertex Index Vertex Index Vertex Index

2 1 3

.

.

.

VERTICES

Vertex Coord.

[40 520]

[10 2030]

[10 43]

.

.

.
• Connectivity

• No neighborhood

SharedVertex

TRIANGLESv3
v6

2 3 1f1 v1

v2

f3
.

.

.
v3

f1 f2 f4v1

v4

VERTICES

[20 100]

[19 200]

[14 150]

.

.

.
v2

v5

SharedVertex

TRIANGLESv3
v6

2 3 1f1 v1

v2

f3
.

.

.
v3

f1 f2 f4v1

v4

VERTICES

[20 100]

[19 200]

[14 150]

.

.

.
v2

v5

• What are the vertices of facef1?

– O(1) – first triplet from face list

SharedVertex

TRIANGLESv3
v6

2 3 1f1 v1

v2

f3
.

.

.
v3

f1 f2 f4v1

v4

VERTICES

[20 100]

[19 200]

[14 150]

.

.

.
v2

v5

• Are vertices v1 and v5adjacent?

– Requires a full pass over allfaces

Half Edge DataStructure

• Vertex stores

– Position

– 1 outgoinghalfedge

outgoing halfedge

vertex

Half Edge DataStructure

• Halfedgestores

– 1 origin vertexindex

– 1 incident faceindex

– next, prev, twin halfedge indices

halfedge

twin

origin vertex next

Half Edge DataStructure

• Facestores

– 1 adjacent halfedgeindex

adjacenthalfedge

face

Half Edge DataStructure

• NeighborhoodTraversal
a) b)

c) d)

Face BasedConnectivity

• Vertex:
– position

– 1 adjacent faceindex

• Face:
– 3 vertex indices

– 3 neighboring faceindices

• No (explicit) edgeinformation

Edge BasedConnectivity

• Vertex
– position

– 1 adjacent edgeindex

• Edge
– 2 vertex indices

– 2 neighboring faceindices

– 4 edges

• Face
– 1 edgeindex

• No edge orientationinformation

AdjacencyMatrix

v3
v6

f3

f1 f2 f4v1

v4

A=

v1 v2 v3 v4 v5 v6

v1 1 1

v2 1 1 1

v3 1 1 1 1

v4 1 1 1 1

v5 1 1

v6 1 1 1v2

v5

• Adjacency Matrix“A”

• If there is an edge between vi& vjthen Aij=
1

AdjacencyMatrix

• Symmetric for undirected simplegraphs

• (An)ij= # paths of length n from vito vj

• Pros:

Can represent non‐manifoldmeshes

• Cons:

– No connection between a vertex and its

adjacent faces

CornerTable

f

• Corner is a vertexwith one of its indicent

triangles
v6v3

c3

c9

c4

c7

c12

f1 f2

3

f4v1

v

c1 c6 c10

c8

v2

v4

v5

c2
c5 c11

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

Corner – c

f3
c

c

c
3 c4

9
c7

c12

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

Corner – c
Triangle – c.t f3

c

c

c
3 c4

9
c7

c12

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

Corner – c
Triangle – c.t
Vertex – c.v

f3
c

c

c
3 c4

9
c7

c12

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

f3
c

c

c
3 c4

9
c7

c12
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

f3
c

c

c
3c4

9
c7

c12
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n
Previous corner – c.p (== c.n.n)

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

f3
c

c

c
3 c4

9
c7

c12
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n
Previous corner – c.p (== c.n.n)
Corner opposite c – c.o

f1 T f4v1

v4

c1

c2
c5

c6 c10

8

c11

E

Edge E opposite c not incident onc.v
Triangle T adjacent to c.t acrossE
c.o.v vertex of T that is not incident onE

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

f3
c

c

c
3 c4

9
c7

c12
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n
Previous corner – c.p (== c.n.n)
Corner opposite c – c.o

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11Edge E opposite c not incident onc.v
Triangle T adjacent to c.t acrossE
c.o.v vertex of T that is not incident onE

Rightcorner– c.r– corneroppositec.n(==c.n.o)

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles v3
v6

f3
c

c

c
3 c4

9
c7

c12
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n
Previous corner – c.p (== c.n.n)
Corner opposite c – c.o

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

8

c11Edge E opposite c not incident onc.v
Triangle T adjacent to c.t acrossE
c.o.v vertex of T that is not incident onE

Rightcorner– c.r– corneroppositec.n(==c.n.o)
Left corner – c.l (== c.p.o== c.n.n.o)

v2

v5

CornerTable

• Corner is a vertexwith one of its indicent

triangles
Corner – c
Triangle – c.t
Vertex – c.v
Next corner in c.t (ccw) – c.n
Previous corner – c.p (== c.n.n)
Corner opposite c – c.o

Edge E opposite c not incident onc.v
Triangle T adjacent to c.t acrossE
c.o.v vertex of T that is not incident on E

Rightcorner– c.r– corneroppositec.n(==c.n.o)
Left corner – c.l (== c.p.o== c.n.n.o)

CornerTable

• Corner is a vertexwith one of its indicent

triangles

f3

v6v3

c3

c9

c4

c7

c12

f1 f2 f4v1

v4

c1 c6 c10

c8

corner c.v c.t c.n c.p c.o c.r c.l

c1 v1 f1 c2 c3 c6

c2 v2 f1 c3 c1 c6

c3 v3 f1 c1 c2 c6

c4 v3 f2 c5 c6 c7 c1

c5 v2 f2 c6 c4 c7 c1

c6 v4 f2 c4 c5 c1 c7v2

v5

c2
c5 c11

CornerTable

• Store:

– Corner table

– For each vertex – a list of all its corners

• Corner number j*3‐2, j*3‐1 and j*3 match

face number j

CornerTable

f

• What are the vertices offace #3?

– Check c.v of corners 9, 8,7

v6v3

c3

c9

c4

c7

c12

f1 f2

3

f4v1
c1 c6 c10

c8

v2

v4

v5

c2
c5 c11

CornerTable

• Are vertices 2 and 6adjacent?

– Scan all corners of vertex 2, check if c.p.vor
c.n.v are 6

f

v6v3

c3

c9

c4

c7

c12

f1 f2

3

f4v1
c1 c6 c10

c8

v2

v4

v5

c2
c5 c11

CornerTable

f

• Which faces are adjacent to vertex3?

– Check c.t of all corners ofvertex 3

v6v3

c3

c9

c4

c7

c12

f1 f2

3

f4v1
c1 c6 c10

c8

v2

v4

v5

c2
c5 c11

CornerTable

• One ring neighbors of vertexv4?
– Get the corners c6 c8 c10 of thisvertex

– Go to ci.n.v and ci.p.v for i = 6, 8, 10.

– Remove duplicates

v6

f3

v3

c3

c9

c4

c7

c12

f1 f2 f4v1

v4

c1

c2
c5

c6 c10

c8

c11

v2

v5

CornerTable

• Pros:

– All queries in O(1)time

– Most operations areO(1)

– Convenient for rendering

• Cons:

– Only triangular, manifold meshes

– Redundancy

Multiple Simplification

Applications

• Oversampled 3D scan data

~150k triangles ~80k triangles

Applications

• Overtessellation: E.g. iso-surface extraction

Applications

• Multi-resolution hierarchies for

– efficient geometry processing

– level-of-detail (LOD) rendering

Applications

• Adaptation to hardware capabilities

Size-Quality Tradeoff

error

size

Problem Statement

• Given: M = (V,F)

• Find: M’ = (V’,F’) such that

– |V’| = n < |V| and d(M,M’) is minimal, or

– d(M,M’) < eps and |V’| is minimal

• Respect additional fairness criteria
– Normal deviation, triangle shape, scalar attributes, etc.

Mesh Decimation Methods

• Vertex clustering

• Incremental decimation

• Remeshing

Vertex Clustering

• Cluster Generation

• Computing a representative

• Mesh generation

• Topology changes

Vertex Clustering

• Cluster Generation

– Uniform 3D grid

– Map vertices to cluster cells

• Computing a representative

• Mesh generation

• Topology changes

Vertex Clustering

• Cluster Generation

– Hierarchical approach

– Top-down or bottom-up

• Computing a representative

• Mesh generation

• Topology changes

Vertex Clustering

• Cluster Generation

• Computing a representative

– Average/median vertex position

– Error quadrics

• Mesh generation

• Topology changes

Computing a Representative

Average vertex position

Computing a Representative

Median vertex position

Computing a Representative

Error quadrics

Error Quadrics

• Patch is expected to be piecewise flat

• Minimize distance to neighboring triangles’
planes

Error Quadrics

• Squared distance of point p to plane q

Error Quadrics

• Sum distances to planes qi of vertex’

neighboring triangles

• Point p* that minimizes the error satisfies:

Comparison

Vertex Clustering

• Cluster Generation

• Computing a representative

• Mesh generation

– Clusters p<-> {p0,…, pn}, q<-> {q0,…, qm}

• Topology changes

Vertex Clustering

• Cluster Generation

• Computing a representative

• Mesh generation

– Clusters p<-> {p0,…, pn}, q<-> {q0,…, qm}

– Connect (p,q) if there was an edge (pi, qi)

• Topology changes

Vertex Clustering

• Cluster Generation

• Computing a representative

• Mesh generation

• Topology changes

– If different sheets pass
through one cell

– Can be non-manifold

Incremental Decimation

Incremental Decimation

Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

General Setup

• Repeat:

– Pick mesh region

– Apply decimation operator

• Until no further reduction possible

Greedy Optimization

• For each region
– evaluate quality after decimation

– enqeue(quality, region)

• Repeat:
– get best mesh region from queue

– apply decimation operator

– update queue

• Until no further reduction possible

Global Error Control

• For each region
– evaluate quality after decimation

– enqeue(quality, region)

• Repeat:
– get best mesh region from queue

– If error < eps
• Apply decimation operator

• Update queue

• Until no further reduction possible

Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

Decimation Operators

• What is a “region”?

• What are the DOF for re-triangulation?

• Classification
– Topology-changing vs. topology-preserving

– Subsampling vs. filtering

– Inverse operation -> progressive meshes [Hoppe
et al….]

Vertex Removal

Select a vertex to
be eliminated

Vertex Removal

Select all triangles
sharing this vertex

Vertex Removal

Remove the
selected triangles,
creating the hole

Vertex Removal

Fill the hole with
new triangles

Decimation Operators

• Remove vertex

• Re-triangulate hole
– Combinatorial degrees of freedom

Decimation Operators

• Merge two adjacent vertices

• Define new vertex position

– Continuous degrees of freedom

Decimation Operators

• Collapse edge into one end point

– Special case of vertex removal

– Special case of edge collapse

• No degrees of freedom

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

Local Error Metrics

• Local distance to mesh

– Compute average plane

– No comparison to original geometry

Global Error Metrics

• Error quadrics

– Squared distance to planes at vertex

– No bound on true error

Incremental Decimation

• General Setup

• Decimation operators

• Error metrics

• Fairness criteria

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Fairness Criteria

• Rate quality of decimation operation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– …

Comparison

• Vertex clustering

– fast, but difficult to control simplified mesh

– Topology changes, non-manifold meshes

– Global error bound, but often not close to optimum

• Incremental decimation with quadratic error metrics

– good trade-off between mesh quality and speed

– explicit control over mesh topology

– restricting normal deviation improves mesh quality

Remeshing

Remeshing

Given a 3D mesh, find a “better” discrete representation
of the underlying surface

What is a good mesh?

• Equal edge lengths

• Equilateral triangles

• Valence close to 6

What is a good mesh?

• Equal edge lengths

• Equilateral triangles

• Valence close to 6

• Uniform vs. adaptive
sampling

What is a good mesh?

• Equal edge lengths

• Equilateral triangles

• Valence close to 6

• Uniform vs. adaptive
sampling

• Feature preservation

What is a good mesh?

• Equal edge lengths

• Equilateral triangles

• Valence close to 6

• Uniform vs. adaptive
sampling

• Feature preservation

• Alignment to curvature
lines

• Isotropic vs. anisotropic

What is a good mesh?

• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive

sampling
• Feature preservation
• Alignment to curvature

lines
• Isotropic vs. anisotropic
• Triangles vs.

quadranges

