Slide Credit: Mirela Ben-Chen

Mesh and Mesh Simplification

Qixing Huang Mar. 21st 2018

Mesh DataStructures

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Attributes
 - e.g. normal, color, texture coordinate
 - Per vertex, per face, per edge
 - Connectivity
 - Adjacency relationships

Data Structures

- What should it support?
 - Rendering
 - Geometry queries
 - What are the vertices of face #2?
 - Is vertex A adjacent to vertex H?
 - Which faces are adjacent to face #1?
 - Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Data Structures

- How good is adata structure?
 - Time to construct (preprocessing)
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy

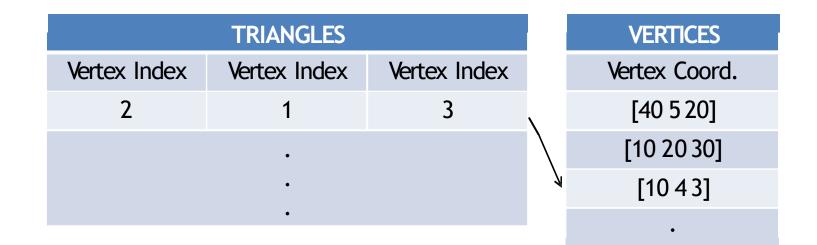
Mesh Data Structures

- Face Set
- Shared Vertex
- Half Edge
- Face Based Connectivity
- Edge Based Connectivity
- Adjacency Matrix
- Corner Table

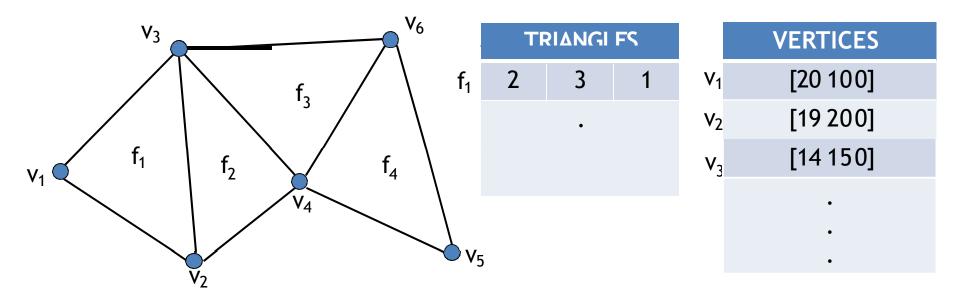
Face Set

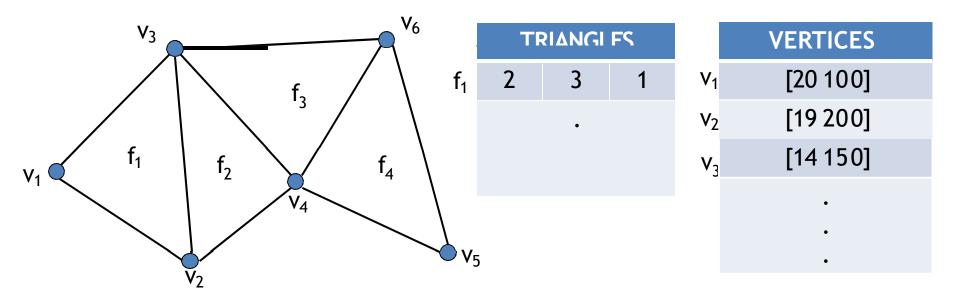
TRIANGLES									
Vertex coord.	Vertex coord.	Vertex coord.							
[10 20 30]	[40 5 20]	[10 4 3]							
	•								
	•								
	•								

- Simple
- STL File
- No connectivity
- Redundancy

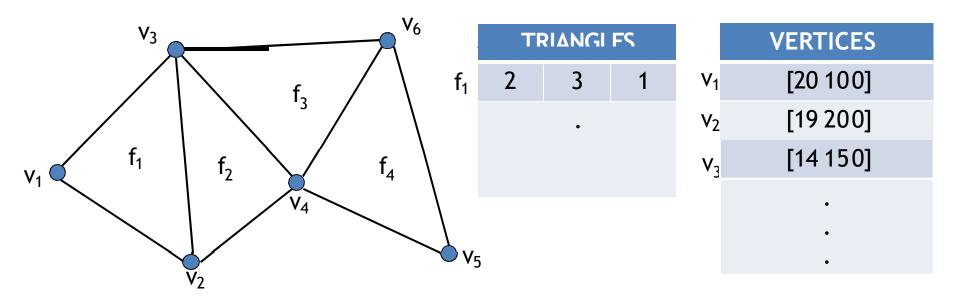


- Connectivity
- No neighborhood





- What are the vertices of face f₁?
 - O(1) first triplet from face list

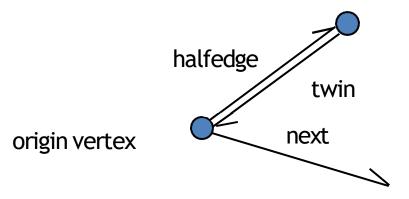


- Are vertices v₁ and v₅ adjacent?
 - Requires a full pass over all faces

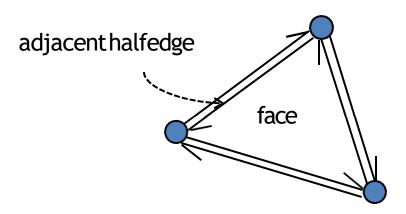
- Vertex stores
 - Position
 - 1 outgoing halfedge

outgoing halfedge ertex

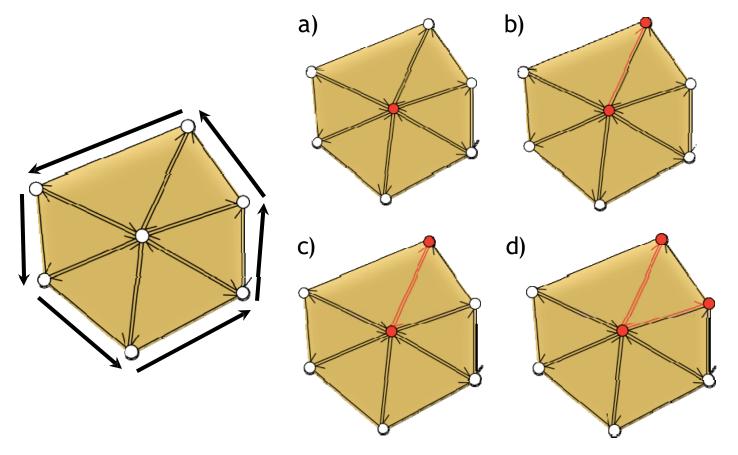
- Halfedge stores
 - 1 origin vertex index
 - 1 incident face index
 - next, prev, twin halfedge indices



- Face stores
 - 1 adjacent halfedge index

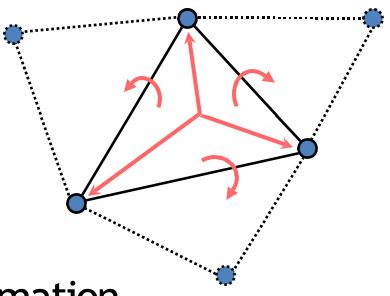


Neighborhood Traversal



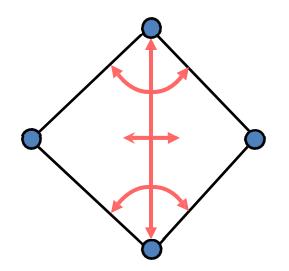
Face Based Connectivity

- Vertex:
 - position
 - 1 adjacent face index
- Face:
 - 3 vertex indices
 - 3 neighboring face indices
- No (explicit) edge information

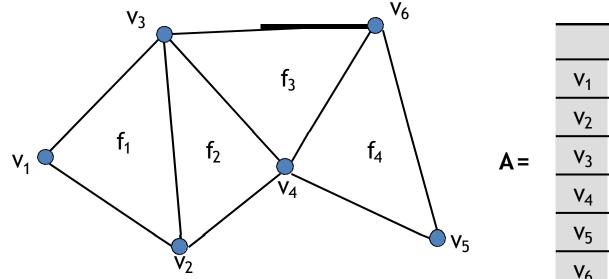


Edge Based Connectivity

- Vertex
 - position
 - 1 adjacent edge index
- Edge
 - 2 vertex indices
 - 2 neighboring face indices
 - 4 edges
- Face
 - 1 edge index
- No edge orientation information



Adjacency Matrix



		V ₁	V ₂	V ₃	V ₄	V ₅	V ₆
V	1		1	1			
V	2	1		1	1		
V	3	1	1		1		1
V.	4		1	1		1	1
V	5				1		1
V	6			1	1	1	

- Adjacency Matrix "A"
- If there is an edge between v_i & v_j then A_{ij}=

Adjacency Matrix

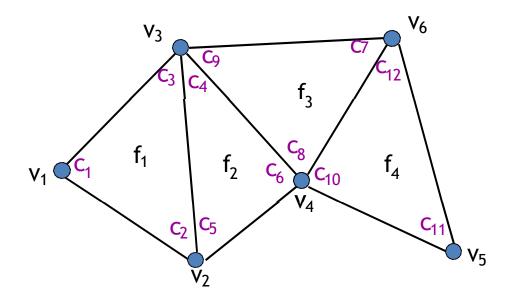
- Symmetric for undirected simple graphs
- (Aⁿ)_{ij}= # paths of length n from v_i to v_j
- Pros:

Can represent non-manifold meshes

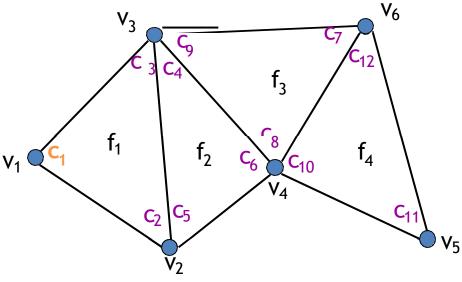
• Cons:

 No connection between a vertex and its adjacent faces

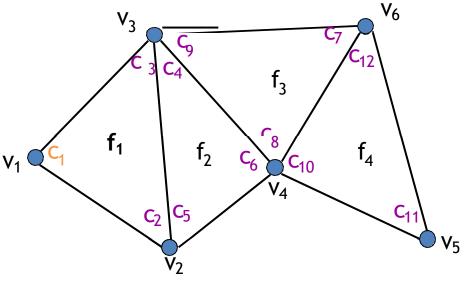
• Corner is a vertex with one of its indicent triangles



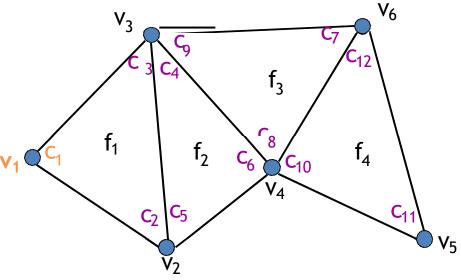
Corner is a vertex with one of its indicent triangles
 Corner - c



Corner is a vertex with one of its indicent triangles
 Corner - c
 Triangle - c.t



Corner is a vertex with one of its indicent triangles
 Corner - c
 Triangle - c.t
 Vertex - c.v



 Corner is a vertex with one of its indicent triangles V_6 V₃ L7 Corner - c Triangle - c.t f_3 Vertex- c.v **6** Next corner in c.t (ccw) - c.n f_1 f_4 f_2 **C**₁₀ V_1

V⊿

C₂ **C**₅

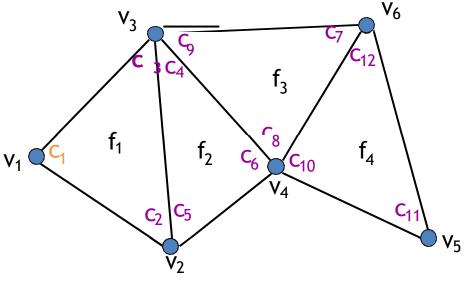
C₁,

V۶

Corner is a vertex with one of its indicent triangles
 Corner - c
 Triangle - c.t
 Vertex - c.v

Next corner in c.t (ccw) - c.n

Previous corner - c.p (== c.n.n)



 Corner is a vertex with one of its indicent triangles V_6 ٧_٦ Corner - c Triangle - c.t f_3 Vertex- c.v Next corner in c.t (ccw) - c.n E f₁ 8 f_4 **C**₁₀ Previous corner - c.p (== c.n.n) V₁ V⊿ Corner opposite c - c.o C_{11} Edge E opposite c not incident on c.v C_5 **C**₂ Triangle Tadjacent to c.t across E c.o.v vertex of Tthat is not incident on E

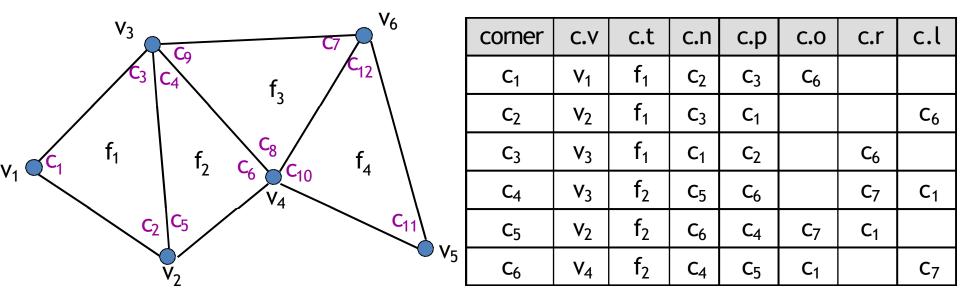
V۶

 Corner is a vertex with one of its indicent triangles V_6 ٧_٦ Corner - c Triangle - c.t f₃ Vertex- c.v **6**8 Next corner in c.t (ccw) - c.n f₁ f_4 f_2 **C**₁₀ Previous corner - c.p (== c.n.n) V₁ Corner opposite c - c.o C_{1} C₅ Edge E opposite c not incident on c.v **C**₂ Triangle Tadjacent to c.t across E 12 c.o.v vertex of Tthat is not incident on E Right corner - c.r - corner opposite c.n (== c.n.o)

 Corner is a vertex with one of its indicent triangles V_6 ٧_٦ Corner - c Triangle - c.t f_٦ Vertex-c.v Next corner in c.t (ccw) - c.n **6**8 f₁ f_2 **C**₁₀ Previous corner - c.p (== c.n.n) V_1 V⊿ Corner opposite c - c.o C_5 Edge E opposite c not incident on c.v **C**₂ Triangle Tadjacent to c.t across E c.o.v vertex of Tthat is not incident on E Right corner - c.r - corner opposite c.n (== c.n.o) Leftcorner - c.l (== c.p.o== c.n.n.o)

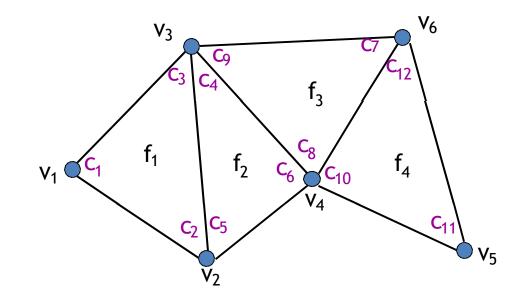
 Corner is a vertex with one of its indicent triangles Corner - c Triangle - c.t Vertex- c.v Next corner in c.t (ccw) - c.n Previous corner - c.p (== c.n.n) Corner opposite c - c.o Edge E opposite c not incident on c.v Triangle Tadjacent to c.t across E c.o.v vertex of Tthat is not incident on E Right corner - c.r - corner opposite c.n (== c.n.o) Left corner - c.l (== c.p.o== c.n.n.o)

• Corner is a vertex with one of its indicent triangles

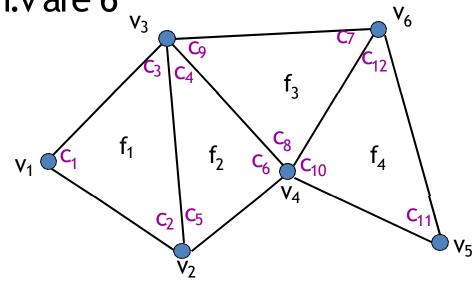


- Store:
 - Corner table
 - For each vertex a list of all its corners
- Corner number *j**3-2, *j**3-1 and *j**3 match face number *j*

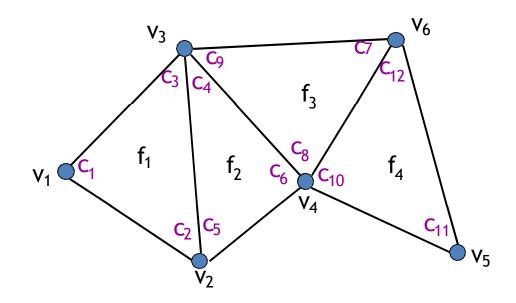
What are the vertices of face #3?
– Check c.v of corners 9, 8, 7



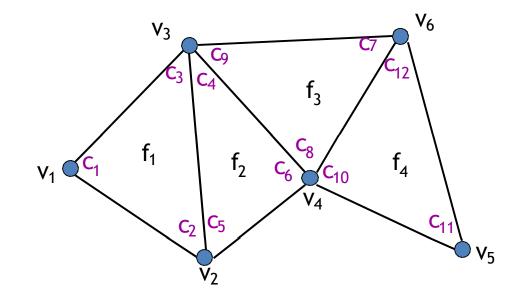
- Are vertices 2 and 6 adjacent?
 - Scan all corners of vertex 2, check if c.p.v or
 c.n.v are 6



Which faces are adjacent to vertex3?
 – Check c.t of all corners of vertex 3



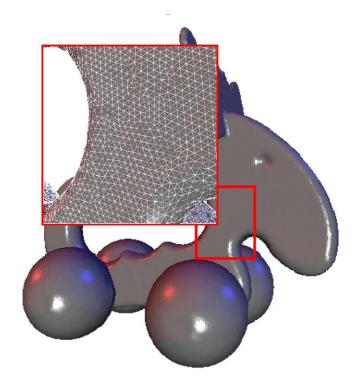
- One ring neighbors of vertexv₄?
 - Get the corners $c_6 c_8 c_{10}$ of this vertex
 - Go to c_i.n.v and c_i.p.v for i = 6, 8, 10.
 - Remove duplicates

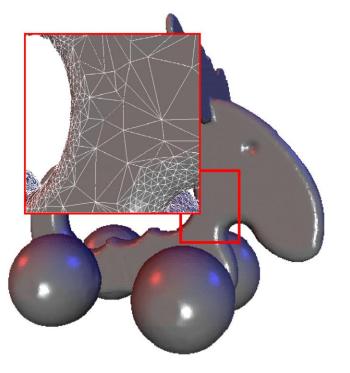


- Pros:
 - All queries in O(1) time
 - -Most operations are O(1)
 - Convenient for rendering
- Cons:
 - Only triangular, manifold meshes
 - Redundancy

Multiple Simplification

• Oversampled 3D scan data

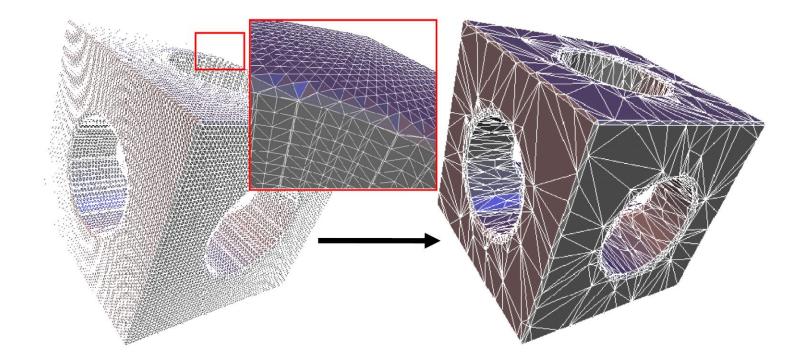




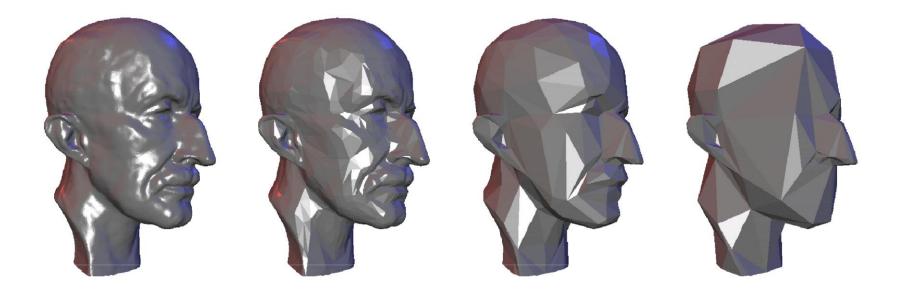
~80k triangles

~150k triangles

• Overtessellation: E.g. iso-surface extraction



- Multi-resolution hierarchies for
 - efficient geometry processing
 - level-of-detail (LOD) rendering

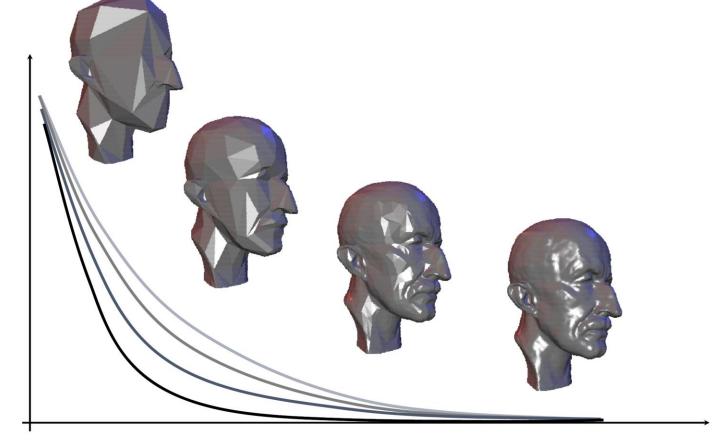


• Adaptation to hardware capabilities

1999

Size-Quality Tradeoff

error



size

Problem Statement

- Given: *M* = (*V*,*F*)
- Find: M' = (V', F') such that

-|V'| = n < |V| and d(M,M') is minimal, or

- d(M,M') < eps and |V'| is minimal

Respect additional fairness criteria

- Normal deviation, triangle shape, scalar attributes, etc.

Mesh Decimation Methods

• Vertex clustering

Incremental decimation

• Remeshing

Cluster Generation

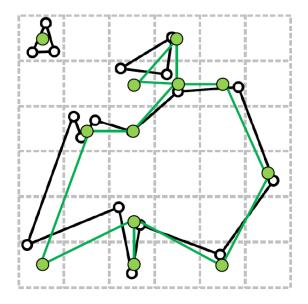
• Computing a representative

• Mesh generation

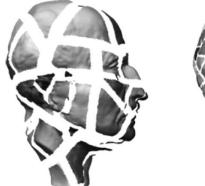
• Topology changes

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells

- Computing a representative
- Mesh generation
- Topology changes



- Cluster Generation
 - Hierarchical approach
 - Top-down or bottom-up

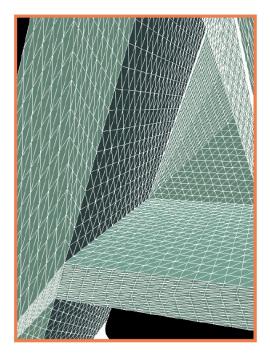


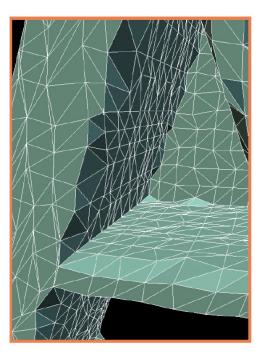
- Computing a representative
- Mesh generation
- Topology changes

Cluster Generation

- Computing a representative
 - Average/median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

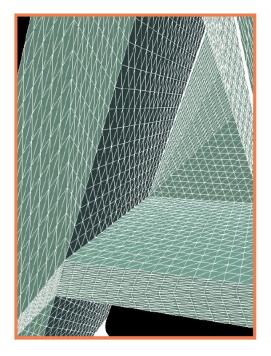
Computing a Representative

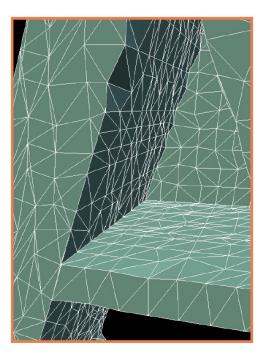




Average vertex position

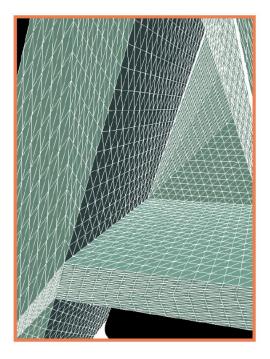
Computing a Representative

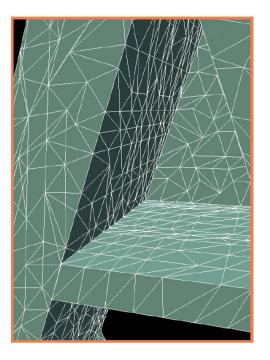




Median vertex position

Computing a Representative



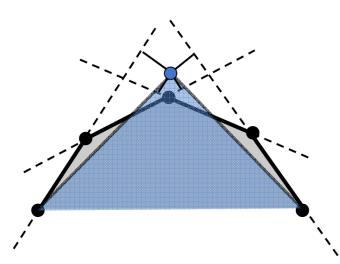


Error quadrics

Error Quadrics

• Patch is expected to be piecewise flat

 Minimize distance to neighboring triangles' planes



Error Quadrics

• Squared distance of point *p* to plane *q*

$$p = (x, y, z, 1)^{T}, \quad q = (a, b, c, d)^{T}$$
$$dist(q, p)^{2} = (q^{T}p)^{2} = p^{T}(qq^{T})p =: p^{T}Q_{q}p$$
$$Q_{q} = \begin{bmatrix} a^{2} & ab & ac & ad \\ ab & b^{2} & bc & bd \\ ac & bc & c^{2} & cd \\ ad & bd & cd & d^{2} \end{bmatrix}$$

Error Quadrics

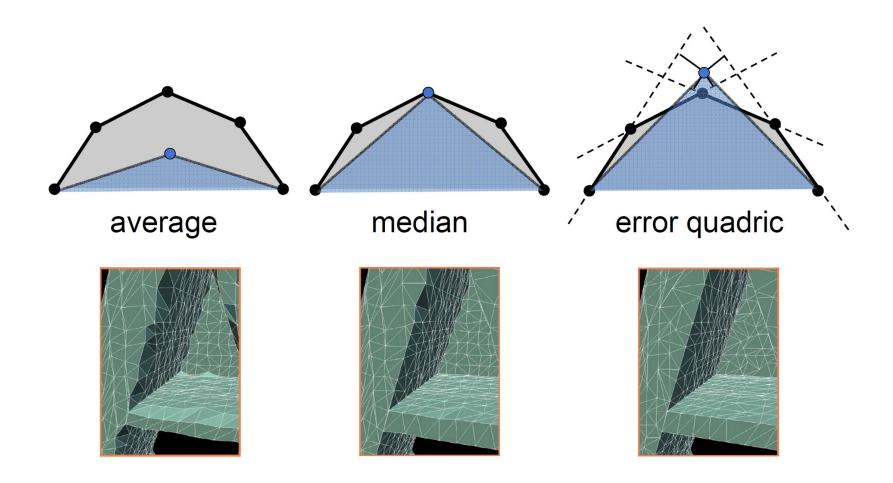
 Sum distances to planes q_i of vertex' neighboring triangles

$$\sum_{i} dist(q_i, p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}\right) p =: p^T Q_p p$$

• Point p* that minimizes the error satisfies:

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} p^* = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Comparison



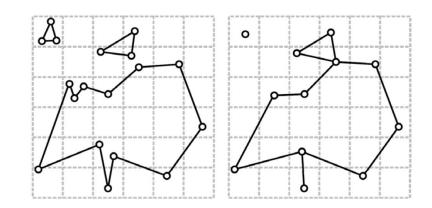
- Cluster Generation
- Computing a representative
- Mesh generation

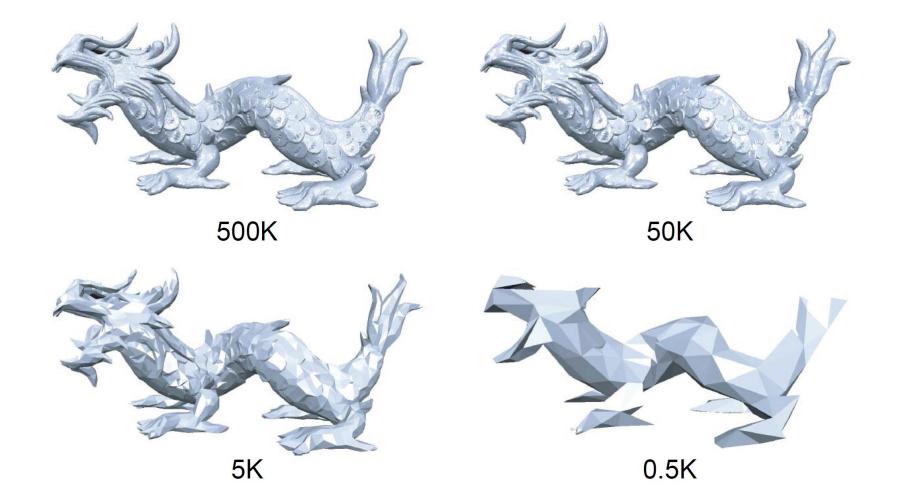
 Clusters p<-> {p₀,..., p_n}, q<-> {q₀,..., q_m}
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters p<-> { p_0 ,..., p_n }, q<-> { q_0 ,..., q_m }
 - Connect (p,q) if there was an edge (p_i, q_i)
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation

- Topology changes
 - If different sheets pass through one cell
 - Can be non-manifold





General Setup

• Decimation operators

• Error metrics

• Fairness criteria

General Setup

- Repeat:
 - Pick mesh region
 - Apply decimation operator
- Until no further reduction possible

Greedy Optimization

- For each region
 - evaluate quality after decimation
 - enqeue(quality, region)
- Repeat:
 - get best mesh region from queue
 - apply decimation operator
 - update queue
- Until no further reduction possible

Global Error Control

- For each region
 - evaluate quality after decimation
 - enqeue(quality, region)
- Repeat:
 - get best mesh region from queue
 - If error < eps</p>
 - Apply decimation operator
 - Update queue
- Until no further reduction possible

General Setup

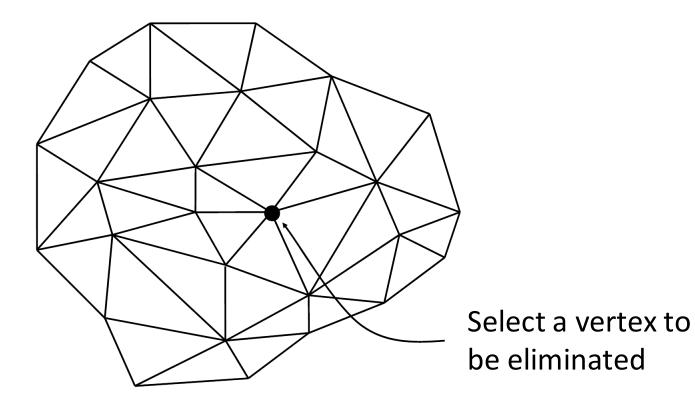
• Decimation operators

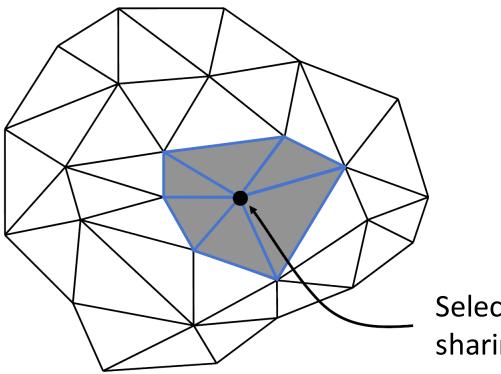
• Error metrics

• Fairness criteria

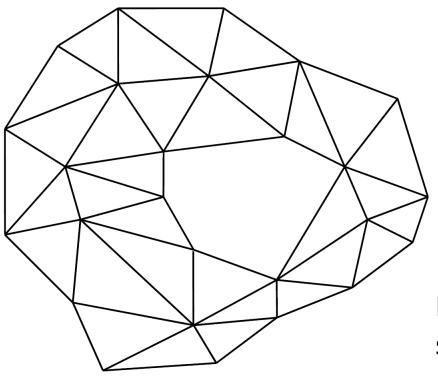
Decimation Operators

- What is a "region"?
- What are the DOF for re-triangulation?
- Classification
 - Topology-changing vs. topology-preserving
 - Subsampling vs. filtering
 - Inverse operation -> progressive meshes [Hoppe et al....]

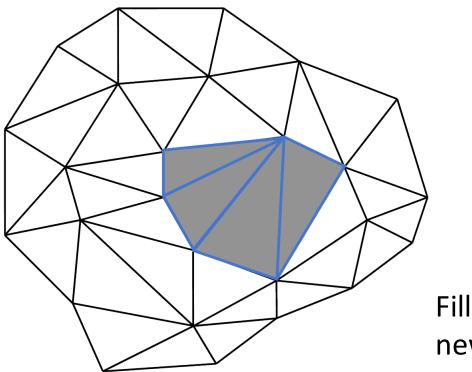




Select all triangles sharing this vertex

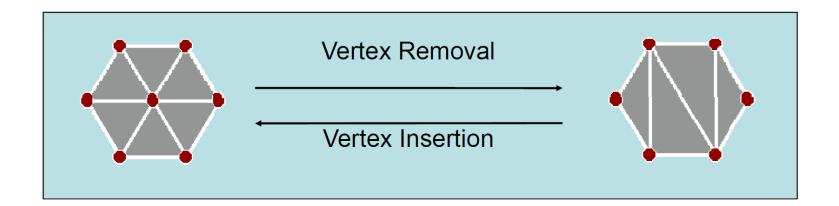


Remove the selected triangles, creating the hole



Fill the hole with new triangles

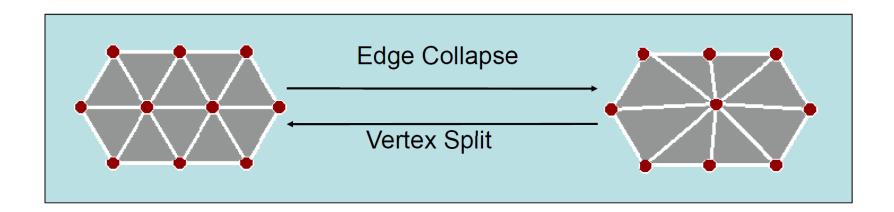
Decimation Operators



- Remove vertex
- Re-triangulate hole

 Combinatorial degrees of freedom

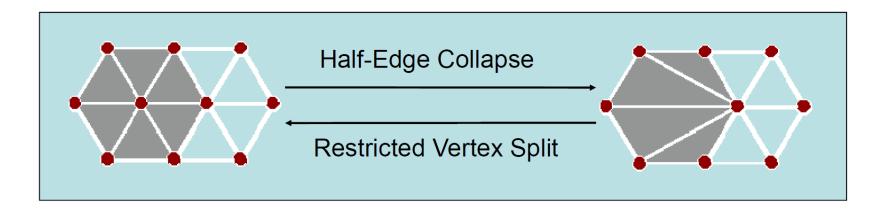
Decimation Operators



• Merge two adjacent vertices

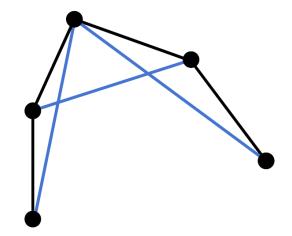
- Define new vertex position
 - Continuous degrees of freedom

Decimation Operators

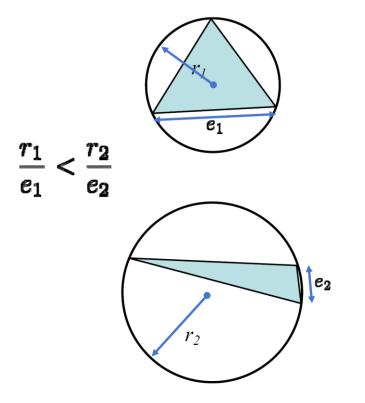


- Collapse edge into one end point
 - Special case of vertex removal
 - Special case of edge collapse
- No degrees of freedom

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



Incremental Decimation

General Setup

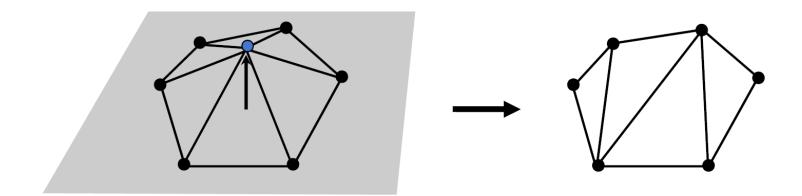
• Decimation operators

• Error metrics

• Fairness criteria

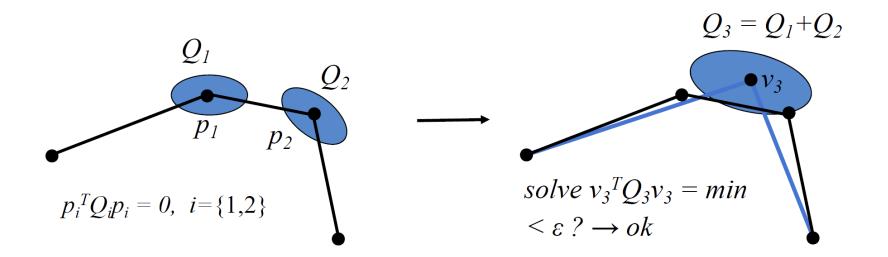
Local Error Metrics

- Local distance to mesh
 - Compute average plane
 - No comparison to *original* geometry



Global Error Metrics

- Error quadrics
 - Squared distance to planes at vertex
 - No bound on true error



Incremental Decimation

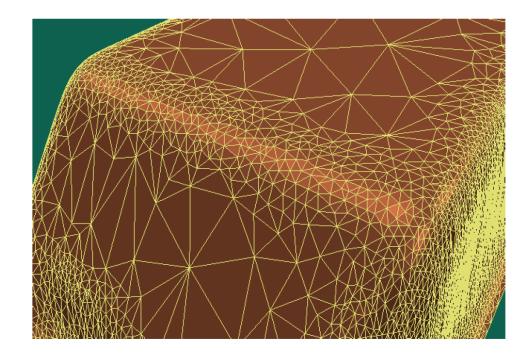
General Setup

• Decimation operators

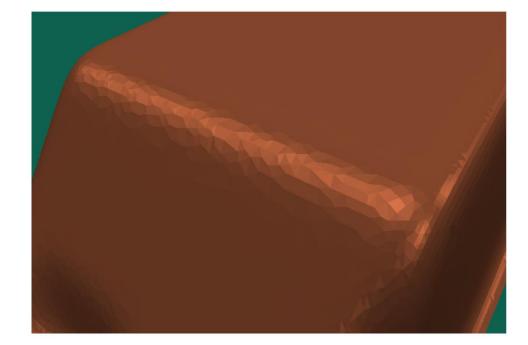
• Error metrics

• Fairness criteria

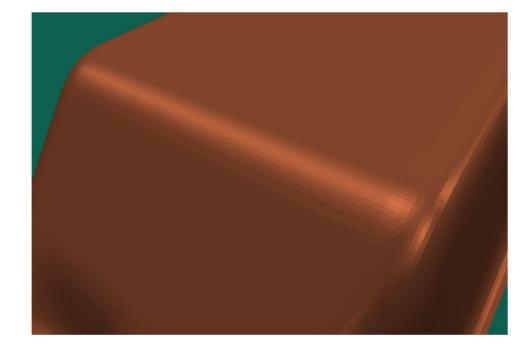
- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



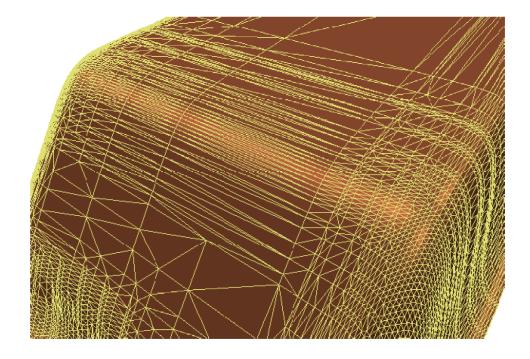
- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



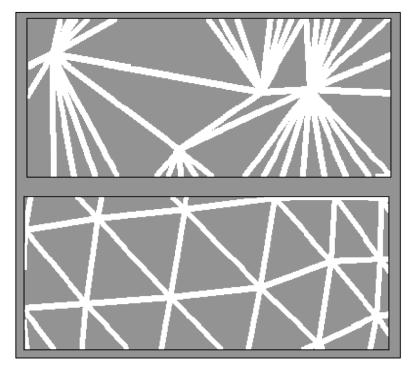
- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance



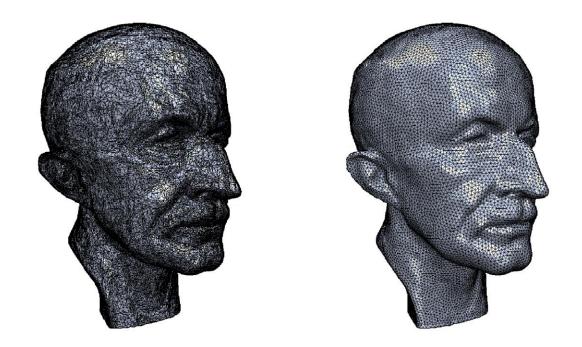
Comparison

- Vertex clustering
 - fast, but difficult to control simplified mesh
 - Topology changes, non-manifold meshes
 - Global error bound, but often not close to optimum
- Incremental decimation with quadratic error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality

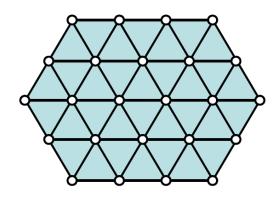
Remeshing

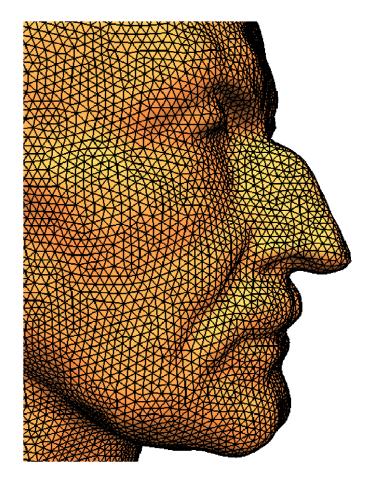
Remeshing

Given a 3D mesh, find a "better" discrete representation of the underlying surface

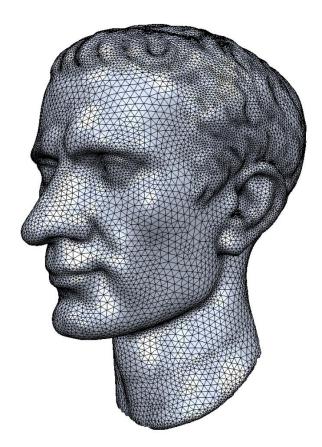


- Equal edge lengths
- Equilateral triangles
- Valence close to 6

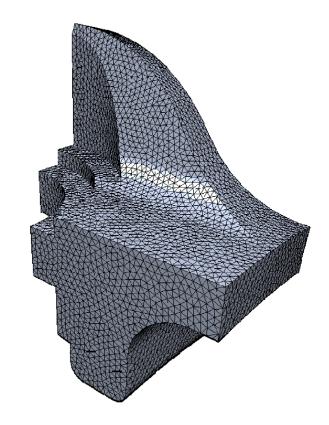




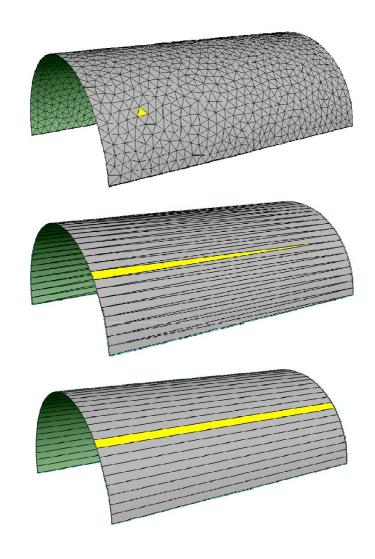
- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling



- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation



- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation
- Alignment to curvature lines
- Isotropic vs. anisotropic



- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation
- Alignment to curvature lines
- Isotropic vs. anisotropic
- Triangles vs. quadranges

