CS354 Computer Graphics Point-Based Modeling

Qixing Huang March 26th 2018

Slide Credit: Marc Alexa

Motivation

- Many applications need a definition of surface based on point samples
 - Reduction
 - Up-sampling
 - Ray tracing
- Desirable surface properties
 - Manifold
 - Smooth
 - Local (efficient computation)

Overview

- Introduction & Basics
- Fitting Implicit Surfaces
- Surfaces from Local Frames

Introduction & Basics

- Notation, Terms
 - Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
 - Global: Triangulation, Voronoi-Interpolation, Least
 Squares (LS), Radial Basis Functions (RBF)
 - Local: Shepard/Partition of Unity Methods, Moving LS
- Problems
 - Sharp edges, feature size/noise
- Functional -> Manifold

Notation

- Consider functional (height) data for now
- Data points are represented as
- Location in parameter space \mathbf{p}_i
- With certain height $f_i = f(\mathbf{p}_i)$

Goal is to approximate f from f_i , \mathbf{p}_i

Terms: Regular/Irregular

- Regular (on a grid) or irregular (scattered)
- Neighborhood (topology) is unclear for irregular data

Terms: Approximation/Interpolation

Noisy data ⇒ Approximation

• Perfect data \Rightarrow Interpolation

Terms: Global/Local

Global approximation

Local approximation

• Locality comes at the expense of fairness

Introduction & Basics

- Notation, Terms
 - Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
 - Global: Triangulation, Voronoi-Interpolation, Least
 Squares (LS), Radial Basis Functions (RBF)
 - Local: Shepard/Partition of Unity Methods, Moving LS
- Problems
 - Sharp edges, feature size/noise
- Functional -> Manifold

Triangulation

- Exploit the topology in a triangulation (e.g. Delaunay) of the data
- Interpolate the data points on the triangles Piecewise linear $\rightarrow C^0$
 - Piecewise quadratic \rightarrow C¹?

Triangulation: Piecewise linear

- Barycentric interpolation on simplices (triangles)
 - given point x inside a simplex defined by \mathbf{p}_i
 - Compute α_i from

$$\mathbf{x} = \sum_{i} \alpha_{i} \mathbf{p}_{i}$$
 and $1 = \sum_{i} \alpha_{i}$

- Then $f(\mathbf{x}) = \sum_{i} \alpha_{i} f_{i}$

Voronoi Interpolation

- compute Voronoi diagram (dual of Delaunay triangulation)
- for any point x in space
 - add x to Voronoi diagram
 - Voronoi cell τ around x intersects original cells τ_i of natural neighbors n_i

- interpolate
$$f(\mathbf{x}) = \sum_{i} \lambda_{i}(x) f_{i} / \sum_{i} \lambda_{i}(x)$$

with
$$\lambda_{i}(\mathbf{x}) = \frac{|\tau \cap \tau_{i}|}{|\tau| \cdot ||\mathbf{x} - \mathbf{p}_{i}||}$$

Voronoi Interpolation

- Compute Voronoi diagram (dual of Delaunay triangulation)
- For any point x in space
 - Add x to Voronoi diagram
 - Compute weights from the areas of new cell relative to old cells
- Properties
 - Piecewise cubic
 - Differentiable, continous derivative

Voronoi Interpolation

Properties of Voronoi Interpolation:

- Iinear Precision
- local
- $f(\mathbf{x}) \in C^1$ on domain
- $f(\mathbf{x}, \mathbf{x}_1, \dots, \mathbf{x}_n)$ is continuous in \mathbf{x}_i

Least Squares

- Fits a primitive to the data
- Minimizes squared distances between the p_i's and primitive g

Least Squares - Example

• Primitive is a (univariate) polynomial

$$g(x) = (1, x, x^{2}, ...) \cdot \mathbf{c}^{T}$$

$$\min \sum_{i} \left(f_{i} - (1, p_{i}, p_{i}^{2}, ...) \mathbf{c}^{T} \right)^{2} \Rightarrow$$

$$0 = \sum_{i} 2p_{i}^{j} \left(f_{i} - (1, p_{i}, p_{i}^{2}, ...) \mathbf{c}^{T} \right)$$

Linear system of equations

Least Squares - Example

Resulting system

Radial Basis Functions

• Solve
$$f_j = \sum_i w_i r \left(\left\| \mathbf{p}_i - \mathbf{p}_j \right\| \right)$$

to compute weights w_i

• Linear system of equations $\begin{pmatrix} \mathbf{r}(0) & \mathbf{r}(\|\mathbf{p}_0 - \mathbf{p}_1\|) & \mathbf{r}(\|\mathbf{p}_0 - \mathbf{p}_2\|) & \cdots \\ \mathbf{r}(\|\mathbf{p}_1 - \mathbf{p}_0\|) & \mathbf{r}(0) & \mathbf{r}(\|\mathbf{p}_1 - \mathbf{p}_2\|) & \\ \mathbf{r}(\|\mathbf{p}_2 - \mathbf{p}_0\|) & \mathbf{r}(\|\mathbf{p}_2 - \mathbf{p}_1\|) & \mathbf{r}(0) & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \end{pmatrix}$

Radial Basis Functions

- Represent approximating function as
 - Sum of radial functions r
 - Centered at the data points p_i

Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
 - $r(d) = d^2 \log d$ (thin plate spline)

$$- r(d) = e^{-d^2/h^2}$$
 (Gaussian)

- *h* is a data parameter
- *h* reflects the feature size or anticipated spacing among points

Function Spaces!

- Monomial, Lagrange, RBF share the same principle:
 - Choose basis of a function space
 - Find weight vector for base elements by solving linear system defined by data points
 - Compute values as linear combinations
- Properties
 - One costly preprocessing step
 - Simple evaluation of function in any point

Functional Spaces!

- Problems
 - Many points lead to large linear systems
 - Evaluation requires global solutions
- Solutions
 - RBF with compact support
 - Matrix is sparse
 - Still: solution depends on every data point, though drop-off is exponential with distance
 - Local approximation approaches

Introduction & Basics

- Notation, Terms
 - Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
 - Global: Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF)
 - Local: Shepard/Partition of Unity Methods, Moving LS
- Problems
 - Sharp edges, feature size/noise
- Functional -> Manifold

Shepard Interpolation

• Approach: $f(\mathbf{x}) = \sum_{i} \phi_{i}(\mathbf{x}) f_{i}$ with basis functions $\phi_{i}(\mathbf{x}) = \frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{-p}}{\sum_{i} \|\mathbf{x} - \mathbf{x}_{i}\|^{-p}}$

• define
$$f(\mathbf{p}_i) = f_i = \lim_{\mathbf{x} \to \mathbf{p}_i} f(\mathbf{x})$$

Shepard Interpolation

- $f(\mathbf{x})$ is a convex combination of ϕ_i , because all $\phi_i \in [0,1]$ and $\sum_{i=1}^{i} \phi_i(\mathbf{x}) \equiv 1$
- f(x) is contained in the convex hull of data points
- $|\{\mathbf{p}_i\}| > 1 \Rightarrow f(\mathbf{x}) \in \mathbb{C}^{\infty}$ and $\nabla f(\mathbf{p}_i) = \mathbf{0}$ \Rightarrow Data points are saddles
- global interpolation

 \rightarrow every f(x) depends on all data points

Only constant precision, i.e. only constant functions are reproduced exactly

Shepard Interpolation

Localization:

- Set $f(\mathbf{x}) = \sum_{i} \mu_i(\mathbf{x}) \phi_i(\mathbf{x}) f_i$
- with $\mu_i(\mathbf{x}) = \begin{cases} (1 \|\mathbf{x} \mathbf{p}_i\| / R_i)^{\nu} & \text{if } \|\mathbf{x} \mathbf{p}_i\| < R_i \\ 0 & \text{else} \end{cases}$

for reasonable R_i and $\nu > 1$

➔no constant precision because of possible holes in the data

Subdivide domain into cells

Compute local interpolation per cell

• Blend local interpolations?

Subdivide domain into overlapping cells

Compute local interpolations

Blend local interpolations

- · Weights should
 - have the (local) support of the cell

- Weights should
 - sum up to one everywhere (Shepard weights)
 - have the (local) support of the cell

Moving Least Squares

- Compute a local LS approximation at **x**
- Weight data points based on distance to x

Moving Least Squares

• The set $f(\mathbf{x}) = g_{\mathbf{x}}(\mathbf{x}), g_{\mathbf{x}} : \min_{g} \sum_{i} (f_{i} - g(\mathbf{p}_{i}))^{2} \theta(\|\mathbf{x} - \mathbf{p}_{i}\|)$

is a smooth curve, iff θ is smooth

Moving Least Squares

• Typical choices for θ :

$$- \theta(d) = d^{-r}$$
$$- \theta(d) = e^{-d^2/h^2}$$

- Note: $\theta_i = \theta(||\mathbf{x} \mathbf{p}_i||)$ is fixed
- For each x
 - Standard weighted LS problem
 - Linear iff corresponding LS is linear

Introduction & Basics

- Notation, Terms
 - Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
 - Global: Triangulation, Voronoi-Interpolation, Least
 Squares (LS), Radial Basis Functions (RBF)
 - Local: Shepard/Partition of Unity Methods, Moving LS
- Problems
 - Sharp edges, feature size/noise
- Functional -> Manifold

Typical Problems

• Noise vs. feature size

Functional->Manifold

- Standard techniques are applicable if data represents a function
- Manifolds are more general
 - No parameter domain
 - No knowledge about neighbors, Delaunay triangulation connects non-neighbors

Overview

- Introduction & Basics
- Fitting Implicit Surfaces
- Surfaces from Local Frames

Implicits

- Each orientable 2-manifold can be embedded in 3-space
- Idea: Represent 2-manifold as zero-set of a scalar function in 3-space
 - Inside:
 - On the manifold:
 - Outside:

$$f(\mathbf{x}) = 0$$

$$f(\mathbf{x}) > 0$$

 $f(\mathbf{x}) < 0$

- Function should be zero in data points
 f(p_i)=0
- Use standard approximation techniques to find f
- Trivial solution: f = 0
- Additional constraints are needed

- Constraints define inside and outside
- Simple approach (Turk, + O'Brien)
 - Sprinkle additional information manually
 - Make additional information soft constraints

Estimating normals

- Normal orientation (Implicits are signed)
 - Use inside/outside information from scan
- Normal direction by fitting a tangent
 - LS fit to nearest neighbors
 - Weighted LS fit
 - MLS fit

Estimating normals

Estimating normals

• The constrained minimization problem

$$\min_{\|\mathbf{n}\|=1}\sum_{i}\langle \mathbf{q}-\mathbf{p}_{i},\mathbf{n}\rangle^{2}\theta_{i}$$

is solved by the eigenvector corresponding to the smallest eigenvalue of the following covariance matrix

$$\sum_{i} (\mathbf{q} - \mathbf{p}_{i}) \cdot (\mathbf{q} - \mathbf{p}_{i})^{\mathrm{T}} \theta_{i}$$

which is constructed as a sum of weighted outer products.

- Compute non-zero anchors in the distance field
- Compute distances at specific points
 - Vertices, mid-points, etc. in a spatial subdivision

• Given N points and normals \mathbf{p}_i , \mathbf{n}_i and constraints $f(\mathbf{p}_i) = 0$, $f(\mathbf{c}_i) = d_i$

• Let
$$\mathbf{p}_{i+N} = \mathbf{c}_i$$

An RBF approximation

$$\mathbf{f}(\mathbf{x}) = \sum_{i} w_{i} \theta \left(\left\| \mathbf{p}_{i} - \mathbf{x} \right\| \right)$$

leads to a system of linear equations

• Given N points and normals \mathbf{p}_i , \mathbf{n}_i and constraints $f(\mathbf{p}_i) = 0$, $f(\mathbf{c}_i) = d_i$

• Let
$$\mathbf{p}_{i+N} = \mathbf{c}_i$$

An RBF approximation

$$\mathbf{f}(\mathbf{x}) = \sum_{i} w_{i} \theta \left(\left\| \mathbf{p}_{i} - \mathbf{x} \right\| \right)$$

leads to a system of linear equations

- Practical problems: N > 10000
- Matrix solution becomes difficult
- Two solutions
 - Sparse matrices allow iterative solution
 - Smaller number of RBFs

Compactly supported RBFs

- Smaller number of RBFs
- Greedy approach (Carr et al.)
 - Start with random small subset
 - Add RBFs where approximation quality is not sufficient

RBF Implicits - Results

Images courtesy Greg Turk

RBF Implicits - Results

Images courtesv Greg Turk

Overview

- Introduction & Basics
- Fitting Implicit Surfaces
- Surfaces from Local Frames

Projection

- Idea: Map space to surface
- Surface is defined as fixpoints of mapping

Projection

- Projection procedure (Levin)
 - Local polyonmial approximation
 - Inspired by differential geometry
 - "Implicit" surface definition
 - Infinitely smooth &
 - Manifold surface

Surface Definition

- Constructive definition
 - Input point r
 - Compute a local reference plane $H_{\mathbf{r}} = \langle \mathbf{q}, \mathbf{n} \rangle$
 - Compute a local polynomial over the plane G_r
 - Project point $\mathbf{r} = G_{\mathbf{r}}(\mathbf{0})$
 - Estimate normal

Surface Definition

- Constructive definition
 - Input point r
 - Compute a local reference plane $H_{\mathbf{r}} = \langle \mathbf{q}, \mathbf{n} \rangle$
 - Compute a local polynomial over the plane G_r
 - Project point $\mathbf{r} = G_{\mathbf{r}}(\mathbf{0})$
 - Estimate normal

Local Reference Plane

Projecting the point

- MLS polyonomial over H_r
 - $-\min_{G\in\Pi_d}\sum_{i}\left(\left\langle \mathbf{q}-\mathbf{p}_i,\mathbf{n}\right\rangle-G\left(\left|\mathbf{p}_i\right|_{H_r}\right)\right)^2\theta\left(\left\|\mathbf{q}-\mathbf{p}_i\right\|\right)$ - LS problem $- \mathbf{r}' = G_r(0)$ q Estimate normal

Spatial data structure

- Regular grid based on support of $\boldsymbol{\theta}$
 - Each point influences only 8 cells
- Each cell is an octree
 - Distant octree cells are approximated by one point in center of mass

Summary

- Projection-based surface definition
 - Surface is smooth and manifold
 - Surface may be bounded
 - Representation error mainly depends on point density
 - Adjustable feature size h allows to smooth out noise