
CS354 Computer Graphics
Character Animation and Skinning 

Qixing Huang

April 9th 2018

Slide Credit: Don Fussell



Instance Transformation 

• Start with a prototype object (a symbol) 

• Each appearance of the object in the model is 
an instance 

– Must scale, orient, position 

– Defines instance transformation 



Structure Through Function Calls 



Graphs

• Set of nodes and edges (links) 

• Edge connects a pair of nodes 

– Directed or undirected 

• Cycle: directed path that is a loop 



Tree

• Graph in which each node (except the root) has exactly one 
parent node 

– May have multiple children 

– Leaf or terminal node: no children 



Tree Model of Car 



DAG Model 

• If we use the fact that all the wheels are 
identical, we get a directed acyclic graph 

– Not much different than dealing with a tre



Modeling with Trees 

• Must decide what information to place in 
nodes and what to put in edges 

• Nodes 

– What to draw 

– Pointers to children 

• Edges 

– May have information on incremental changes to 
transformation matrices (can also store in nodes) 



Robot Arm 



Articulated Models 

• Robot arm is an example of an 
articulated model 

– Parts connected at joints 

– Can specify state of model by  
giving all joint angles 



Relationships in Robot Arm 

• Base rotates independently 
– Single angle determines position 

• Lower arm attached to base 
– Its position depends on rotation of base 

– Must also translate relative to base and rotate about 
connecting joint 

• Upper arm attached to lower arm 
– Its position depends on both base and lower arm

– Must translate relative to lower arm and rotate about 
joint connecting to lower arm 



Required Matrices 



OpenGL Code for Robot 



Tree Model of Robot 

• Note code shows relationships 
between parts of model 

– Can change “look” of parts easily 
without altering relationships 

• Simple example of tree model 

• Want a general node structure for 
nodes 



Possible Node Structure 



Generalizations

• Need to deal with multiple children 

– How do we represent a more general tree? 

– How do we traverse such a data structure?

• Animation 

– How to use dynamically? 

– Can we create and delete nodes during execution? 



Humanoid Figure



Building the Model 

• Can build a simple implementation using 
quadrics: ellipsoids and cylinders 

• Access parts through functions 
– torso() 

– left_upper_arm() 

• Matrices describe position of node with 
respect to its parent 
– Mlla positions left lower leg with respect to left 

upper arm 



Tree with Matrices 



Display and Traversal 

• The position of the figure is determined by 11 joint 
angles (two for the head and one for each other 
part) 

• Display of the tree requires a graph traversal

– Visit each node once 

– Display function at each node that describes the part 
associated with the node, applying the correct 
transformation matrix for position and orientation 



Transformation Matrices 

• There are 10 relevant matrices 

– M positions and orients entire figure through the 
torso which is the root node 

– Mh positions head with respect to torso 

– Mlua, Mrua, Mlul, Mrul position arms and legs with 
respect to torso 

– Mlla, Mrla, Mlll, Mrll position lower parts of limbs 
with respect to corresponding upper limbs 



Stack-based Traversal 

• Set model-view matrix to M and draw torso

• Set model-view matrix to M Mh and draw 
head 

• For left-upper arm need M Mlua and so on

• Rather than recomputing M Mlua from scratch 
or using an inverse matrix, we can use the 
matrix stack to store M and other matrices as 
we traverse the tree 



Traversal Code 



Analysis

• The code describes a particular tree and a 
particular traversal strategy 
– Can we develop a more general approach?

• Note that the sample code does not include 
state changes, such as changes to colors 
– May also want to use glPushAttrib and 
glPopAttrib to protect against unexpected state 
changes affecting later parts of the code 



Skinning and Character Animation



Objectives

• Introduce the basics of character animation

• Introduce skinning 

• Introduce basic linear blend skinning 



Character Animation 

• Skeletons and skin 
– skeleton – a 

hierarchy of bones 
or joints 

– note arrows 
pointing from 
parent to child joint

– skin – the polygon 
mesh defining the 
body surface 



Binding

• Define transform 
between joint and 
skin spaces in rest 
or bind pose

• Associate skin 
vertices to subset 
of the joints 



Animation

• Move the joints and 
the skin moves with 
them

• This deforms the 
mesh from its rest 
position 



Skin

• Skin is a set of 
polygonal meshes

• A mesh is a 
collection of 
(connected) 
polygons



Skin

• A skin mesh is defined in its owe local frame



Binding

• Each joint (bone) has its own local frame

• Let Bj be the transformation from local joint frame j 
to the skin mesh local frame in the binding pose

• Bj is represented by a binding matrix



Rigid skinning – basic idea 

• Associate a group of vertices to a single joint j

• Let Tj be the transformation from joint j local space 
to world space

• Then the skin vertex transform to world space for 
vertices vk associated with joint j is vk

T = Tj Bj
-1 vk



• When joint j moves, Tj changes and the skin vertices 
move with it

• The relative positions of the vertices in the local joint 
frame don’t change 

• vk
T = TjBj

-1 vk

Joint motion



Problems with rigid skinning 

• Simple but low quality because large 
distortions happen when bends form at joints



Linear Blending Skinning

• Adds flexibility to fix artifacts but still simple and fast 

• Commonly used in games

• Vertices associated with multiple joints, not just one

• Vertex transform is a linear combination of the transforms associated with 
its joints. Each vertex has weights for this linear combination assigned to it

• Vertex normal can be computed similarly



Fewer artifacts 

• With proper weights many but not all artifacts are eliminated 
or improved 



Linear blend skinning algorithm 

• Skin::Update() 
– Compute Mi = Ti Bi

-1 for each joint.  Note  that Bi
-1 can be 

precomputed and stored.  For each vertex compute world 
position  and normal. 

• Skin::Draw() 
– Initialize ModelView matrix.  

– Draw skin polygons using global positions and  vertices.



Problems

• Skin collapse at bends 



Problems

• Skin collapses at twists 



Dual Quaternion Skinning 

• Better solution, nearly as fast 



Linear Blend Skinning 

• Problems
– Binding is difficult – what joints should each vertex be 

associated with?

– Weight assignment is not intuitive and very time-
consuming

– Still have collapse with linear blend skinning

• Advantages
– Simple

– Fast

– Easy GPU implementation 


