CS354 Computer Graphics 3D Printing

Qixing Huang April 16th 2018

3D Graphics

 (from Wikipedia) 3D computer graphics are graphics that use a 3D representation of geometric data for the purposes of performing calculations and rendering 2D images

Printing

 (from Wikipedia) Printing is a process for reproducing text and images, typically with ink on paper using a print press

3D+Printing = 3D Printing

 3D printing is the process of making a real physical 3D object from digital file using some material, in a manner similar to printing images on paper

The basic idea

- Slice objects into layers
- Making the object layer by layer

Never see a 3D printer?

3D printing is just around us

Process of 3D printing

"Differential"

Slice an object into thin layers

Process of 3D printing: an example

Types of 3D printers

Types of 3D printers

Material of 3D printing

- Plastic

 PLA and ABS
- Metals
 - Stainless steel
 - Sterling silver
- Glass
- Ceramics
- Resin
- Sandstone
- Rubber

3D printing is not new

- A type of manufacturing (fabrication) technologies
 - Has existed for over 20 years

- Also known as
 - Rapid prototyping
 - Additive manufacturing (AM)

Existing Manufacturing Technologies

Casting: equaled manufacturing

- Pour a liquid material into a mold and then solidify
- History: over thousands of years

Forging: equaled manufacturing

- Shaping metal using localized compressive forces by a smith using a hammer
- History: over thousands of years

Modern CNC: subtractive manufacturing

- Cutting out material from a solid
- History: about 100 years

3D printing: additive manufacturing

- Can produce arbitrary complex (either in geometry or in topology) objects
- History: less than 30 years

Manufacturing technologies: comparison

Advantages and Disadvantages of 3D Printing Technology

Advantages

- Quick production of prototypes
- Less waste
- New shapes and structures
- New combinations of materials

Disadvantages

- Slow printing speed
 - Over house
- Not available for batch manufacturing
 Better for customized manufacturing
- Size limitations
 - Need larger printers in the future
- Raw material limitations
 - Mixed material will be developed

3D printing: a new manufacturing tech.

- Do not replace other manufacturing technologies
- A supplement to modern manufacturing

- Quick prototyping
- Customized manufacturing
- Complex shapes

Applications of 3D Printing

Application: Industrial design

Application: Fashion design

Application: Education

Application: Toys

Applications: Decorations

Application: Food

Application: Art

Application: Medical treatment

Application: Heritage

Application: Aerospace

Application: Architecture

Input models for 3D printing

*.STL: Standard Tessellation Language

- Mesh file format created by 3D Systems
 - Either in ASCII or in binary
- Unstructured triangular surface

```
facet normal n_i n_j n_k
outer loop
vertex v1_x v1_y v1_z
vertex v2_x v2_y v2_z
vertex v3_x v3_y v3_z
endloop
endfacet
```


3D printing engine

Research Fields in 3D Printing

Material

- Plastics
- Resin
- Ceramics
- Metals

- Modeling
- Processing
- Computation
- Optimization

3D Modeling for Fabrication

- Traditional modeling
 - For rendering
 - Smooth surfaces
 - Virtual objects
 - Non-physical

- Modeling for fabrication
 - For fabrication
 - Complex volumes
 - Real objects
 - Physical properties

Fabrication-oriented Design

• Given printing machine and material, how to optimize geometries and computational cost

Computational Issues

What are the computational issues?

Computational Issues

Printing engine

- Slicing
- Support structure
- Numerical robustness

Appearance control (Arik)

- Texture and BRDF
- Subsurface scattering
- Caustics

Geometric design and opt.

- Simple tools for designing
- Motion modeling
- Fabrication by example

Structural optimization

- Physical loads
- Analyze structure
- Apply corrections

Structural optimization

[Stava et al. 12]

Discussion