CS354 Computer Graphics
Ray Tracing

Qixing Huang
Januray 24th 2017

Graphics Pipeline

From Computer Desktop BEncyclopedia
Reprinted with permission.
= 1998 Intergraph Computer Systems

viewing

frustrum viewplane . .
viewpoint

Elements of rendering

* Object
* Light
* Material

e Camera

Geometric optics

Modern theories of light treat it as both a wave and a
particle

We will take a combined and somewhat simpler view
of light — the view of geometric optics

Here are the rules of geometric optics:

— Light is a flow of photons with wavelengths. We’'ll call
these flows “light rays”

— Light rays travel in straight lines in free space
— Light rays do not interfere with each other as they cross
— Light rays obey the laws of reflection and refraction

— Light rays travel from the light sources to the eye, but the
physics is invariant under path reversal

Synthetic pinhole camera

* The most common imaging model in graphics is the synthetic
pinhole camera: light rays are collected through an
infinitesimally small hole and recorded on an image plane

* For convenience, the image plane is usually placed in front of
the camera, giving a non-inverted 2D projection (image)

 The image of an object point P is at the intersection of the
viewing ray through P and the image plane

Eve vs. light ray tracing

e At the light: light ray tracing (a.k.a., forward ray tracing or
photon tracing)

Y

AN

* At the eye: eye tracing (a.k.a., backward ray tracing)

 We will generally follow rays from the eye into the scene

Precursors to ray tracing

e Local illumination

— Cast one eye ray
* then shade according to light

* Appel (1968)
— Cast one eye ray + one ray to light .

Whitted ray-tracing algorithm

* |n 1980, Turner Whitted introduced ray tracing to the graphics
community
— Combines eye ray tracing + rays to light
— Recursively traces rays

e Algorithm

— For each pixel, trace a primary ray in direction V to the first visible
surface

— For each intersection, trace secondary rays:
* Shadow rays in directions L to light sources
» Reflected ray in direction R
* Refracted ray or transmitted ray in direction T

Whitted algorithm

eye

Primary rays Shadow rays

Reflection rays Refracted rays

Shading

* Avrayis defined by an origin P and a unit direction d and is
parameterized by t:

P4 td

Let I(P, d) be the intensity seen along that ray. Then:
I(Pa d) — Id'i'rect + I?“eflected + Itransmitted

* Where
— I 4.0 IS COMputed from the Phong model

IT‘ceflect(ed = krI(Q: R)

Itra'rw'rmtted - ktI(Qa T)

* Typically, we set k, =k, and k, =1 -k,

Reflection and transmission

e Law of reflection:

0.= 6,

* Snell’s law of refraction
N, sing, = 1, sin O,
e Where "> 1 are indices of refraction

Total internal reflection

 The equation for the angle of refraction can be computed
from Snell's law:

 What happens whenn>n?

* Wheng, is exactly 90°, we say that 6, has achieved the
“critical angle”g,

* Forg,> 0., no rays are transmitted, and only reflection occurs,
a phenomenon known as “total internal reflection” or TIR

A

Ray-tracing pseudocode

 We build a ray traced image by casting rays
through each of the pixels

function tracelmage (scene):
for each pixel (1,)) iIn 1mage
S = pixelToWorld(1,))
P=COP
d=(S-P)||S—P|
I(1,)) = traceRay(scene, P, d)
end for
end function

Ray-tracing pseudocode, cont’d

function fraceRay(scene, P, d):
(t, N, mtrl) < scene.intersect (P, d)
Q € ray (P, d) evaluated at t
| = shade(q, N, mtrl, scene)
R = reflectDirection(N, -d)
[< I+ mtrl.K, * fraceRay(scene, Q, R)
if ray is entering object then
n_1=index of air
n_t = mtrl.index
else
n_1=mtrl.index
n_t=index of air
if (mtrl.Lk t> 0 and notTIR (n_1,n_t, N, -d)) then
T = refractDirection (n_i,n_t, N, -d)
[<= I+ mtrlL.k, * fraceRay(scene, O, T)
end if
return |
end function

Terminating recursion

 Q: How do you terminate out of recursive ray
tracing?

Shading pseudocode

Next, we need to calculate the color returned
by the shade function

function shade(mtrl, scene, O, N, d):
[< mtrl.k, + mtrl. k, * scene->1,
for each hght source (?] do:
atten = [2] -> distanceAttenuation(Q) *
?] > ShadowAttenuatzon(scene, Q)
[< I + atten™(diffuse term + spec term)
end for
return I
end function

This will be discussed in depth next Monday

Eve vs. light ray tracing

Image

Camera / Light Source
U
\ ViewRay / ., .

TH

/x ——" Scene Object

Shadow attenuation

 Computing a shadow can be as simple as checking to see if a
ray makes it to the light source

* For a point light source:

function PointLight::shadowAttenuation(scene, P)
d = ([2).position - P).normalize()
(t, N, mtrl) <= scene.intersect(P, d)
Q <= ray(t)
if O is before the light source then:
atten =0
else
atten = 1
end if
return atten
end function

 Q: What if there are transparent objects along a path to the
light source?

Ray-plane intersection

* We can write down the plane equation
a-xr+b-y+c-z+d=0
n = la;b;]
n' - [z;y; 2] +d =0

* Using parameterized line segment
n' - (p+td) =0

* We can solve for the intersection parameter

TLTp

t= L
nld

Ray-triangle intersection

* To intersect with a triangle, we
first obtain its plane equation

n=(A-C)x(B-C)
d=n'tA

* Then, we need to decide if the
point is inside or outside of the
triangle

Ray-triangle intersection

* Project down a dimension and compute
barycentric coordinates from 2D points

 Why is this solution possible? Which axis should
you “project away”?

Barycentric coordinate from area ratios

°
p
B C
o= SArea(pBC) B = SArea(ApC) ~ SArea(ABp)
SArea(ABC) SArea(ABC) 4 SArea(ABC)

Moller—Trumbore intersection
algorithm

e Parametric Plane
P=A4u-(B—A) +v-(C—-A)

t1

P1

=1l-u—-v)-A+u-B+v-C PO
* Parametric line segment
P=Py+t-D
* Linear system

Ph+t-D=A4u-(B—A)4+v-(C—-A)
u-(A=B)+v-(A-C)+t-D=A- P,

P2

Moller—Trumbore intersection algorithm

* Linear system

Ph+t-D=A4+u-(B—A)4+v-(C—-A)

w-(A-B)+v - (A-C)+t-D=A— P,

ayj; Qa2 Qi3 x b1
as1 ao as3 |-l y | =1 b2
a3l as2 a33 z b3

det a1 a29 a923
\&31 az2 ass

det a21 aos9 93
\a31 asz2 ass

(51 b2 b3 /0311 12 a13 11 Q12 Q13
det a1 29 G923 det by bo b3 det a1 Q929 (93

\CL31 aszz2 33 \0331 asz2 33
M y:]
(an aizp ais /0311 aiz ai3s ail ai2 ai3
det a1 a929 93
a3y asz2 as3

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

bool RayIntersectsTriangle(Vector3D rayOrigin,
Vector3D rayVector,
Triangle* inTriangle,
Vector3D& outIntersectionPoint)

const float EPSILON = ©.0000001;
Vector3D vertex® = inTriangle->vertexe;
Vector3D vertexl = inTriangle->vertexl;
Vector3D vertex2 = inTriangle->vertex2;
Vector3D edgel, edge2, h, s, q;
float a,f,u,v;
edgel = vertexl - vertex®;
edge2 = vertex2 - vertexo;
h = rayVector.crossProduct(edge2);
a = edgel.dotProduct(h);
if (a > -EPSILON && a < EPSILON)
return false;
f = 1/a;
s = rayOrigin - vertex®;
u=Ff * (s.dotProduct(h));
if (u<©9.0 || u>1.09)
return false;
gq = s.crossProduct(edgel);
v = f * rayVector.dotProduct(q);
if (v<90.0 || u+v>1.0)
return false;
// At this stage we can compute t to find out where the intersection point is on the Lline.
float t = f * edge2.dotProduct(q);
if (t > EPSILON) // ray intersection

{

outIntersectionPoint = rayOrigin + rayVector * t;
return true;

3

else // This means that there 1is a Lline intersection but not a ray intersection.
return false;

Interpolating vertex properties

* The barycentric coordinates can also be used to interpolate
vertex properties

— material/texture coordinates/Type equation here.normals
* For example

ka(Q) = aka(A) + fka(B) +vka(C), a+f+v=1

* Interpolating normal directions, known as Phong
interpolation, gives triangle meshes a smooth shading
appearance. (Note: don’t forget to normalize interpolated
normal directions)

Epsilons

* Due to finite precision arithmetic, we do not
always get the exact intersection at a surface

* Q: What kinds of problems might this cause?

e Q: How to address this?

Intersecting with transformed geometry

* |n general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?

* Apply the inverse of M to the ray first and
intersect in object (local) coordinates

 Q: The intersected normal is in object (local)
coordinates. How do we transform it to world
coordinates?

Next Lecture

 More about ray tracing, math, and transforms

e Special thanks for Don Fussell for many of the
slides

Reading

 Whitted. An improved illumination model for
shaded display. Communications of the ACM
23(6), 343-349, 1980

* https://en.wikipedia.org/wiki/Ray tracing (gr
aphics)

Questions?

