# CS354 Computer Graphics Ray Tracing



Qixing Huang Januray 24th 2017



#### **Graphics Pipeline**

From Computer Desktop Encyclopedia Reprinted with permission. @ 1998 Intergraph Computer Systems



#### **Elements of rendering**

• Object

• Light

Material

• Camera

#### Geometric optics

- Modern theories of light treat it as both a wave and a particle
- We will take a combined and somewhat simpler view of light – the view of geometric optics
- Here are the rules of geometric optics:
  - Light is a flow of photons with wavelengths. We'll call these flows "light rays"
  - Light rays travel in straight lines in free space
  - Light rays do not interfere with each other as they cross
  - Light rays obey the laws of reflection and refraction
  - Light rays travel from the light sources to the eye, but the physics is invariant under path reversal

### Synthetic pinhole camera

• The most common imaging model in graphics is the synthetic pinhole camera: light rays are collected through an infinitesimally small hole and recorded on an image plane



- For convenience, the image plane is usually placed in front of the camera, giving a non-inverted 2D projection (image)
- The image of an object point *P* is at the intersection of the viewing ray through *P* and the image plane

# Eye vs. light ray tracing

 At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)

• At the eye: eye tracing (a.k.a., backward ray tracing)



• We will generally follow rays from the eye into the scene

#### Precursors to ray tracing

- Local illumination
  - Cast one eye ray
    - then shade according to light



淤

• Appel (1968)

Cast one eye ray + one ray to light

# Whitted ray-tracing algorithm

- In 1980, Turner Whitted introduced ray tracing to the graphics community
  - Combines eye ray tracing + rays to light
  - Recursively traces rays



- Algorithm
  - For each pixel, trace a primary ray in direction V to the first visible surface
  - For each intersection, trace secondary rays:
    - Shadow rays in directions L to light sources
    - Reflected ray in direction R
    - Refracted ray or transmitted ray in direction T

#### Whitted algorithm



#### Shading



- A ray is defined by an origin P and a unit direction d and is parameterized by t:
  - $P + t\mathbf{d}$
- Let I(P, d) be the intensity seen along that ray. Then:

$$I(P,d) = I_{direct} + I_{reflected} + I_{transmitted}$$

- Where
  - $-I_{direct}$  is computed from the Phong model

 $I_{reflected} = k_r I(Q, R)$ 

 $I_{transmitted} = k_t I(Q, T)$ 

• Typically, we set  $k_r = k_s$  and  $k_t = 1 - k_s$ 

#### Reflection and transmission



• Law of reflection:

$$\theta_i = \theta_r$$

Snell's law of refraction

 $\eta_{\rm i}\sin\theta_{\rm I} = \eta_{\rm t}\sin\theta_{\rm t}$ 

• Where  $\eta_i$ ,  $\eta_t$  are indices of refraction

#### Total internal reflection

- The equation for the angle of refraction can be computed from Snell's law:
- What happens when  $\eta_i > \eta_f$ ?
- When  $\theta_t$  is exactly 90°, we say that  $\theta_l$  has achieved the "critical angle"  $\theta_c$
- For  $\theta_l > \theta_c$ , no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR



#### Ray-tracing pseudocode

• We build a ray traced image by casting rays through each of the pixels

function traceImage (scene): for each pixel (i,j) in image S = pixelToWorld(i,j) P = COP d = (S - P)/||S - P|| I(i,j) = traceRay(scene, P, d)end for end function

#### Ray-tracing pseudocode, cont'd

function *traceRay*(scene, *P*, **d**):  $(t, N, mtrl) \leftarrow scene.intersect (P, d)$  $Q \leftarrow ray(P, \mathbf{d})$  evaluated at t I = shade(q, N, mtrl, scene) $\mathbf{R} = reflectDirection(\mathbf{N}, -\mathbf{d})$  $I \leftarrow I + mtrl.k_r * traceRay(scene, Q, R)$ if ray is entering object then n i = index of airn t = mtrl.indexelse  $n_i = mtrl.index$ n t = index of airif  $(mtrl.k t > 0 and notTIR (n_i, n_t, N, -d))$  then  $\mathbf{T} = refractDirection (n i, n t, N, -d)$  $I \leftarrow I + mtrl.k_t * traceRay(scene, Q, T)$ end if return I end function

### Terminating recursion

• Q: How do you terminate out of recursive ray tracing?

#### Shading pseudocode

 Next, we need to calculate the color returned by the *shade* function

> function shade(mtrl, scene, Q, N, d): I  $\leftarrow$  mtrl.k<sub>e</sub> + mtrl. k<sub>a</sub> \* scene->I<sub>a</sub> for each light source ? do: atten = ? -> distanceAttenuation(Q) \* ? -> shadowAttenuation( scene, Q) I  $\leftarrow$  I + atten\*(diffuse term + spec term) end for return I end function

This will be discussed in depth next Monday

#### Eye vs. light ray tracing



#### Shadow attenuation

- Computing a shadow can be as simple as checking to see if a ray makes it to the light source
- For a point light source:

```
function PointLight::shadowAttenuation(scene, P)
    d = (?.position - P).normalize()
    (t, N, mtrl) ← scene.intersect(P, d)
    Q ← ray(t)
    if Q is before the light source then:
        atten = 0
    else
        atten = 1
    end if
    return atten
end function
```

• Q: What if there are transparent objects along a path to the light source?

#### **Ray-plane intersection**

• We can write down the plane equation

$$\begin{aligned} a \cdot x + b \cdot y + c \cdot z + d &= 0\\ n &= [a; b; c]\\ n^T \cdot [x; y; z] + d &= 0 \end{aligned}$$



• Using parameterized line segment

$$n^T \cdot (p + td) = 0$$

• We can solve for the intersection parameter

$$t = -\frac{n^T p}{n^T d}$$

#### **Ray-triangle intersection**

• To intersect with a triangle, we first obtain its plane equation

$$n = (A - C) \times (B - C)$$
$$d = n^T A$$



• Then, we need to decide if the point is inside or outside of the triangle

#### **Ray-triangle intersection**

• Project down a dimension and compute barycentric coordinates from 2D points



 Why is this solution possible? Which axis should you "project away"?

#### Barycentric coordinate from area ratios



# Möller–Trumbore intersection algorithm

• Parametric Plane

$$P = A + u \cdot (B - A) + v \cdot (C - A)$$
$$= (1 - u - v) \cdot A + u \cdot B + v \cdot C$$



Parametric line segment

 $P = P_0 + t \cdot D$ 

• Linear system

$$P_0 + t \cdot D = A + u \cdot (B - A) + v \cdot (C - A)$$
$$u \cdot (A - B) + v \cdot (A - C) + t \cdot D = A - P_0$$

#### Möller–Trumbore intersection algorithm

• Linear system

$$P_{0} + t \cdot D = A + u \cdot (B - A) + v \cdot (C - A)$$
$$u \cdot (A - B) + v \cdot (A - C) + t \cdot D = A - P_{0}$$
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix}$$



#### https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore intersection algorithm

{

}

```
bool RayIntersectsTriangle(Vector3D rayOrigin,
                           Vector3D rayVector,
                           Triangle* inTriangle,
                           Vector3D& outIntersectionPoint)
    const float EPSILON = 0.0000001;
   Vector3D vertex0 = inTriangle->vertex0;
   Vector3D vertex1 = inTriangle->vertex1;
   Vector3D vertex2 = inTriangle->vertex2;
   Vector3D edge1, edge2, h, s, q;
   float a,f,u,v;
    edge1 = vertex1 - vertex0;
    edge2 = vertex2 - vertex0;
    h = rayVector.crossProduct(edge2);
    a = edge1.dotProduct(h);
    if (a > -EPSILON && a < EPSILON)</pre>
        return false;
   f = 1/a;
    s = rayOrigin - vertex0;
   u = f * (s.dotProduct(h));
    if (u < 0.0 || u > 1.0)
        return false;
    q = s.crossProduct(edge1);
   v = f * rayVector.dotProduct(q);
   if (v < 0.0 || u + v > 1.0)
        return false;
   // At this stage we can compute t to find out where the intersection point is on the line.
   float t = f * edge2.dotProduct(q);
   if (t > EPSILON) // ray intersection
    {
        outIntersectionPoint = rayOrigin + rayVector * t;
        return true;
    }
    else // This means that there is a line intersection but not a ray intersection.
        return false;
```

#### Interpolating vertex properties

- The barycentric coordinates can also be used to interpolate vertex properties
  - material/texture coordinates/Type equation here.normals
- For example

 $k_d(Q) = \alpha k_d(A) + \beta k_d(B) + \gamma k_d(C), \quad \alpha + \beta + \gamma = 1$ 

 Interpolating normal directions, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don't forget to normalize interpolated normal directions)

### Epsilons

- Due to finite precision arithmetic, we do not always get the exact intersection at a surface
- Q: What kinds of problems might this cause?

• Q: How to address this?

#### Intersecting with transformed geometry

- In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix M?
- Apply *the inverse of M* to the ray first and intersect in object (local) coordinates
- Q: The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

#### Next Lecture

• More about ray tracing, math, and transforms

Special thanks for Don Fussell for many of the slides

#### Reading

 Whitted. An improved illumination model for shaded display. Communications of the ACM 23(6), 343-349, 1980

 https://en.wikipedia.org/wiki/Ray\_tracing\_(gr aphics)

#### Questions?