
CS354 Computer Graphics
Introduction to OpenGL

Qixing Huang

February 14th 2018



Synthetic Camera Model



Pinhole Camera

To find perspective projection of point at (x,y,z)



Objects and Scenes
• Programmers want to render “objects”

– Arranged relative to other objects (a scene) & then viewed

• Graphics pipeline approach—used by OpenGL and 
GPUs
– Break objects into geometry batches

• Batches may be meshes or “patches”

– Batches reduce to polygonal primitives
• Typically triangles, also lines, points, bitmaps, or images

– Geometric primitives are specified by vertices
• So vertices are assembled into primitives

– Primitives are rasterized into fragments

– Fragments are shaded

– Raster operations take shaded fragments and update the 
framebuffer



Advantages

• Separation of objects, viewer, light sources

• Two-dimensional graphics is a special case of 
three-dimensional graphics

• Leads to simple software API

– Specify objects, lights, camera, attributes

– Let implementation determine image

• Leads to fast hardware implementation



What is OpenGL?

• The OpenGL Graphics System
– Not just for 3D graphics; imaging too
– “GL” standard for “Graphics Library”
– “Open” means industry standard meant for broad 

adoption with liberal licensing

• Standardized in 1992
– By Silicon Graphics
– And others: Compaq, DEC, Intel, IBM, Microsoft
– Originally meant for Unix and Windows workstations

• Now de facto graphics acceleration standard
– Now managed by the Khronos industry consortium
– Available everywhere, from supercomputers to cell phones



Student’s View of OpenGL

• You can learn OpenGL gradually

– Lots of its can be ignored for now

– The “classic” API is particularly nice

• Plenty of documentation and sample code

• Makes concrete the abstract graphics pipeline 
for rasterization



OpenGL API Example



Initial Logical Coordinate System

• Think of drawing into a [-1,+1]3 cube



Normalized Device Coordinates

• What does this simple triangle look like with the [-1,+1]3

cube’s coordinate system?
– We call this coordinate system “Normalize Device Coordinate” or NDC 

space



GLUT API Example



Simplified Graphics Pipeline



Application

• What’s the app do?
– Running on the CPU

• Initializes app process
– Creates graphics resources such as

– OpenGL context

– Windows

• Handles events
– Input events, resize windows, etc.

– Crucial event for graphics: 
Redisplay
• Window needs to be drawn —so do it



App Stuff

• GLUT is doing the heavy lifting
– Talking to Win32, Cocoa, or Xlib for you

– Other alternatives: SDL, etc.



Rendering - the display Callback



Graphics State Setting

• Within the draw routine



State Updates

• ShadeModel(SMOOTH) 
requests smooth color 
interpolation
– changes fragment shading 

state
– alternative is “flat shading”

• Enable(DEPTH_TEST) enables 
depth buffer-based hidden 
surface removal algorithm

• State updates happen in 
command sequence order

• In fact, all OpenGL commands 
are in a stream that must 
complete in order



Clearing the buffers

• Within the draw routine



Buffer Clearing

• New frame needs to reset 
entire color buffer to 
“background” or “clear” color
– Avoids having remnants of prior 

frame persist

• Depth buffer needs to be 
cleared to “farthest value”
– More about depth buffering later

• Special operation in OpenGL
– Hardware wants clears to run at 

memory-saturating speeds

– Still in-band with command 
stream



Batching and Assembling Vertices
• glBegin and glEnd designate 

a batch of primitives
– Begin mode of GL_TRIANGLES 

means every 3 vertexes

• Various vertex attributes
– Position attribute sent with 

glVertex* commands

– Also colors, texture 
coordinates, normals, etc.



Assembling a Vertex



Vertex Attribute Commands

• OpenGL vertex attribute commands follow a regular pattern

– gl-prefix :: common to all OpenGL API calls

– Vertex, Normal, TexCoord, Color, SecondaryColor, 
FogCoord, VertexAttrib, etc.
• Name the semantic meaning of the attribute

– 1, 2, 3, 4 :: Number of components for the attribute
• For an attribute with more components than the number, sensible 

defaults apply

• For example, 3 for Color means Red, Green, Blue & Alpha assumed 
1.0

– f, i, s, b, d, ub, us, ui
• Type of components: float, integer, short, byte, double, unsigned 

byte, unsigned short, unsigned integer



Example

• Consider glColor4ub and glVertex3fv



Assemble a Triangle

• Within the draw routine



glBegin Primitive Batch Types



Assembly State Machines

• Fixed-function hardware performs primitive 
assembly

– Based on glBegin’s mode

• State machine for GL_TRIANGLES



GL_TRIANGLE_STRIP



GL_POINTS and GL_LINES

Actual hardware state machine handles all OpenGL begin 

modes, so rather complex



Triangle Assembly

• Now we have a triangle 
assembled

• Later, we’ll generalize how the 
vertex positions get 
transformed

– And other attributes might 
be processed too

• For now, just assume the XYZ 
position passed to glVertex3f 
position is in NDC space



Our Newly Assembled Triangle

• Think of drawing into a[-1,+1]3 cube

(0,-0.8,-0.2)

Origin at (0,0,0)

(0.8,0.8,-0.2)(-0.8,0.8,0.3)



Clipping

• What if any portion of our triangle extended beyond the NDC 
range of the [-1,+1]3 cube?
– Only regions of the triangle [-1,+1]3 cube should be rasterized!

• No clipping for our simple triangle
– This situation is known as “trivial accept”

– Because all 3 vertices in the [-1,+1]3 cube

Triangles are

convex, so entire

triangle must also

be in the cube if the

vertexes are



Triangle Clipping

• Triangles can straddle the 
NDC cube

– Happens with lines too

• In this case, we must “clip” 
the triangle to the NDC cube

– This is an involved process 
but one that must be 
done



Consider a Different Triangle

• Move left vertex so it’s X = -1.8

– Result is a clipped triangle



Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped



New triangles out

But how do we find these “new” vertices?
The edge clipping the triangle is the line at X = -1

so we know X = -1 at these points—but what about Y?



Linear Interpolation



Linear Interpolation



Clipping Complications

• Four possibilities
– Face doesn’t actually result in any clipping of a triangle

• Triangle is unaffected by this plane then

– Clipping eliminates a triangle completely
• All 3 vertices on “wrong” side of the face’s plane

– Triangle “tip” clipped away
• Leaving two triangles

– Triangle “base” is clipped away
• Leaving a single triangle

• Strategy: implement recursive clipping process
– “Two triangle” case means resulting two triangles must be clipped by 

all remaining planes



Attribute Interpolation

• When splitting triangles for clipping, must also 
interpolate new attributes

– For example, color/texture coordinates

• Back to our example

– BLUE×0.8/1.8 + RED×1/1.8

• (0,0,1,1)×0.8/1.8 + (1,0,0,1)×1/1.8

• (0.444,0,.555,1) or MAGENTA



What to do about this?

• Several possibilities

– Require applications to never send primitives that 
require clipping

• makes clipping their problem

– Rasterize into larger space than normal and 
discard pixels outsize the NDC cube

• Increases useless rasterizer work

– Break clipped triangles into smaller triangles that 
tessellate the clipped region…



Triangle clipped by Two Planes

Recursive process can make 4 triangles
And it gets worse with more non-trivial clipping



NDC to Window Space

• NDC is “normalized” to the 
[-1,+1]3 cube

– Nice for clipping

– But doesn’t yet map to 
pixels on the screen

• Next: a transform from 
NDC space to window 
space



Viewport and Depth Range

• OpenGL has 2 commands to configure the state to map NDC 
space to window space

– glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);

• Typically programmed to the window’s width and height for w & h 
and zero for both vx & vy

• Example: glViewport(0, 0, window_width, window_height);

– glDepthRange(GLclampd n, GLclampd f);

• n for near depth value, f for far depth value

• Normally set to glDepthRange(0,1)

• Which is an OpenGL context’s initial depth range state

• The mapping from NDC space to window space depends on 
vx, vy, w, h, n, and d



OpenGL Data Type Naming

• The OpenGL specification allow an implementation to specify how 
language data types map to OpenGL API data types
– GLfloat is usually typedef’ed to float but this isn’t necessarily true

• But is true in practice

– GLbyte is byte-sized so expected it to be a char
– GLubyte, GLushort, and GLuint are unsigned versions of GLbyte,
– GLshort, and GLint

• Certain names clue you into their parameter usage
– GLsizei is an integer parameter that is not allowed to be negative

• An GL_INVALID_VALUE is generated if a GLsizei parameter is ever negative

– GLclampd and GLclampf are the same as GLfloat and GLdouble, but 
indicate the parameter will be clamped automatically to the [0,1] 
range

• Notice
– glViewport uses GLsizei for width and height
– glDepthRange uses GLclampd for near and far



OpenGL Errors

• OpenGL reports asynchronously from your commands
– Effectively, you must explicitly call glGetError to find if any prior 

command generated an error or was otherwise used incorrectly

– glGetError returns GL_NO_ERROR if there is no error
• Otherwise an error such as GL_INVALID_VALUE is returned

• Rationale
– OpenGL commands are meant to be executed in a pipeline so the 

error might not be identified until after the command’s function has 
returned

– Also forcing applications to check return codes of functions is slow

• So if you suspect errors, you have to poll for them
– Learn to do this while you are debugging your code

– If something fails to happen, suspect there’s an OpenGL errors



Mapping NDC to Window Space

• Assume (x,y,z) is the NDC coordinate that’s passed to 
glVertex3f in our simple_triangle example

• Then window-space (wx,wy,wz) location is
– wx = (w/2)×x + vx + w/2

– wy = (h/2)×y + vy + h/2

– wz = [(f-n)/2]×z + (n+f)/2

× means scalar

multiplication here



Where is glViewport set?

• The simple_triangle program never calls glViewport

• Alternatively, you can use glReshapeFunc to register a callback
– Then calling glViewport or otherwise tracking the window height 

becomes your application’s responsibility

– Example reshape callback:

– void reshape(int w, int h) {

glViewport(0, 0, w, h);

}
– Example registering a reshape callback: glReshapeFunc(reshape);

• FYI: OpenGL maintains a lower-left window-space origin
– Whereas most 2D graphics APIs use upper-left



What about glDepthRange?

• Simple applications don’t normally need to call 
glDepthRange
– Notice the simple_triangle program never calls 

glDepthRange

• Rationale
– The initial depth range of [0,1] is fine for most application

– It says the entire available depth buffer range should be 
used

• When the depth range is [0,1] the equation for 
window-space z simplifies to wz = ½×z + ½



Triangle Vertices in Window Space

• Assume the window is 500x500 pixels

– So glViewport(0,0,500,500) has been called



Apply the Transforms

• First vertex :: (-0.8, 0.8, 0.3)
– wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
– wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
– wz = [(f-n)/2]×z + (n+f)/2 = 0.65

• Second vertex :: (0.8, 0.8, -0.2)
– wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
– wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
– wz = [(f-n)/2]×z + (n+f)/2 = 0.4

• Third vertex :: (0, -0.8, -0.2)
– wx = (w/2)×x + vx + w/2 = 250×0 + 250 = 250
– wy = (h/2)y + vy + h/2 = 250×(-0.8) + 250 = 50
– wz = [(f-n)/2]×z + (n+f)/2 = 0.4



Next Lecture

• Rasterize the clipped triangle

– But our triangle’s vertexes are in window space so 
we are ready

• Interpolate color values over the triangle

• Depth test the triangle

• Update pixel locations

• Swap buffers



Questions?


