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Roadmap of This Class 

• Image Filters 
– Smoothing 

– Canny edge detector 

– Binary image analysis 

– Texture 

• Grouping/Fitting/Segmentation 
– Hough transform/RANSAC 

– K-means 

– Graph-cut 



Now: Multiple views 

Hartley and Zisserman 

Lowe 

Matching, invariant features, 

stereo vision, instance 

recognition 

Fei-Fei Li 

Slide credit: Kristen Grauman 



Important tool for multiple views: Local features 

How to detect which local features to match? 

Multi-view matching relies on local feature correspondences. 



Local features: main components 

1) Detection: Identify the 
interest points 
 

 

 

 

2) Description:Extract vector 
feature descriptor surrounding 
each interest point. 
 

 

 

 

3) Matching: Determine 
correspondence between 
descriptors in two views 
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Slide credit: Kristen Grauman 



Local features: desired properties 

• Invariance  
– Can be detected despite geometric and photometric 

transformations  

• Saliency 
– Each feature has a distinctive description/Few potential 

matches on other images 

• Compactness and efficiency 
– Only a few salient features from each image 

• Locality 
– A feature occupies a relatively small area of the image; 

robust to clutter and occlusion 

 



Goal: Invariance 

• We want to detect (at least some of) the same 
points in both images. 

 

 

 

 
 

• Yet we have to be able to run the detection 
procedure independently per image. 

No chance to find true matches! 

Slide credit: Kristen Grauman 



Goal: descriptor distinctiveness 

• We want to be able to reliably determine which 
point goes with which. 

 

 

 

 

• Must provide some invariance to geometric and 
photometric differences between the two views. 

? 

Slide credit: Kristen Grauman 



Local features: main components 

1) Detection: Identify the 
interest points 
 

 

 

 

2) Description:Extract vector 
feature descriptor surrounding 
each interest point. 
 

 

 

 

3) Matching: Determine 
correspondence between 
descriptors in two views 

Slide credit: Kristen Grauman 



• What points would you choose? 

Slide credit: Kristen Grauman 



Detecting corners 

Slide credit: Kristen Grauman 



• Compute “cornerness” response at every pixel. 

Detecting corners 

Slide credit: Kristen Grauman 



Detecting corners 

Slide credit: Kristen Grauman 



Detecting local invariant features 

 

• Detection of interest points 

– Harris corner detection 

– Scale invariant blob detection: LoG 

• (Next lecture: description of local patches) 

• Not all invariant features are corners --- there 
is a tradeoff between how many invariant 
features we detect from each image and the 
computational cost 

 



Optical Flow Review 



Translational model 

• Invariance assumption 

 

 

 

 

• Image brightness constant constraint: 

 

 

 

Make it continuous, like a video 

Derivative computation: 



Optical flow and the aperture problem 

• Simplified notation 

 

 

• Eulerian view: 
– Fix our attention at a particular image location and compute the 

velocity of “particles flowing” through that pixel 

– u is called a optical flow 

• Lagrangian view: 
– Fix our attention at a particular particle x(t) 

– This is called feature tracking 



• A single constraint does not uniquely specify the 
motion 

– We cannot differentiate diagonal motion and horizontal 
motion 

Aperture problem 



Local constancy 

• Motion is the same for all points in a window W(x) 

• This is equivalent to assuming a purely translational 
deformation model: 

Least square solution 

Optimization formulation 



M may be degenerate 

• The intensity variation in a local image window varies 
only along one dimension or vanishes 

and/or 
























 

2

1

2

2

0

0





yyx

yxx

III

III
M
























 

2

1

2

2

0

0





yyx

yxx

III

III
M

First, consider an axis-aligned corner: 

This means dominant gradient directions align with x or 
y axis 

Look for locations where both λ’s are large. 

If either λ is close to 0, then this is not corner-like. 

 

What does this matrix reveal? 

What if we have a corner that is not aligned with the 
image axes?  



What does this matrix reveal? 
Since M is symmetric, we have TXXM 
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The eigenvalues of M reveal the amount of intensity 
change in the two principal orthogonal gradient 
directions in the window. 



Corner response function 

“flat” region 

1 and 2 are small; 
 

“edge”: 

1 >> 2 

2 >> 1 

“corner”: 

1 and 2 are large, 
 1 ~ 2; 

Cornerness score  
(other variants possible)  



Harris corner detector 

1) Compute M matrix for each image window to get 
their cornerness scores. 

2) Find points whose surrounding window gave large 
corner response (f> threshold) 

3) Take the points of local maxima, i.e., perform 
non-maximum suppression 



Harris Detector: Steps 



Harris Detector: Steps 

Compute corner response f 



Harris Detector: Steps 

Find points with large corner response: f > threshold 



Harris Detector: Steps 

Take only the points of local maxima of f 



Harris Detector: Steps 



Properties of the Harris corner detector 
• Rotation invariant?  

 

 

• Scale invariant? 

TXXM 









2

1

0

0



Yes 



Properties of the Harris corner detector 

• Rotation invariant?  

 

 

• Scale invariant? 

All points will be 
classified as edges 

Corner ! 

Yes 

No 



Scale invariant interest points 

How can we independently select interest points in each 
image, such that the detections are repeatable across 
different scales? 



Automatic Scale Selection 

K. Grauman, B. Leibe 

 

How to find corresponding patch sizes, 

with only one image in hand? 



Automatic scale selection 
Intuition:  
• Find scale that gives local maxima of some function f in 

both position and scale. 

f 

region size 

Image 1 
f 

region size 

Image 2 

s1 s2 



Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  

K. Grauman, B. Leibe 
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Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 
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Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  

 

K. Grauman, B. Leibe 

)),((
1

xIf
mii 

)),((
1

xIf
mii 



• What can be the “signature” function? 



Blob detection in 2D 
• Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D 
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Blob detection in 2D: scale selection 

• Laplacian-of-Gaussian = “blob” detector 
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Blob detection in 2D 
• We define the characteristic scale as the scale 

that produces peak of Laplacian response 

characteristic scale 

Slide credit: Lana Lazebnik 



Example 
Original image at 
¾  the size 

Slide credit: Kristen Grauman 



Original image at 
¾  the size 

Scaled down image 

Original image 

Slide credit: Kristen Grauman 



Scaled down image 

Original image 

Slide credit: Kristen Grauman 



Scaled down image 

Original image 

Slide credit: Kristen Grauman 



Scaled down image 

Original image 

Slide credit: Kristen Grauman 



Scaled down image 

Original image 

Slide credit: Kristen Grauman 



Scaled down image 

Original image 

Slide credit: Kristen Grauman 
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Scale invariant interest points 
Interest points are local maxima in both position 

and scale. 

Squared filter 
response maps Slide credit: Kristen Grauman 



Scale-space blob detector: Example 

 

T. Lindeberg.  Feature detection with automatic scale selection.  IJCV 1998. 



Scale-space blob detector: Example 

Image credit: Lana Lazebnik 



• We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement. 

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian) 

(Difference of Gaussians) 

Technical detail 



Further Reading – Scale-Space 



Summary 

• Desirable properties for local features for 
correspondence 

• Basic matching pipeline 

• Interest point detection 

– Harris corner detector 

– Laplacian of Gaussian, automatic scale selection 

 


