CS376 Computer Vision Lecture 12: Invariant Features

Module

Qixing Huang March 4th 2019

Roadmap of This Class

- Image Filters
 - Smoothing
 - Canny edge detector
 - Binary image analysis
 - Texture
- Grouping/Fitting/Segmentation
 - Hough transform/RANSAC
 - K-means
 - Graph-cut

Now: Multiple views

Matching, invariant features, stereo vision, instance recognition

Important tool for multiple views: Local features

Multi-view matching relies on local feature correspondences.

How to detect which local features to match?

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, \\ x_{n-1}^{(1)}, \dots \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{2}^{\mathbf{v}} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

Local features: desired properties

- Invariance
 - Can be detected despite geometric and photometric transformations
- Saliency
 - Each feature has a distinctive description/Few potential matches on other images
- Compactness and efficiency
 - Only a few salient features from each image
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: Invariance

• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

• Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

• What points would you choose?

Detecting corners

Detecting corners

• Compute "cornerness" response at every pixel.

Detecting corners

Detecting local invariant features

- Detection of interest points
 - Harris corner detection
 - Scale invariant blob detection: LoG
- (Next lecture: description of local patches)
- Not all invariant features are corners --- there is a tradeoff between how many invariant features we detect from each image and the computational cost

Optical Flow Review

Translational model

• Invariance assumption

$$I_{1}(\mathbf{x}_{1}) = I_{2}(h(\mathbf{x}_{1})) = I_{2}(\mathbf{x}_{1} + \mathbf{u})$$

Make it continuous, like a video
$$I(\mathbf{x}(t), t) = I(\mathbf{x}(t) + \mathbf{u}(t), t + dt)$$

• Image brightness constant constraint:

Derivative computation: $\nabla I(\mathbf{x}(t), t)^T \mathbf{u} + I_t(\mathbf{x}(t), t) = 0$

where

$$\nabla I(\mathbf{x},t) \doteq \begin{bmatrix} \frac{\partial I}{\partial x}(\mathbf{x},t)\\ \frac{\partial I}{\partial y}(\mathbf{x},t) \end{bmatrix}$$
, and $I_t(\mathbf{x},t) \doteq \frac{\partial I}{\partial t}(\mathbf{x},t)$.

Optical flow and the aperture problem

• Simplified notation

$$\nabla I^T \mathbf{u} + I_t = 0$$

- Eulerian view:
 - Fix our attention at a particular image location and compute the velocity of "particles flowing" through that pixel
 - **u** is called a optical flow
- Lagrangian view:
 - Fix our attention at a particular particle x(t)
 - This is called feature tracking

Aperture problem

- A single constraint does not uniquely specify the motion
 - We cannot differentiate diagonal motion and horizontal motion

Local constancy

- Motion is the same for all points in a window W(x)
- This is equivalent to assuming a purely translational deformation model:

$$h(\mathbf{x}) = \mathbf{x} + \mathbf{u}(\lambda \mathbf{x}) = \mathbf{x} + \mathbf{u}(\lambda \mathbf{x}) \text{ for all } \mathbf{x} \in W(\mathbf{x})$$

$$\int \text{Optimization formulation}$$

$$E_b(\mathbf{u}) = \sum_{W(x,y)} (\nabla I^T(x,y,t) \cdot \mathbf{u}(x,y) + I_t(x,y,t))^2$$

$$\int \text{Least square solution}$$

$$\left[\begin{array}{c} \sum_{W(x,y)} I_x^2 & \sum_{W(x,y)} I_y^2 \\ \sum_{W(x,y)} I_x I_y & \sum_{W(x,y)} I_y^2 \end{array} \right] \mathbf{u} + \left[\begin{array}{c} \sum_{W(x,y)} I_x I_t \\ \sum_{W(x,y)} I_y I_t \end{array} \right] = 0$$

M may be degenerate

• The intensity variation in a local image window varies only along one dimension or vanishes

 $M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$

What does this matrix reveal?

First, consider an axis-aligned corner:

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

Look for locations where **both** λ 's are large.

If either λ is close to 0, then this is **not** corner-like.

What if we have a corner that is not aligned with the image axes?

What does this matrix reveal? Since *M* is symmetric, we have $M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$

$$Mx_i = \lambda_i x_i$$

The *eigenvalues* of *M* reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Corner response function

"edge": $\lambda_1 >> \lambda_2$ $\lambda_2 >> \lambda_1$

Cornerness score (other variants possible)

"corner": λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; "flat" region λ_1 and λ_2 are small

 $\frac{\lambda_1\lambda_2}{\lambda_1+\lambda_2}$

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

Compute corner response f

Find points with large corner response: *f* > threshold

Take only the points of local maxima of f

·*

· · · ·

Properties of the Harris corner detector

• Rotation invariant? Yes

$$M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$$

• Scale invariant?

Properties of the Harris corner detector

• Rotation invariant? Yes

• Scale invariant? No

Corner !

All points will be classified as edges

Scale invariant interest points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

How to find corresponding patch sizes, with only one image in hand?

Intuition:

• Find scale that gives local maxima of some function *f* in both position and scale.

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x',\sigma))$

• Function responses for increasing scale (scale signature)

• Function responses for increasing scale (scale signature)

• Function responses for increasing scale (scale signature)

 $f(I_{i_1\dots i_m}(x,\sigma))$

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x',\sigma))$

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x',\sigma'))$

K. Grauman, B. Leibe

• What can be the "signature" function?

Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Blob detection in 2D: scale selection

Laplacian-of-Gaussian = "blob" detector •

Blob detection in 2D

• We define the *characteristic scale* as the scale that produces peak of Laplacian response

Example

Original image at ¾ the size

Original image at ¾ the size

Original image

Original image

Original image

x 10⁻⁴

80

0 -2 -4 -6 -8 -10 100

Scale invariant interest points

Interest points are local maxima in both position and scale.

Squared filter Slide credit: Kristen Grauman

Scale-space blob detector: Example

original image

scale-space maxima of $(\nabla_{norm}^2 L)^2$

T. Lindeberg. Feature detection with automatic scale selection. IJCV 1998.

Scale-space blob detector: Example

Image credit: Lana Lazebnik

Technical detail We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

$$I(k\sigma) \qquad I(\sigma) \qquad I(k\sigma) - I(\sigma)$$

$$= i (k\sigma) - I(\sigma)$$

Further Reading – Scale-Space

Scale-Space Theory in Computer Vision

Summary

- Desirable properties for local features for correspondence
- Basic matching pipeline
- Interest point detection
 - Harris corner detector
 - Laplacian of Gaussian, automatic scale selection