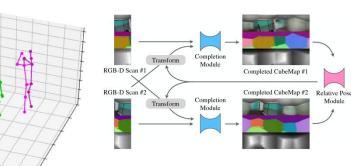
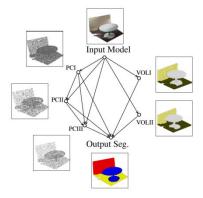
CS376 Computer Vision Lecture 16: Two-View Stereo

Module



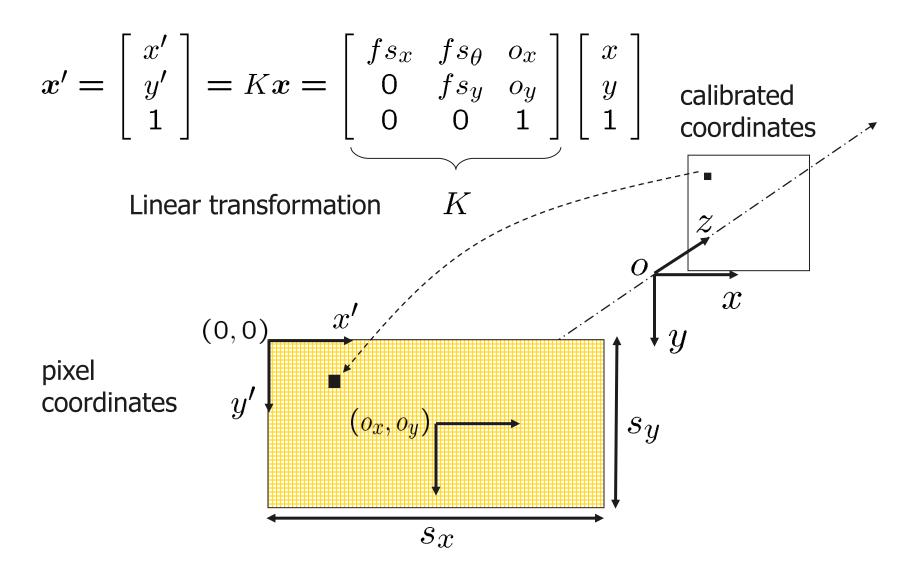
Qixing Huang March 27th 2019





Camera Calibration

Uncalibrated Camera – Intrinsic Parameters are unknown



Uncalibrated Camera Using Homogeneous Coordinates

$$\mathbf{X} = [X, Y, Z, W]^T \in \mathbb{R}^4, \quad (W = 1)$$

Last Lecture:

- Image plane coordinates $\mathbf{x} = [x, y, 1]^T$
- Camera extrinsic parameters g = (R, T)
- Perspective projection

This Lecture:

- Pixel coordinates
- •
- Projection matrix $\lambda \mathbf{x'} = \Pi \mathbf{X} = [KR, KT] \mathbf{X}$

 $\mathbf{x}' = K\mathbf{x}$

 $\lambda \mathbf{x} = [R, T] \mathbf{X}$



Use the fact that both 3-D and 2-D coordinates of feature points on a pre-fabricated object (e.g., a cube) are known.

 \bullet Given 3-D coordinates on known object ${\bf X}$

 $\lambda \mathbf{x}' = [KR, KT] \mathbf{X} \implies \lambda \mathbf{x}' = \Pi \mathbf{X}$

$$\lambda \begin{bmatrix} x^i \\ y^i \\ 1 \end{bmatrix} = \begin{bmatrix} \pi_1^T \\ \pi_2^T \\ \pi_3^T \end{bmatrix} \begin{bmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{bmatrix}$$

• Eliminate unknown scales

$$\begin{aligned} x^{i}(\pi_{3}^{T}\mathbf{X}) &= \pi_{1}^{T}\mathbf{X}, \\ y^{i}(\pi_{3}^{T}\mathbf{X}) &= \pi_{2}^{T}\mathbf{X} \end{aligned}$$

• Recover projection matrix $\Box = [KR, KT] = [R', T']$

 $\Pi^{s} = [\pi_{11}, \pi_{21}, \pi_{31}, \pi_{12}, \pi_{22}, \pi_{32}, \pi_{13}, \pi_{23}, \pi_{33}, \pi_{14}, \pi_{24}, \pi_{34}]^{T}$

min
$$||M\Pi^s||^2$$
 subject to $||\Pi^s||^2 = 1$

Again singular value decomposition

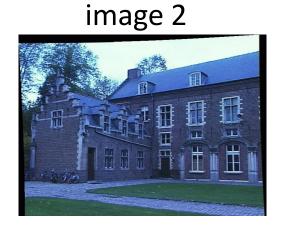
- Factor the KR into $R \in SO(3)$ and K using QR decomposition
- Solve for translation $T = K^{-1}T'$

Binocular Stereo

Binocular Stereo

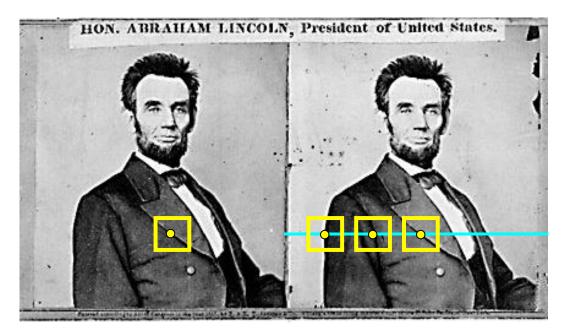
• Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 1



Dense depth map

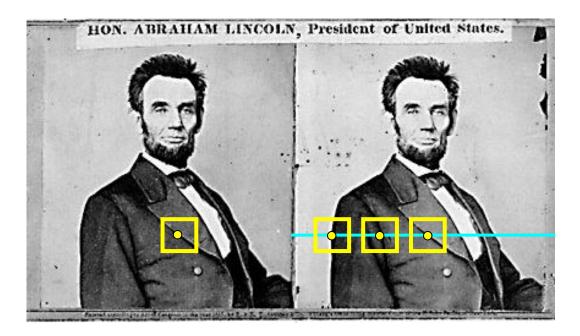
Basic Stereo Matching Algorithm



- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines

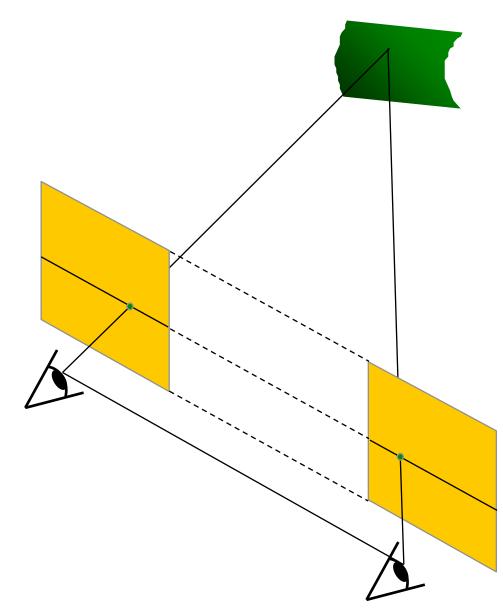
 When does this happen?

Basic stereo matching algorithm

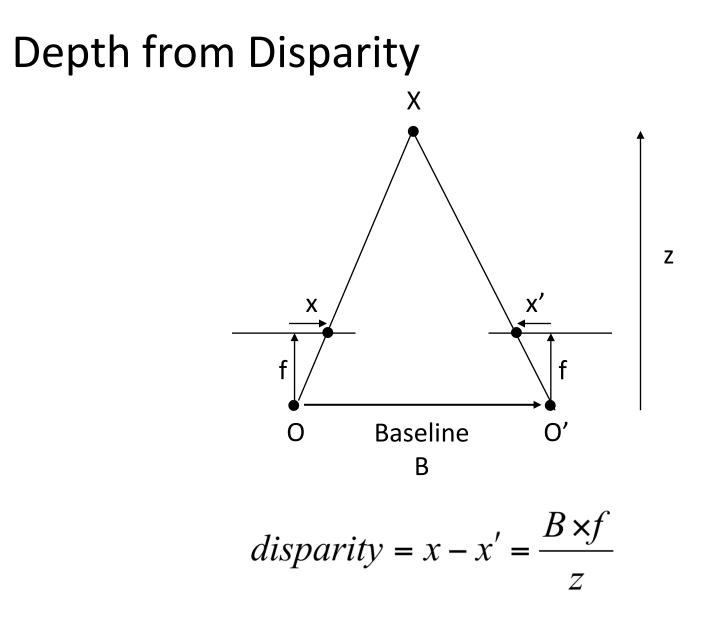


- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?

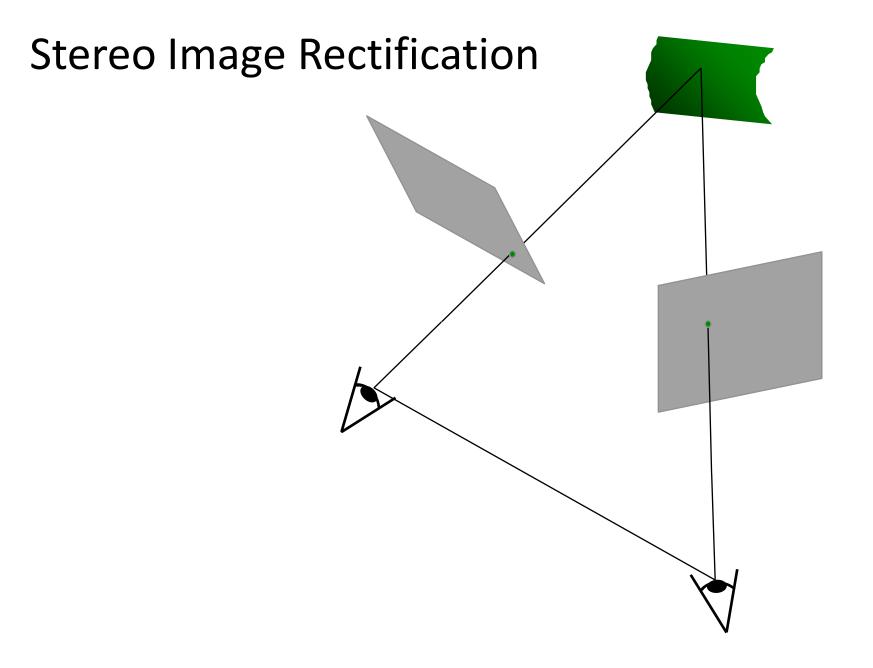
Simplest Case: Parallel Images

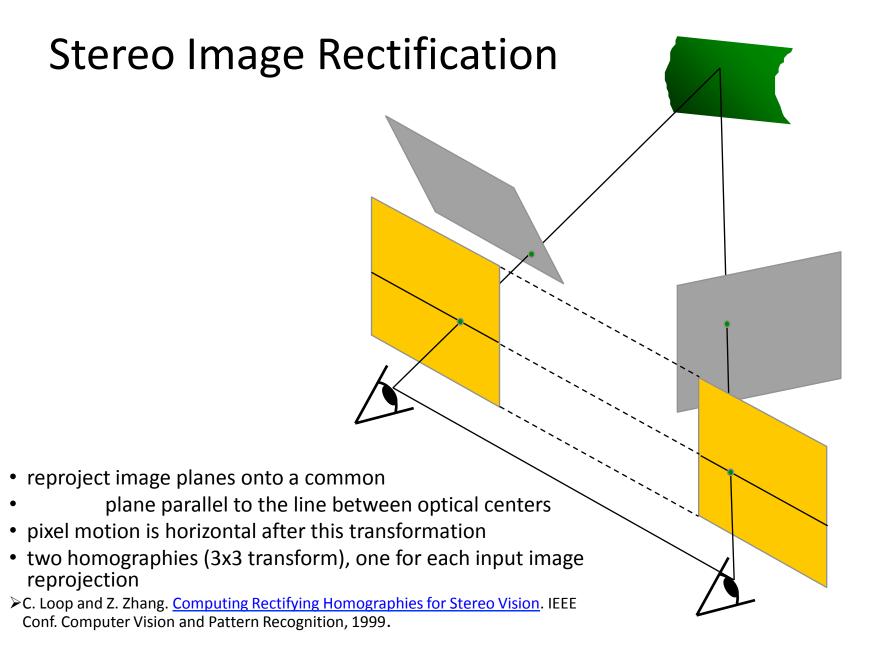


- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images



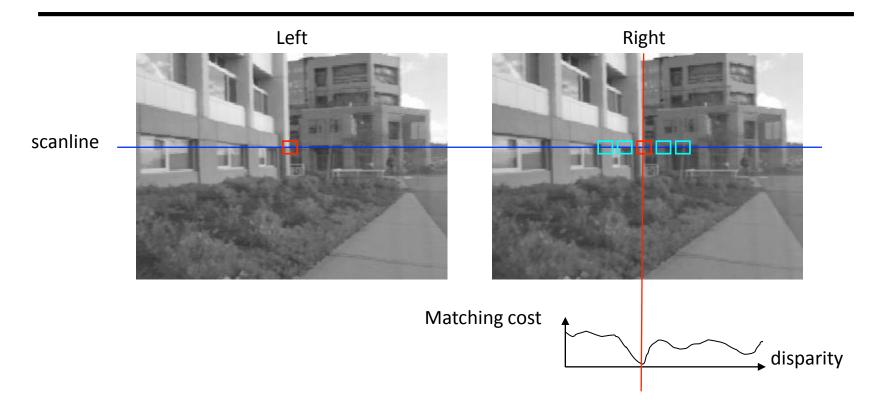
Disparity is inversely proportional to depth!





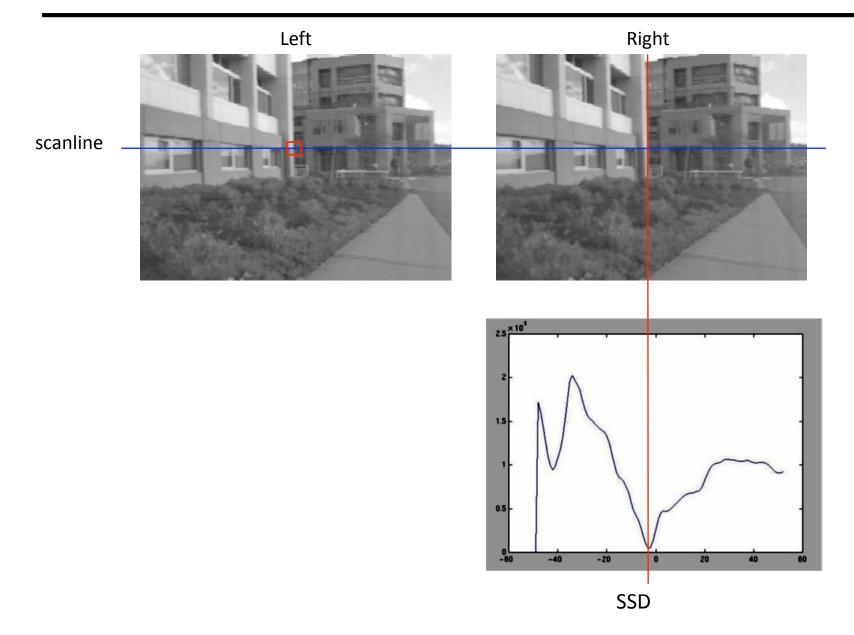
Rectification Example

Correspondence search

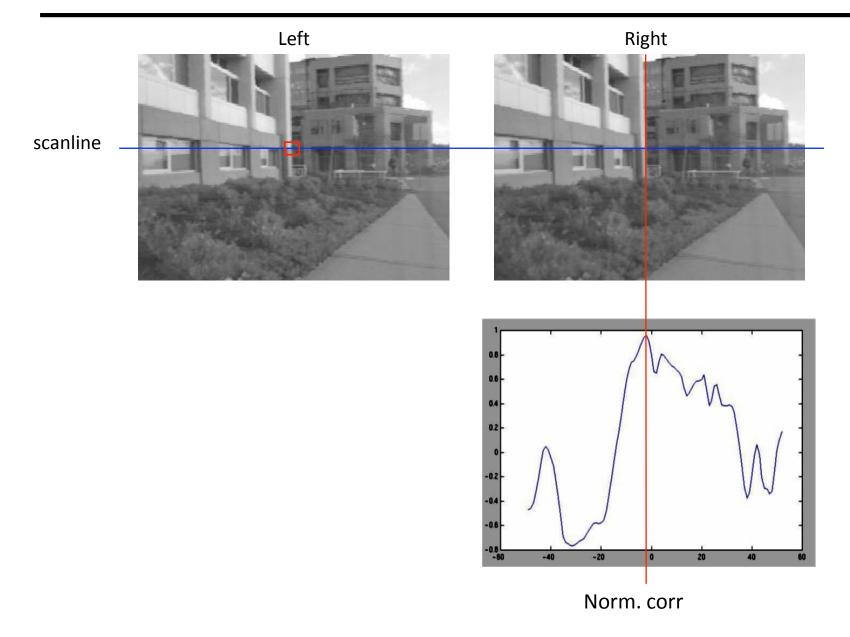


- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

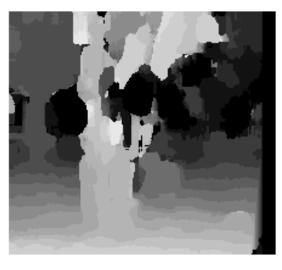
Correspondence search



Correspondence search



Effect of window size



W = 20

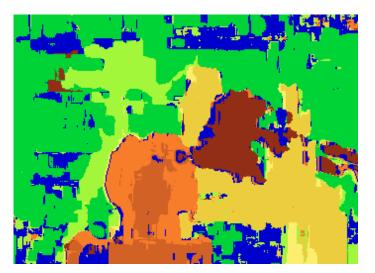
- -Smaller window
 - + More detail
 - More noise
- -Larger window
 - + Smoother disparity maps
 - Less detail

Results with window search

Data

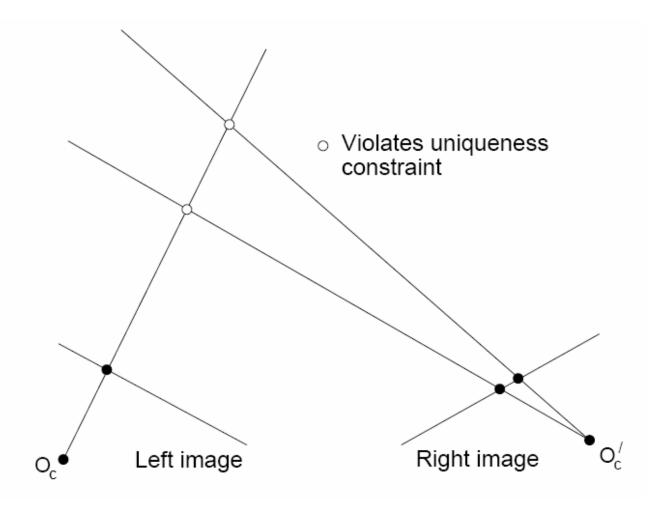
Window-based matching

Ground truth



Non-local constraints

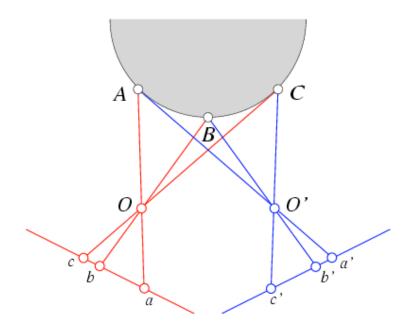
- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image



Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

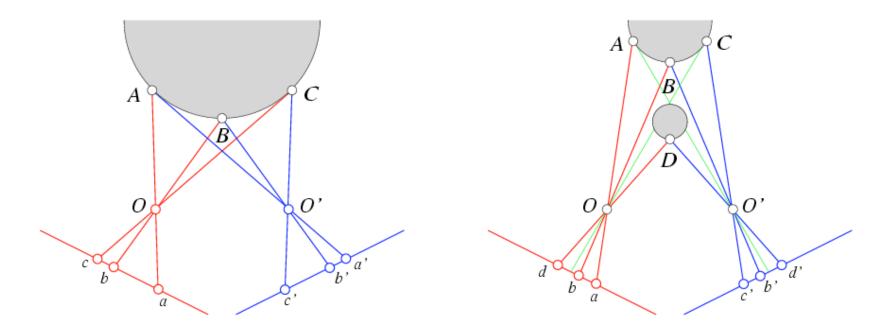
- Corresponding points should be in the same order in both views



Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering

- Corresponding points should be in the same order in both views



Ordering constraint doesn't hold

Consistency Constraints

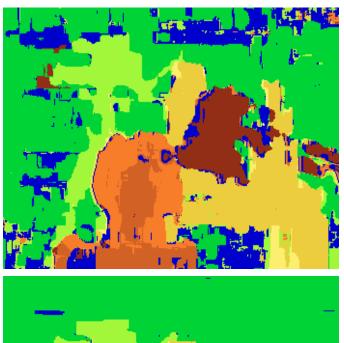
- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

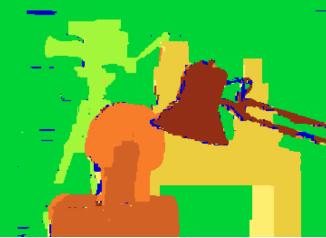
MRF Formulation:

$$E(d) = E_d(d) + \lambda E_s(d)$$
Pixel matching score Consistency Scores

Comparsion

Window-Based Search:

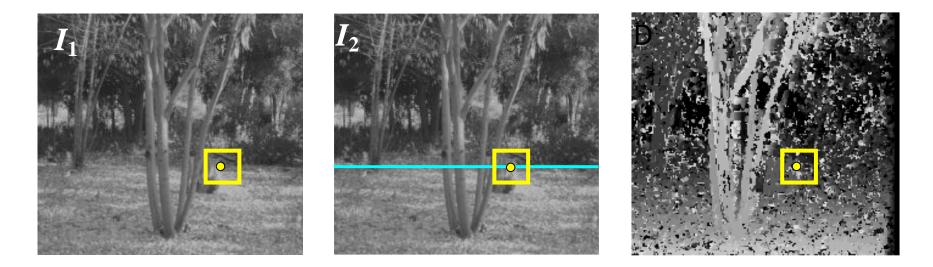




Ground Truth

Graph Cut:

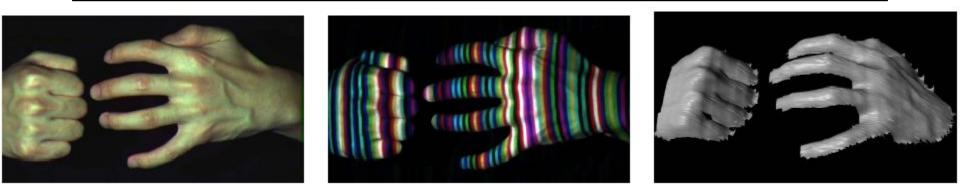
Stereo matching as energy minimization



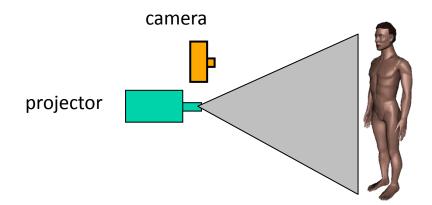
• Graph-cuts can be used to minimize such energy

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via Graph Cuts</u>, PAMI 2001

Active stereo with structured light



- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera



L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and Multi-pass</u> <u>Dynamic Programming.</u> 3DPVT 2002

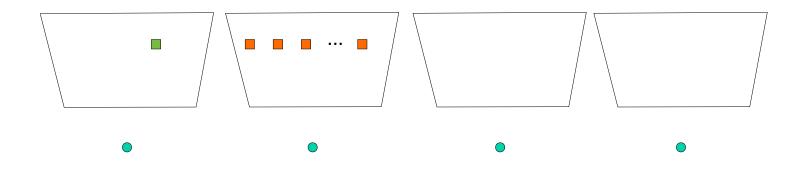
Kinect: Structured infrared light



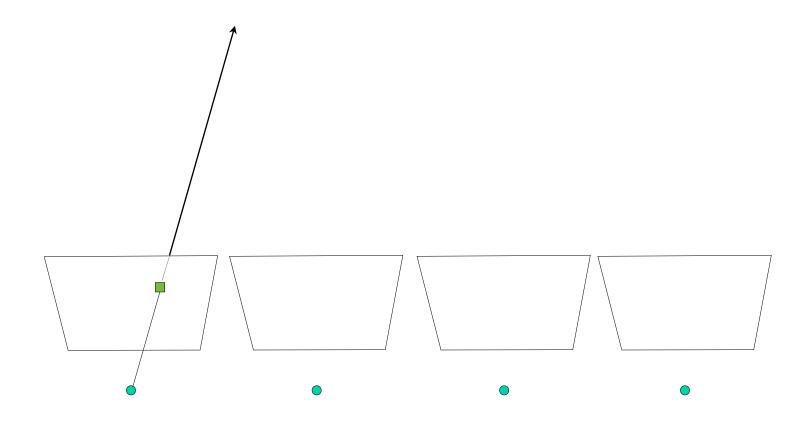
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Multi-Baseline Stereo

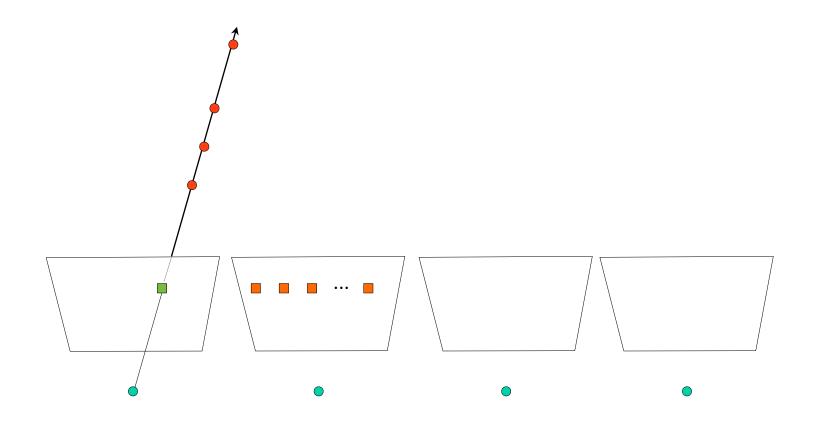
- Change label from disparity to depth
- Change *E*_d(*d*) by using more images



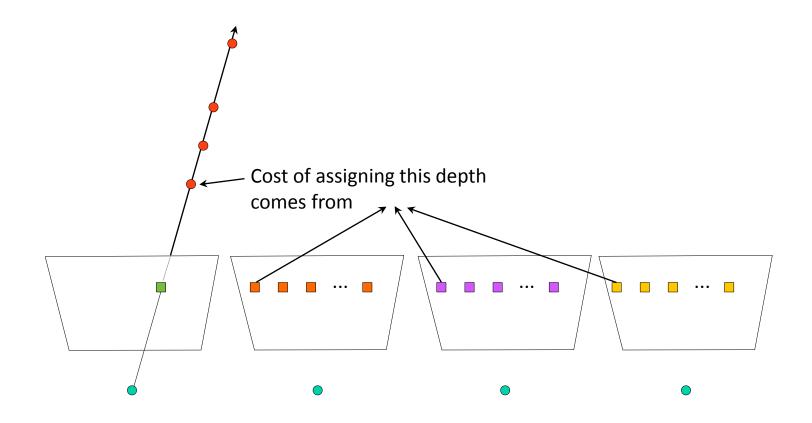
- Change label from disparity to depth
- Change *E*_d(*d*) by using more images

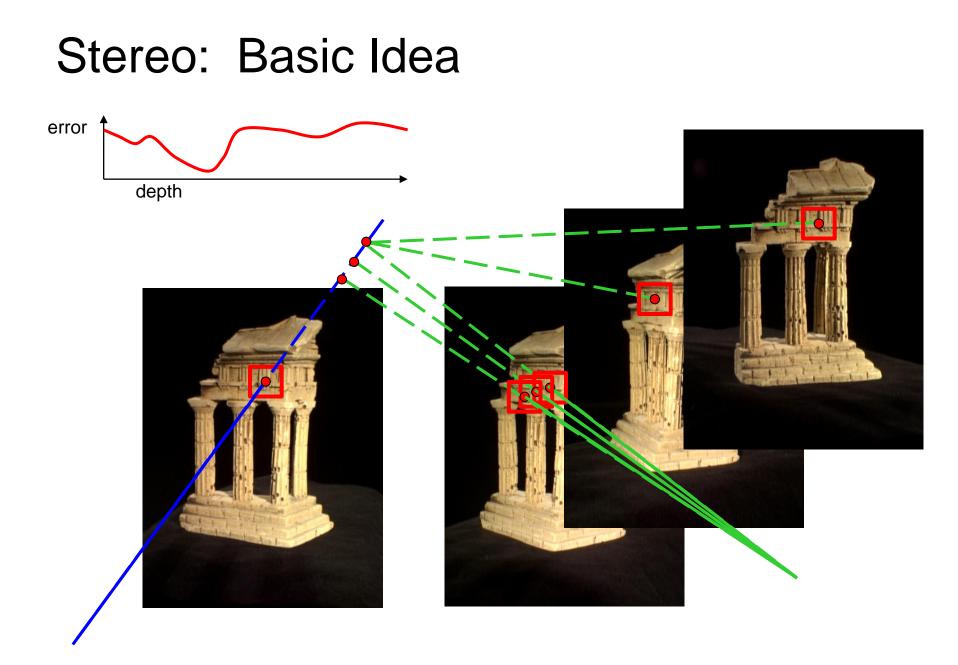


- Change label from disparity to depth
- Change *E*_d(*d*) by using more images



- Change label from disparity to depth
- Change *E*_d(*d*) by using more images



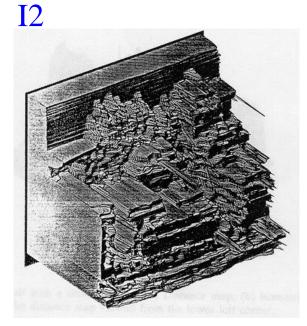


Multiple-Baseline Stereo Results

[Okutomi and Kanade' 93]

I1

I10

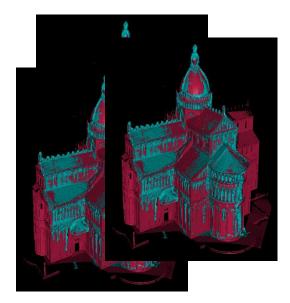


Mesh Reconstruction

Merging Depth Maps

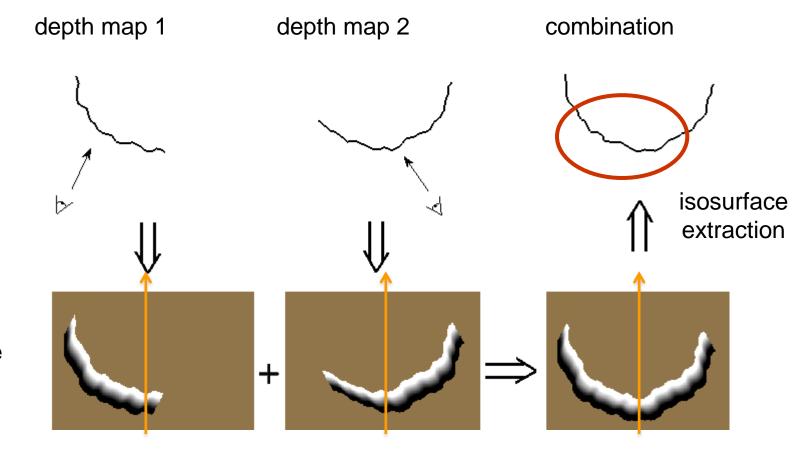
vrip [Curless and Levoy 1996]

• compute weighted average of depth maps



set of depth maps (one per view) merged surface mesh

VRIP

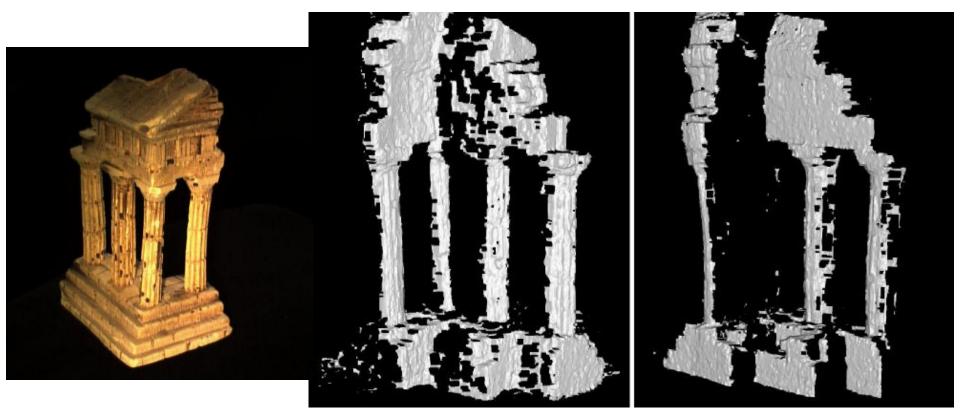


signed distance function

Depthmap Merging

Depthmap 1

Depthmap 2



Merging Depth Maps: Temple Model

[Goesele et al. 06]

input image

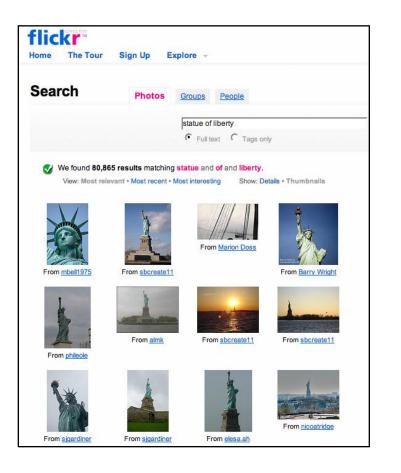
317 images (hemisphere)

ground truth model

State-of-The-Art

Multi-View Stereo from Internet Collections

[Goesele et al. 07]



Challenges

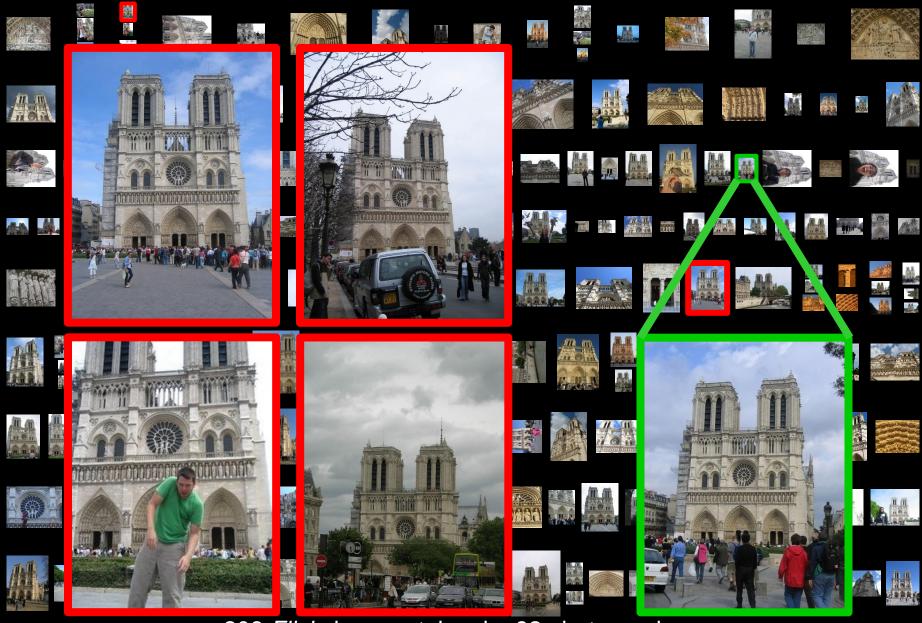
Appearance variation

Resolution

• Massive collections

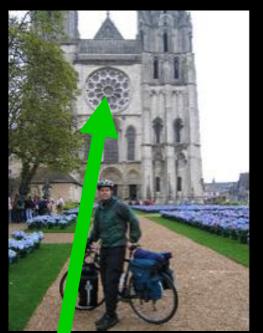
82754 results for photos matching notre and dame and paris

Law of Nearest Neighbors



206 Flickr images taken by 92 photographers

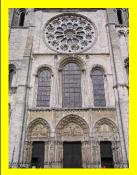
4 best neighboring views



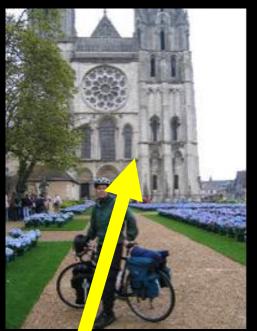
reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines



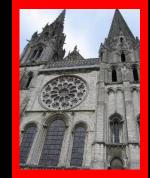
4 best neighboring views



reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines



4 best neighboring views

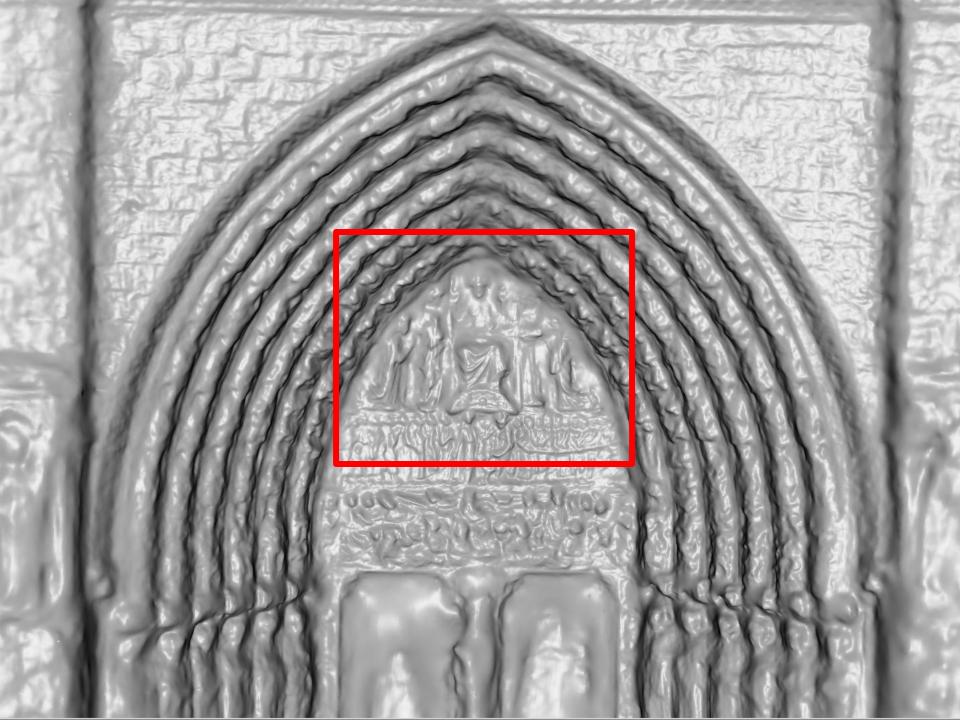
reference view

Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

Notre Dame de Paris

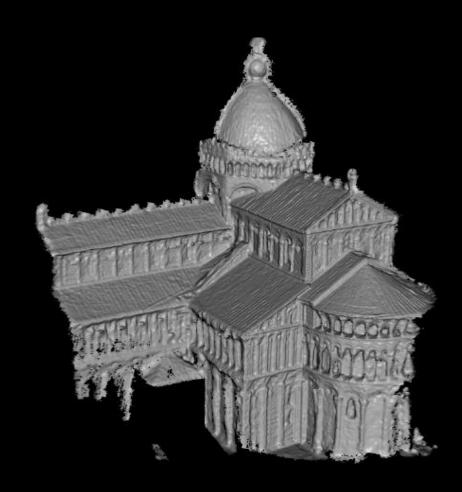
653 images 313 photographers



129 Flickr images taken by 98 photographers

merged model of Venus de Milo

56 Flickr images taken by 8 photographers



merged model of Pisa Cathedral

Accuracy compared to laser scanned model: 90% of points within 0.25% of ground truth

How can Deep Learning Help?