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Camera Calibration 



Uncalibrated Camera – Intrinsic 
Parameters are unknown 

pixel 
coordinates 

calibrated 

coordinates 

Linear transformation 



Calibration with a Rig 



Uncalibrated Camera Using 
Homogeneous Coordinates 
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•  Pixel coordinates 

•  
•  Projection matrix 

This Lecture: 

• Image plane coordinates 

  
• Camera extrinsic parameters  
  
• Perspective projection 

Last Lecture: 



Calibration with a Rig 

Use the fact that both 3-D and 2-D coordinates of feature  
points on a pre-fabricated object (e.g., a cube) are known.  



Calibration with a Rig 

• Eliminate unknown scales 

• Given 3-D coordinates on known object   



Calibration with a Rig 

• Factor the        into                and      
   using QR decomposition 

• Solve for translation  

• Recover projection matrix 

Again singular value decomposition 



Binocular Stereo  



Binocular Stereo 

• Given a calibrated binocular stereo pair, fuse it to 
produce a depth image 

 image 1 image 2 

Dense depth map 



Basic Stereo Matching Algorithm 

• For each pixel in the first image 
– Find corresponding epipolar line in the right image 
– Examine all pixels on the epipolar line and pick the best match 
– Triangulate the matches to get depth information 

 

• Simplest case: epipolar lines are corresponding scanlines 
– When does this happen? 
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Simplest Case: Parallel Images 

• Image planes of cameras are 
parallel to each other and to the 
baseline 

• Camera centers are at same 
height 

• Focal lengths are the same 

• Then, epipolar lines fall along the 
horizontal scan lines of the 
images 



Depth from Disparity 
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Disparity is inversely proportional to depth! 



Stereo Image Rectification 



Stereo Image Rectification 

• reproject image planes onto a common 
•  plane parallel to the line between optical centers 
• pixel motion is horizontal after this transformation 
• two homographies (3x3 transform), one for each input image 

reprojection 
C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE 

Conf. Computer Vision and Pattern Recognition, 1999. 

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification Example 



Matching cost 

disparity 

Left Right 

scanline 

Correspondence search 

• Slide a window along the right scanline and compare 
contents of that window with the reference window in the 
left image 

• Matching cost: SSD or normalized correlation 



Left Right 

scanline 

Correspondence search 

SSD 



Left Right 

scanline 

Correspondence search 

Norm. corr 



Effect of window size 

–Smaller window 
+ More detail 

–  More noise 
 

–Larger window 
+ Smoother disparity maps 

–  Less detail 

W = 3 W = 20 



Results with window search 

Window-based matching Ground truth 

Data 



Non-local constraints 

• Uniqueness  
– For any point in one image, there should be at most one matching 

point in the other image 
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Non-local constraints 

• Uniqueness  
– For any point in one image, there should be at most one matching point in 

the other image 

• Ordering 
– Corresponding points should be in the same order in both views 

Ordering constraint doesn’t hold 



Consistency Constraints 

• Uniqueness  
– For any point in one image, there should be at most one matching point in 

the other image 

• Ordering 
– Corresponding points should be in the same order in both views 

• Smoothness 
– We expect disparity values to change slowly (for the most part) 

MRF Formulation: 

Pixel matching score Consistency Scores 



Comparsion 

Window-Based 
Search: 

Graph Cut: Ground Truth 



Stereo matching as energy minimization 

I1 
I2 D 

• Graph-cuts can be used to minimize such energy 
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts,  
PAMI 2001 

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Active stereo with structured light 

• Project “structured” light patterns onto the object 
– Simplifies the correspondence problem 

– Allows us to use only one camera 

camera  

projector 

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass 
Dynamic Programming. 3DPVT 2002 

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


Multi-Baseline Stereo  



Same formulation with more images 

• Change label from disparity to depth 

• Change Ed(d) by using more images 

... 
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Same formulation with more images 

• Change label from disparity to depth 

• Change Ed(d) by using more images 

... ... ... 

Cost of assigning this depth 
comes from 



Stereo:  Basic Idea 

error 

depth 



Multiple-Baseline Stereo Results 

I1 I2 I10 

[Okutomi and Kanade’ 93] 



Mesh Reconstruction 



Merging Depth Maps 

vrip [Curless and Levoy 1996] 

• compute weighted average of depth maps 

set of depth maps 
(one per view) 

merged surface 
mesh 



VRIP 

depth map 1 depth map 2 combination 

signed 

distance 

function 

isosurface 

extraction 



Depthmap Merging 

41 

Depthmap 1 Depthmap 2 



Merging Depth Maps: Temple Model 

16 images (ring) 47 images (ring) 317 images 

(hemisphere) 
input image ground truth model 

[Goesele et al. 06] 



State-of-The-Art 



Multi-View Stereo from Internet Collections 

[Goesele et al. 07] 



Challenges 

• Appearance variation 

 

 

 

• Resolution 

 

 

 

• Massive collections 

82754 results for photos matching notre and dame and paris 



206 Flickr images taken by 92 photographers 

Law of Nearest Neighbors 



Local view selection 
• Automatically select neighboring views for each point in the image 

• Desiderata:  good matches AND good baselines 

4 best neighboring views 

reference view 
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Local view selection 
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Notre Dame de Paris 

 

653 images 

313 photographers 





129 Flickr images taken by 98 photographers 



merged model of Venus de Milo 



56 Flickr images taken by 8 photographers 



merged model of Pisa Cathedral  



Accuracy compared to laser scanned model: 

90% of points within 0.25% of ground truth 



How can Deep Learning Help? 


