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Announcements

• Piazza for assignment questions

• A0 due tomorrow.  Submit on Canvas.

• Office hours posted on class website



Plan for today

• Image noise

• Linear filters

– Examples: smoothing filters



Images as matrices

The GraduateKids with SantaLittle Leaguer

From: 100 Special Moments, by Jason Salavon (University of Chicago) (2004)

http://salavon.com/SpecialMoments/SpecialMoments.shtml

Newlyweds

Result of averaging 100 similar snapshots



Image Formation

Source: https://slideplayer.com/slide/13474214/



Images as functions



Digital camera

A digital camera replaces film with a sensor array
• Each cell in the array is light-sensitive diode that converts 

photons to electrons
• http://electronics.howstuffworks.com/digital-camera.htm

http://electronics.howstuffworks.com/digital-camera.htm


Slide credit: Derek Hoiem

Digital images



• Sample the 2D space on a regular grid

• Quantize each sample (e.g., round to nearest integer)

• Image thus represented as a matrix of integer values.

Digital images

1D
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98 78 77 77 75 46

2D



Digital color images



R G B

Color images, 

RGB color 

space

Digital color images
Slide Credit:
Kristen Grauman



Images in Matlab

• Images represented as a matrix

• Suppose we have a NxM RGB image called “I”
– I(1,1,1) = top-left pixel value in R-channel

– I(y, x, b) = y pixels down, x pixels to right in the bth channel

– I(N, M, 3) = bottom-right pixel in B-channel

• imread(filename) returns a uint8 image (values 0 to 255)
– Convert to double format (values 0 to 1) with im2double



Main idea: image filtering

• Aggregate the local neighborhood at each pixel in the 
image

– Function specified a pattern saying how to aggregate 
values from neighbors

• Uses of filtering:

– Enhance an image (denoise, resize, level-of-details, etc)

– Extract information (texture, edges, features, etc)

– Detect patterns (template matching)



Motivation: noise reduction

• Even multiple images of the same static scene will not be 
identical.

Slide credit: 

Kristen Grauman



Common types of noise

– Salt and pepper noise: 
random occurrences of   
black and white pixels

– Impulse noise: random 
occurrences of white pixels

– Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution

Source: S. Seitz



Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

What is impact of the sigma?
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sigma=1

Effect of 
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Gaussian 

noise:
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an image.



Effect of 
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sigma=16

Effect of 

sigma on 

Gaussian 

noise

This shows 

the noise 

values 

added to the 

raw 

intensities of 

an image.



Motivation: noise reduction

• Even multiple images of the same static scene will not be 
identical.

• How could we reduce the noise, i.e., give an estimate of the 
true intensities?

• What if there’s only one image?

Slide credit: 

Kristen Grauman



First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Assumptions: 

– Expect pixels to be like their neighbors

– Expect noise processes to be independent from 
pixel to pixel



First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner



Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 

around  image pixel F[i,j]

Attribute uniform 

weight to each pixel

Now generalize to allow different weights depending on  

neighboring pixel’s relative position:

Non-uniform weights



Correlation filtering

Filtering an image: replace each pixel with a linear 

combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 

weights in the linear combination.

This is called cross-correlation, denoted 



Averaging filter

• What values belong in the kernel H for the moving average 
example?
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Boundary Issues

• What is the size of the output?

imfilter



Boundary Issues

• What is the size of the output?

filter2



Smoothing with a Gaussian



Gaussian filters
• What parameters matter here?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters 
use finite kernels

σ = 5 with 

10 x 10 

kernel

σ = 5 with 

30 x 30 

kernel
Slide credit: 

Kristen Grauman



Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of 
smoothing

σ = 2 with 

30 x 30 

kernel

σ = 5 with 

30 x 30 

kernel
Slide credit: 

Kristen Grauman



Matlab
>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation 

>> imshow(outim);

outimSlide credit: 

Kristen Grauman



Smoothing with a Gaussian

for sigma=1:3:10 

h = fspecial('gaussian‘, fsize, sigma);

out = imfilter(im, h); 

imshow(out);

pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 

kernel, and controls the amount of smoothing.

Slide credit: 

Kristen Grauman
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Properties of smoothing filters

• Smoothing
– Values positive 

– Sum to 1 → constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

Slide credit: 

Kristen Grauman



Predict the outputs using correlation 
filtering
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Slide credit: 

Kristen Grauman



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Sharpening filter:

accentuates differences 

with local average

Source: D. Lowe



Filtering examples: sharpening



More Examples
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Convolution

• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for 

convolution 

operator

F

H

Slide Credit: Kristen Grauman



Properties of convolution

• Shift invariant: 

– Operator behaves the same everywhere, i.e. the value of 
the output depends on the pattern in the image 
neighborhood, not the position of the neighborhood.

• Superposition:

– h * (f1 + f2) = (h * f1) +  (h * f2) 

Slide Credit: Kristen Grauman



Properties of convolution
• Commutative:

f * g = g * f

• Associative

(f * g) * h = f * (g * h)

• Distributes over addition

f * (g + h) = (f * g) + (f * h)

• Scalars factor out

kf * g = f * kg = k(f * g)

• Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …].  f * e = f

Slide Credit: Kristen Grauman



Separability

• In some cases, filter is separable, and we can factor into two 
steps:

– Convolve all rows with a 1D filter

– Convolve all columns with a 1D filter

Slide Credit: Kristen Grauman



Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

Slide Credit: Kristen Grauman



Median filter

• No new pixel values 

introduced

• Removes spikes: good 

for impulse, salt & 

pepper noise

• Non-linear filter

Slide Credit: Kristen Grauman



Median filter

Salt and 

pepper 

noise

Median 

filtered

Source: M. Hebert

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Slide Credit: Kristen Grauman



Median filter

• Median filter is edge preserving

Slide Credit: Kristen Grauman



Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Filtering application: Hybrid Images



Application: Hybrid Images
Gaussian Filter

Laplacian Filter

A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm


Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006



wwww

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006



Summary

• Image “noise”

• Linear filters and convolution useful for

– Enhancing images (smoothing, removing noise)
• Box filter

• Gaussian filter

• Impact of scale / width of smoothing filter

– Detecting features (next time)

• Separable filters more efficient 

• Median filter: a non-linear filter, edge-preserving



Coming up

• Wednesday: 

– Filtering part 2: filtering for features (edges, 
gradients, seam carving application)

• Tomorrow:

– Assignment 0 is due on Canvas 11:59 PM

•


