CS376 Computer Vision
Lecture 2: Linear Filters

Qixing Huang
January 28t 2019

Announcements

* Piazza for assignment questions
 AO due tomorrow. Submit on Canvas.

e Office hours posted on class website

Plan for today

* Image noise

* Linear filters
— Examples: smoothing filters

Images as maitrices

Result of averaging 100 similar snapshots

Little Leaguer Kids with Santa The Graduate Newlyweds

From: 100 Special Moments, by Jason Salavon (University of Chicago) (2004)
http://salavon.com/SpecialMoments/SpecialMoments.shtml

lmage Formation

point source of

OBJECT /
surface element #~ illumination

/ /
surface J
== N
—— normal
surfoagce \\
reflegtance \ e <
. radiance e CAMERA
S — _irradiance
7 jge =

optical axis

sensor ¢lement

Source: https://slideplayer.com/slide/13474214/

Images as functions

' Wm.rn

L-.H_'

Digital camera

A digital camera replaces film with a sensor array

* Each cell in the array is light-sensitive diode that converts
photons to electrons
e http://electronics.howstuffworks.com/digital-camera.htm

http://electronics.howstuffworks.com/digital-camera.htm

Digital images

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

Slide credit: Derek Hoiem

Digital images

 Sample the 2D space on a regular grid
* Quantize each sample (e.g., round to nearest integer)

* Image thus represented as a matrix of integer values.

1010 1010 24 20
212170103040
000510153010
0515101617 28
755030202530
98 7877777546

Tl

2D

1D

Digital color images

Bayer filter

Slide Credit:

Dlgltal COlor Images Kristen Grauman

Color images,
RGB color

Images in Matlab

* Images represented as a matrix

« Suppose we have a NxM RGB image called
— 1(1,1,1) = top-left pixel value in R-channel
— I(y, x, b) =y pixels down, x pixels to right in the bt channel
— I(N, M, 3) = bottom-right pixel in B-channel

* Imread(filename) returns a uint8 image (values 0 to 255)
— Convert to double format (values 0 to 1) with im2double

“I”

Main idea: image filtering

* Aggregate the local neighborhood at each pixel in the
Image

— Function specified a pattern saying how to aggregate
values from neighbors

e Uses of filtering:
— Enhance an image (denoise, resize, level-of-details, etc)
— Extract information (texture, edges, features, etc)
— Detect patterns (template matching)

Motivation: noise reduction

* Even multiple images of the same static scene will not be
identical.

Slide credit:
Kristen Grauman

Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise: random
occurrences of white pixels

— @Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution

Impulse noise Gaussian noise

Source: S. Seitz

Gaussian noise

ldeal lmage Noise process Gaussian i.i.d. (“white") noise:
fxy)= flz,y) + n(z,y) n(z,y) ~ N(u, o)
>> noise = randn(size(im)) .*sigma;
>> output = im + noise;

What is impact of the sigma?

Fig: M. Hebert

sigma=1

Effect of
sigma on
Gaussian
noise:

Image
shows the
noise values
themselves.

sigma=4

Effect of
sigma on
Gaussian
noise:

Image
shows the
noise values
themselves.

Effect of
sigma on
Gaussian
noise:

This shows
the noise
values
added to the

raw
intensities of
an image.

sigma=

16

Effect of
sigma on
Gaussian

| noise:

Image
shows the
noise values
themselves.

sigma=16

Effect of
sigma on
Gaussian
noise

This shows
the noise
values
added to the
raw
intensities of
an image.

Motivation: noise reduction

* Even multiple images of the same static scene will not be
identical.

 How could we reduce the noise, i.e., give an estimate of the
true intensities?

 What if there’s only one image?

Slide credit:
Kristen Grauman

First attempt at a solution

e |Let’s replace each pixel with an average of all
the values in its neighborhood

e Assumptions:

— Expect pixels to be like their neighbors

— Expect noise processes to be independent from
pixel to pixel

First attempt at a solution

e |Let’s replace each pixel with an average of all
the values in its neighborhood

e Moving average in ;D

MR
orlgmal

.Q.

......................................

Weighted Moving Average

* Can add weights to our moving average
 Weights [1,1,1,1,1] /5

il

++-001111100

N

i

Source: S. Marschner

Weighted Moving Average

* Non-uniform weights [1, 4, 6,4, 1]/ 16

Source: S. Marschner

Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

0 10 § 20

Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

0 10 | 20 § 30 ‘\

Source: S. Seitz

Moving Average In 2D

Flz, y]

Glz,y.

10

20

30

Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz

Correlation filtering

Say the averaging window size IS 2k+1 X 2k+1:

G[i,j]—(2k+1)2 S % Flitug+ol

——Lkov==%k

) \ J
! |

Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Gli, 5] = Z Z H[u fU]F[z—I—uj—I—fU]

w=—ko=—Fk Y
Non-uniform weights

Correlation filtering

ko k
Gli,j1= >, > Hlu,v]F[i+u,j+]

u=—kv=—k%k
This is called cross-correlation, denoted G = H & F

Filtering an image: replace each pixel with a linear
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

Averaging filter

* What values belong in the kernel H for the moving average

example?
Flx,vy] ® Hlu,v] Glz, y]
11111 0 [20]40 GOi;.i
1 {o——0
—11 T 1
1 11]1
“box filter”

G=HQXF

Boundary Issues

 What is the size of the output?

Padding Options

numeric scalar, X Input array values outside the bounds of the array are assigned the value X. When no padding
option is specified, the default is .

'symmetric’ Input array values outside the bounds of the array are computed by mirror-reflecting the array
across the array border.

'replicate’ Input array values outside the bounds of the array are assumed to equal the nearest array border
value.

‘circular’ Input array values outside the bounds of the array are computed by implicitly assuming the input

array is periodic.

Output Size

'same’ The output array is the same size as the input array. This is the default behavior when no output
size options are specified.

"full’ The output array is the full filtered result, and so is larger than the input array.

Correlation and Convolution Options

‘corr’ imfilter performs multidimensional filtering using correlation, which is the same way that
filter2 performs filtering. When no correlation or convolution option is specified, imfilter uses
correlation.

‘conv' imfilter performs multidimensional filtering using convolution. .

imfilter

Boundary Issues

 What is the size of the output?

shape — Subsection of filtered data
'same’ (default) | 'full' | 'valid'

Subsection of the filtered data, specified as one of these values:

"same' — Return the central part of the filtered data, which is the same size as X.
"full' — Return the full 2-D filtered data.
'valid' — Return only parts of the filtered data that are computed without zero-padded edges.

filter2

Smoothing with a Gaussian

Gaussian filters

 What parameters matter here?
* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

o = 5 with
10 x 10 30 x 30
kernel kernel

Slide credit:
Kristen Grauman

Gaussian filters

 What parameters matter here?
e Variance of Gaussian: determines extent of

smoothing

o = 2 with oJémm
30 x 30 30 x 30
kernel kernel

Slide credit:
Kristen Grauman

Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial (‘gaussian’ hsize, sigma);

>> mesh(h);‘g_

>> imagesc (h); E

>> outim = imfilter(im, h); % correlation
>> imshow (outim) ;

Slide credit: o outim
Kristen Grauman

Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

H -
10
20
an

o 10 20 a0 T 0 10 20 30

for sigma=1:3:10
h = fspecial ('gaussian', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;

Slide credit:
end

Kristen Grauman

Keeping the two Gaussians in play straight...

no

smoothing

o=1 pixel

& [BwIdy] buiyioows 1apIpn

a=2 pixels

Properties of smoothing filters

e Smoothing

— Values positive

— Sum to 1 - constant regions same as input
— Amount of smoothing proportional to mask size

— Remove “high-frequency” components; “low-pass” filter

Slide credit:
Kristen Grauman

Predict the outputs using correlation
filtering

Slide credit:
Kristen Grauman

Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

0/0]|0
0/0|1
0/0]|0
Original Shifted left
by 1 pixel
with

correlation

Source: D. Lowe

Practice with linear filters

1111
1
—|11111 ?
9

1111

Original

Source: D. Lowe

Practice with linear filters

O]+

Original Blur (with a
box filter)

Source: D. Lowe

Practice with linear filters

0l0/0 171]1
020-5111 ?
0/0/0 111]1

Original

Source: D. Lowe

Practice with linear filters

Original

ellelle
ON|O
oo |0

¥

=
=
=

=
=
=

O|

=
=
=

Sharpening filter:
accentuates differences
with local average

Source: D. Lowe

Filtering examples: sharpening

More Examples

%
o

»
—p Y5 o 1
> " A
f
i
\
]
v :
v e ’

lv(‘
o

-—

mrl

L na_g , M‘h

O]+

“s -
. - S : .
<~

24 v ’ '.&
‘P —a _... .u‘ . L

lf'lf lﬂlrl

_wuﬁ

0/0/0 1111
020—5111
0/0/0 11111

Convolution

 Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kov=-—%k

G=HxF 4

T

Notation for
convolution
operator

Slide Credit: Kristen Grauman

Properties of convolution

e Shift invariant:

— Operator behaves the same everywhere, i.e. the value of
the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

* Superposition:
—h*(fl+f2)=(h*f1)+ (h*f2)

Slide Credit: Kristen Grauman

Properties of convolution

 Commutative:
f*g=g*f
* Associative
(f*g)*h=f*(g*h)
* Distributes over addition
f*(g+h)=(f*g)+(f*h)
* Scalars factor out
kf *g=f*kg=k(f*g)
* Identity:
unitimpulsee=1...,0,0,1,0,0, ...]. f*e=f

Slide Credit: Kristen Grauman

Separability

* In some cases, filter is separable, and we can factor into two
steps:
— Convolve all rows with a 1D filter
— Convolve all columns with a 1D filter

[U I P Y
9 9 9 3 0 0 O
U1If g 1 glft 11
9 9 9 3 3 3 3
Tiaf o1 1o o
9 9 9 | 3 |

Slide Credit: Kristen Grauman

Effect of smoothing filters

NS

Additive Gaussian noise Salt and pepper noise

Slide Credit: Kristen Grauman

Median filter

10| 1520 * No new pixel values

2319027 introduced
l Sort

3313130

Median value Removes SpikeSZ gOOd
10 15 20 23 12730 31 33 90 for impulse, salt &
pepper noise

10115]20 I Replace
2312727 « Non-linear filter
33(31]30

Slide Credit: Kristen Grauman

Slide Credit: Kristen Grauman

Median filter

Salt and _, £ A | Medi
pepper 7% D b4 ﬁlteer:aaélIn
noise | ; .

) LI L’”‘”’“ \

[x] 100 200 o0 L] L] D

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Source: M. Hebert

Slide Credit: Kristen Grauman

Median filter

 Median filter is edge preserving

INPUT

& g8 % & & & 5@

MEDIAN

MEAN

Filtering application: Hybrid Images

What you see... From Far Away Up Close

| see an
angry guy

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Application: Hybrid Images
A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter

Laplacian Filter

unitimpulse Gaussian Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Changing expression

Sad -« » Surprised

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Summary

Image “noise”
Linear filters and convolution useful for

— Enhancing images (smoothing, removing noise)
e Box filter
e Gaussian filter
* Impact of scale / width of smoothing filter

— Detecting features (next time)
Separable filters more efficient
Median filter: a non-linear filter, edge-preserving

Coming up

* Wednesday:

— Filtering part 2: filtering for features (edges,
gradients, seam carving application)

* Tomorrow:
— Assignment O is due on Canvas 11:59 PM

