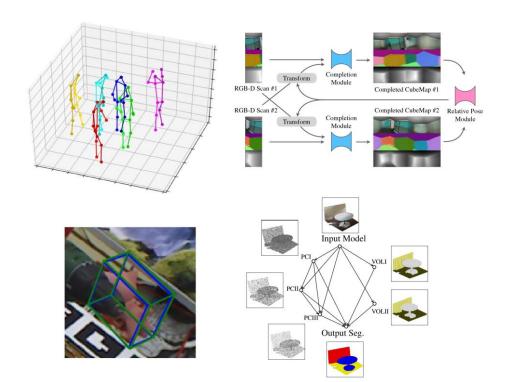
CS376 Computer Vision Lecture 2: Linear Filters



Qixing Huang
January 28th 2019

Announcements

Piazza for assignment questions

A0 due tomorrow. Submit on Canvas.

Office hours posted on class website

Plan for today

Image noise

- Linear filters
 - Examples: smoothing filters

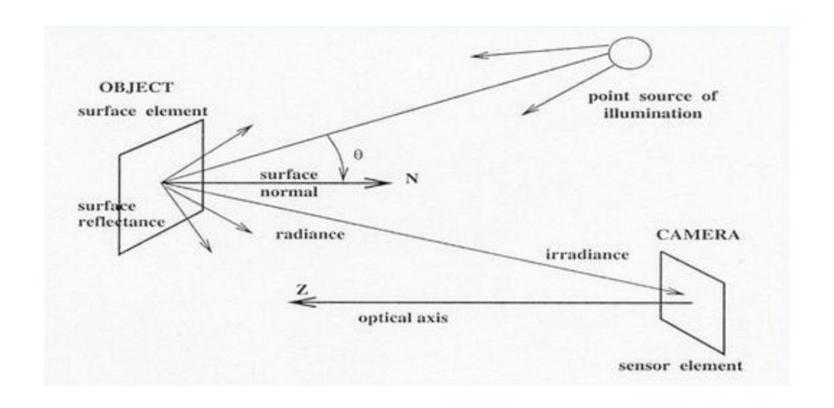
Images as matrices

Result of averaging 100 similar snapshots

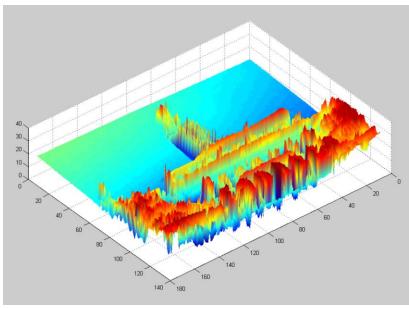


From: 100 Special Moments, by Jason Salavon (University of Chicago) (2004) http://salavon.com/SpecialMoments/SpecialMoments.shtml

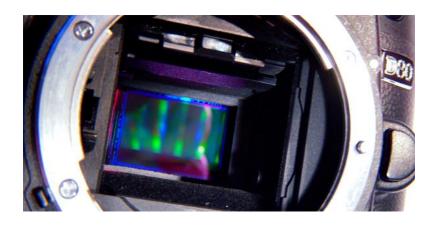
Image Formation



Images as functions



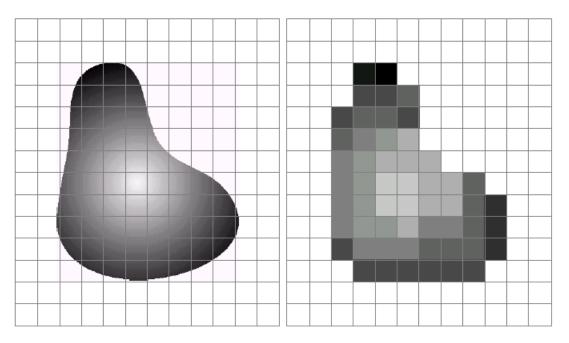
Digital camera

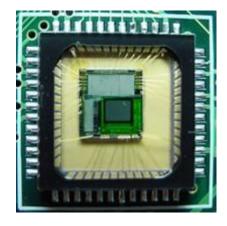


A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/digital-camera.htm

Digital images



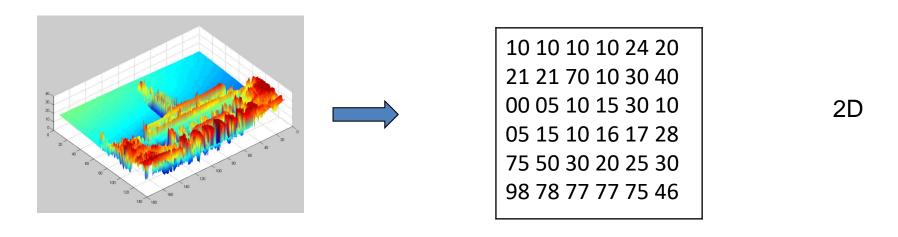


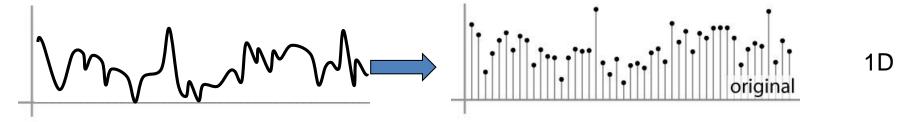
a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

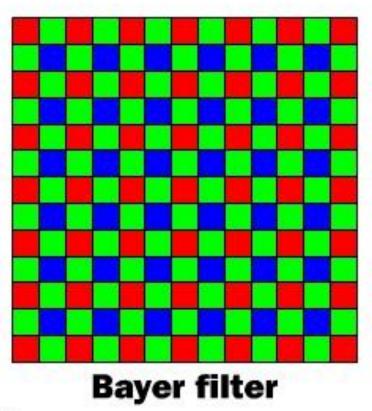
Digital images

- Sample the 2D space on a regular grid
- Quantize each sample (e.g., round to nearest integer)
- Image thus represented as a matrix of integer values.





Digital color images

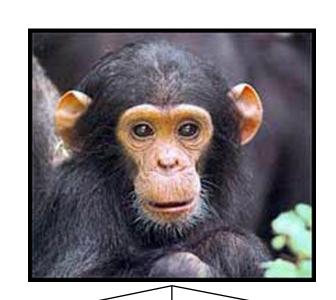


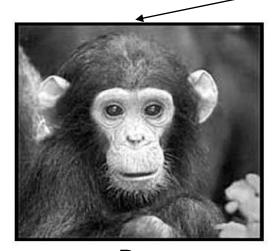
© 2000 How Stuff Works

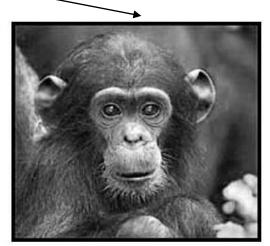
Digital color images

Slide Credit: Kristen Grauman

Color images, RGB color space







R

G

В

Images in Matlab

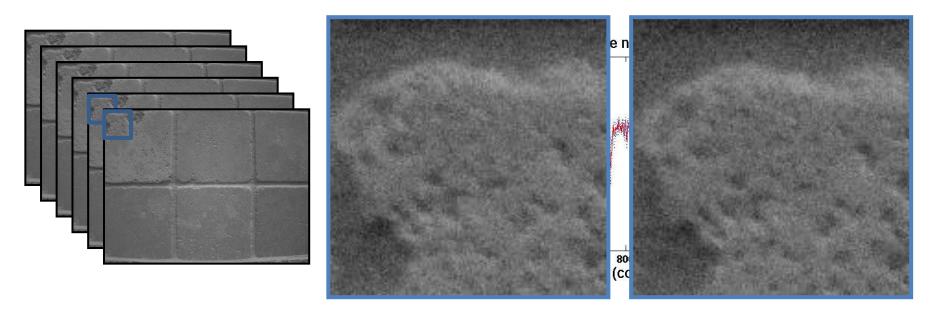
- Images represented as a matrix
- Suppose we have a NxM RGB image called "I"
 - I(1,1,1) = top-left pixel value in R-channel
 - I(y, x, b) = y pixels down, x pixels to right in the b^{th} channel
 - I(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

Main idea: image filtering

- Aggregate the local neighborhood at each pixel in the image
 - Function specified a pattern saying how to aggregate values from neighbors

- Uses of filtering:
 - Enhance an image (denoise, resize, level-of-details, etc)
 - Extract information (texture, edges, features, etc)
 - Detect patterns (template matching)

Motivation: noise reduction



• Even multiple images of the **same static scene** will not be identical.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

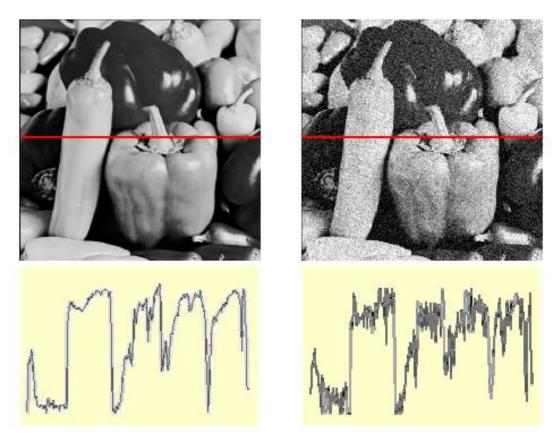
Original

Impulse noise

Salt and pepper noise

Gaussian noise

Gaussian noise



$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is impact of the sigma?

Fig: M. Hebert

Effect of sigma on Gaussian noise:

Image shows the noise values themselves.

sigma=1

sigma=4

Effect of sigma on Gaussian noise:

Image shows the noise values themselves.

sigma=1

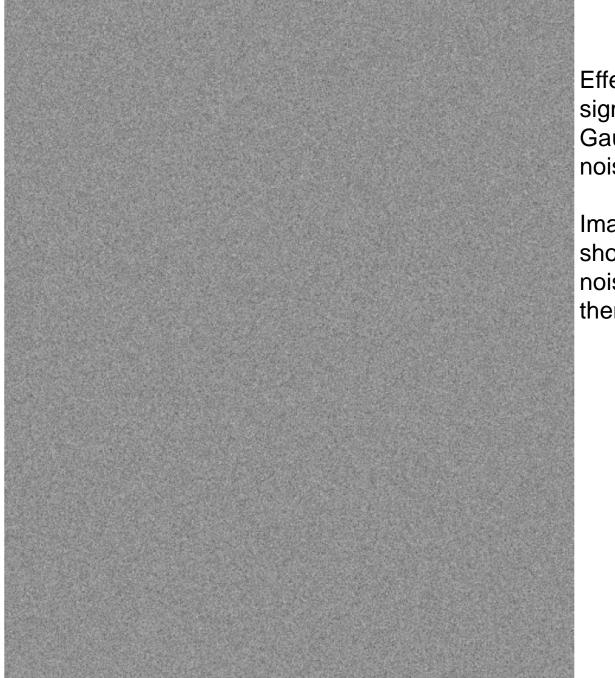
Effect of sigma on Gaussian noise:

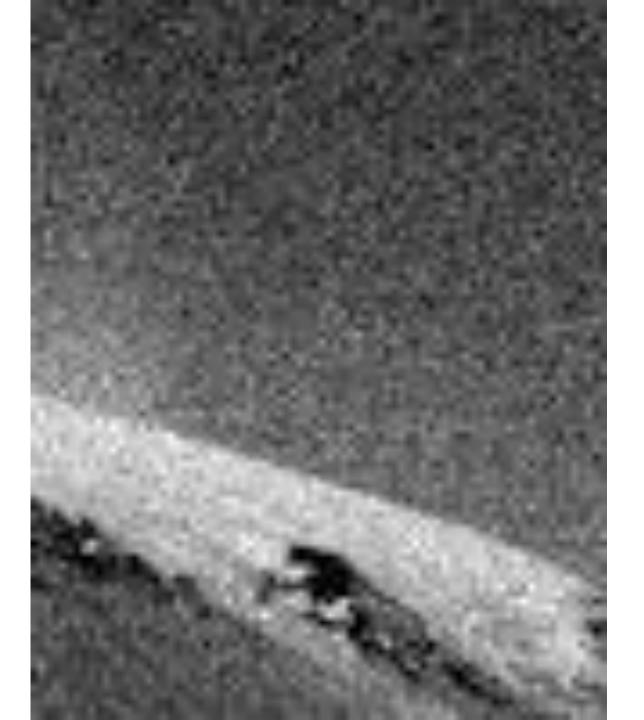
This shows the noise values added to the raw intensities of an image.

Effect of sigma on Gaussian noise:

Image shows the noise values themselves.

sigma=



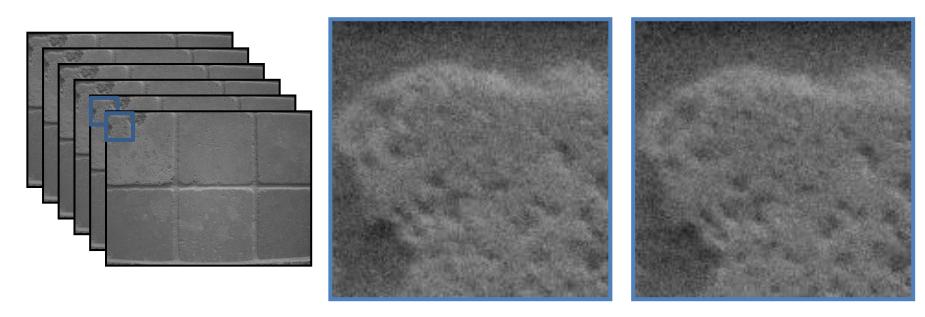


sigma=16

Effect of sigma on Gaussian noise

This shows the noise values added to the raw intensities of an image.

Motivation: noise reduction



- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- What if there's only one image?

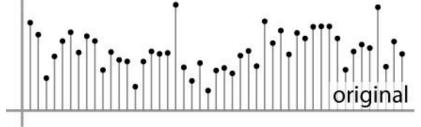
First attempt at a solution

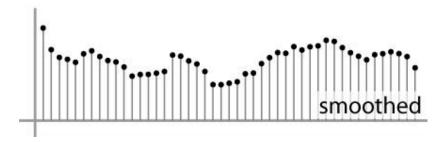
- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution

 Let's replace each pixel with an average of all the values in its neighborhood

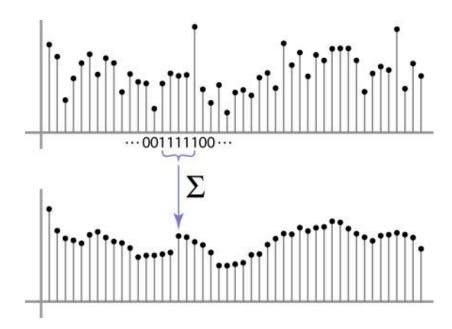
Moving average in 1D:





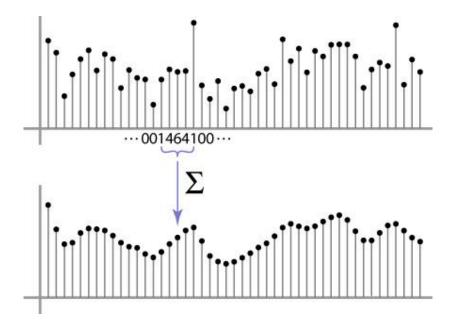
Weighted Moving Average

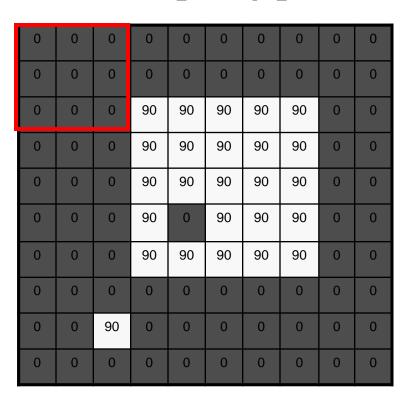
- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

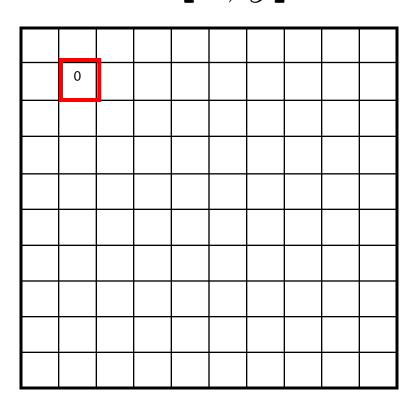


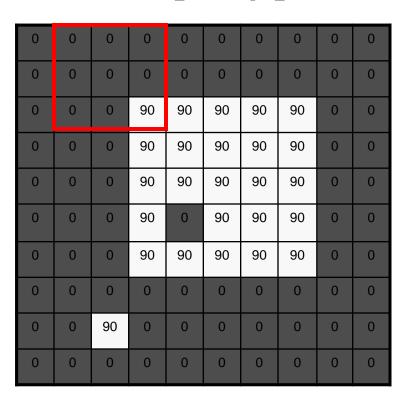
Weighted Moving Average

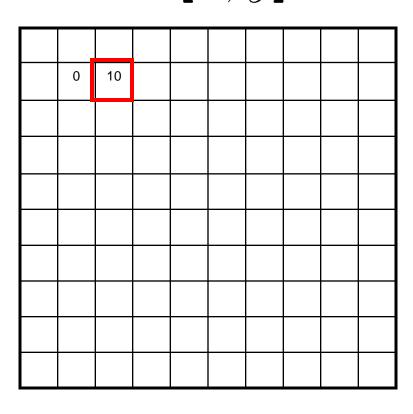
Non-uniform weights [1, 4, 6, 4, 1] / 16

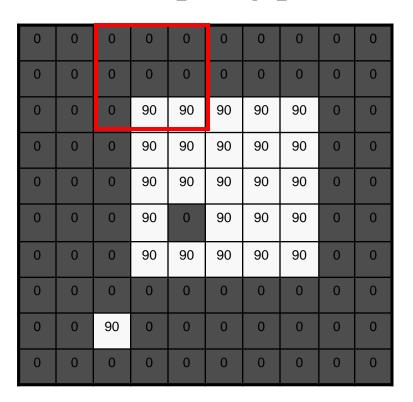


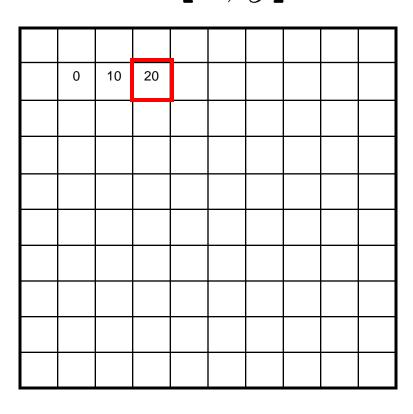


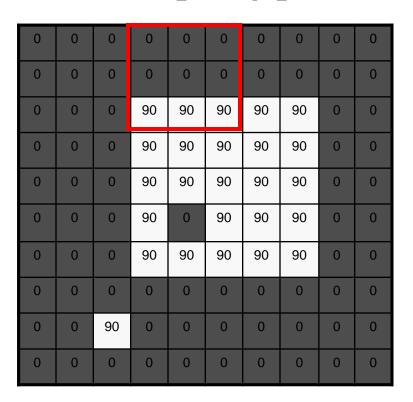


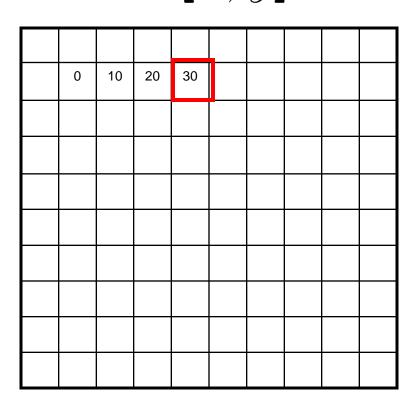


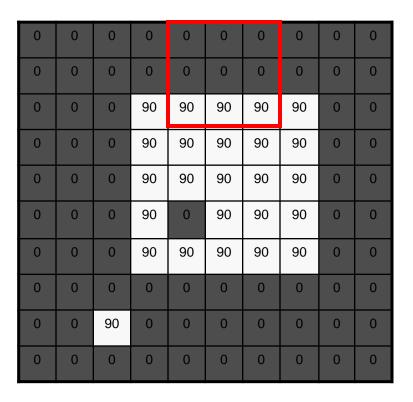


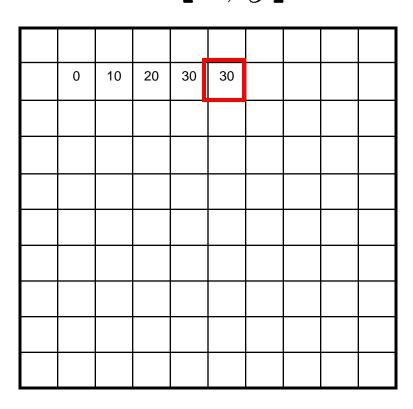












0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
 10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$
Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
Non-uniform weights

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

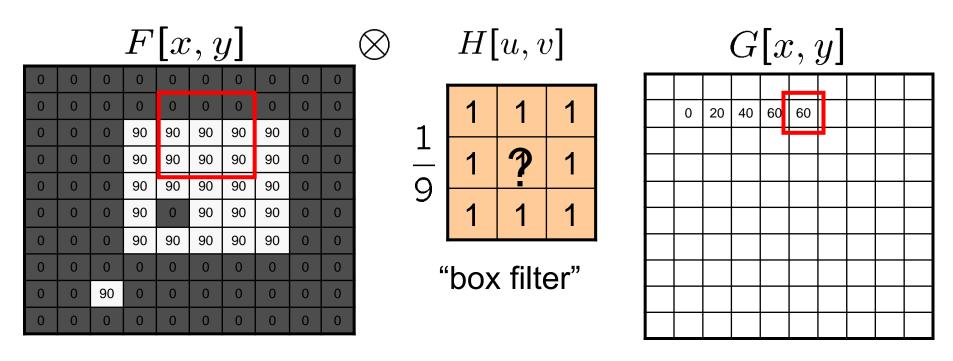
This is called cross-correlation, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Averaging filter

 What values belong in the kernel H for the moving average example?



$$G = H \otimes F$$

Boundary Issues

What is the size of the output?

Padding Options					
numeric scalar, X	Input array values outside the bounds of the array are assigned the value X. When no padding option is specified, the default is 0.				
'symmetric'	Input array values outside the bounds of the array are computed by mirror-reflecting the array across the array border.				
'replicate'	Input array values outside the bounds of the array are assumed to equal the nearest array border value.				
'circular'	Input array values outside the bounds of the array are computed by implicitly assuming the input array is periodic.				
Output Size					
'same'	The output array is the same size as the input array. This is the default behavior when no output size options are specified.				
'full'	The output array is the full filtered result, and so is larger than the input array.				
Correlation and Convolution Options					
'corr'	imfilter performs multidimensional filtering using correlation, which is the same way that filter2 performs filtering. When no correlation or convolution option is specified, imfilter uses correlation.				
'conv'	imfilter performs multidimensional filtering using convolution.				

Boundary Issues

What is the size of the output?

```
shape — Subsection of filtered data
'same' (default) | 'full' | 'valid'
```

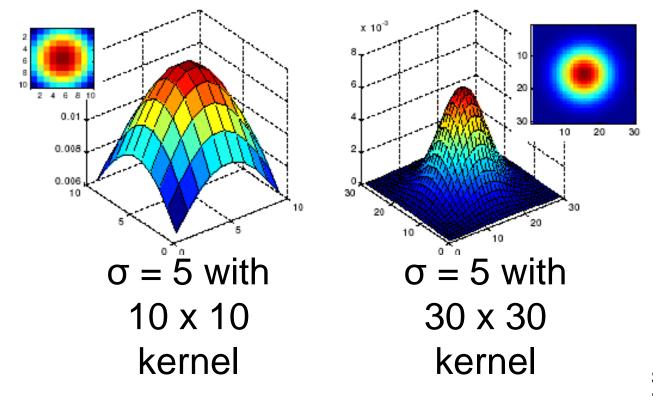
Subsection of the filtered data, specified as one of these values:

- 'same' Return the central part of the filtered data, which is the same size as X.
- 'full' Return the full 2-D filtered data.
- 'valid' Return only parts of the filtered data that are computed without zero-padded edges.

Smoothing with a Gaussian

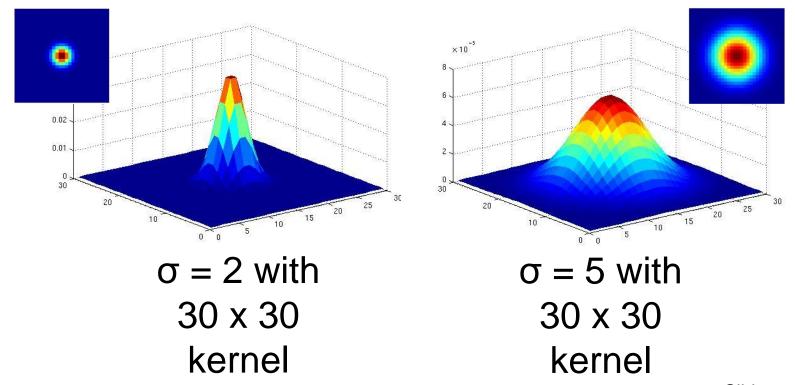
Gaussian filters

- What parameters matter here?
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing



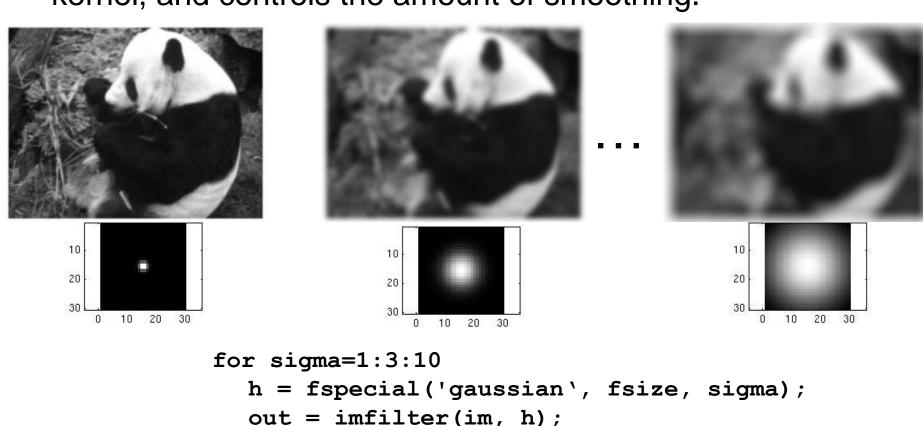
Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('qaussian' hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % correlation
>> imshow(outim);
```

outim

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



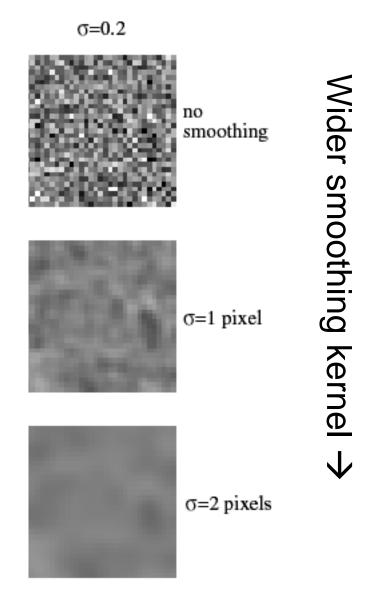
imshow(out);

pause;

end

```
Slide credit:
Kristen Grauman
```

Keeping the two Gaussians in play straight...

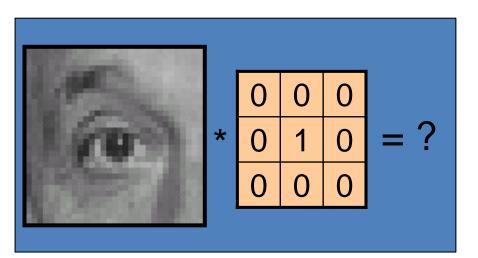


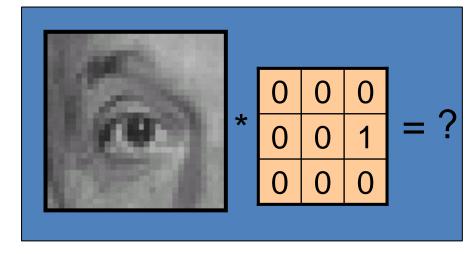
Properties of smoothing filters

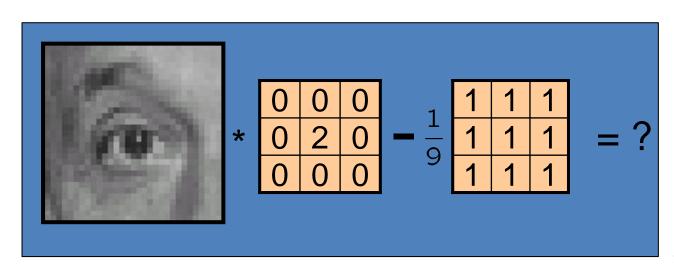
Smoothing

- Values positive
- Sum to $1 \rightarrow$ constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Predict the outputs using correlation filtering









\sim	•	•	1
O_1	r1 (711	าวไ
\mathbf{C}	LI≽	411	ıaı
	_	_	

0	0	0
0	1	0
0	0	0

?

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

\bigcirc	•	•	1
()	r 1 (711	ıal
$\mathbf{\mathcal{O}}$	113	511	ıaı
	•	_	

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	7
0	0	0



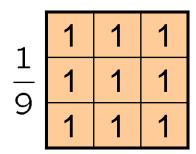
Shifted left by 1 pixel with correlation

Original

1	1	1	1
) -	1	1	1
9	1	1	1

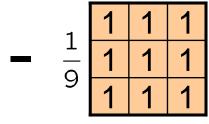
?

Original



Blur (with a box filter)

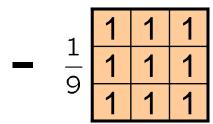
0	0	0
0	2	0
0	0	0



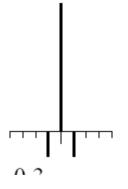
?

Original

0	0	0
0	2	0
0	0	0

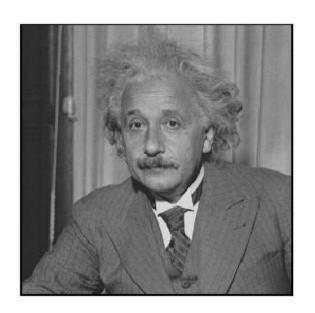


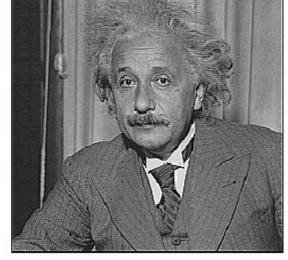
Original



Sharpening filter:
accentuates differences
with local average

Filtering examples: sharpening





before after

More Examples

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

0	0	0
0	2	0
0	0	0

Convolution

Convolution:

- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$\uparrow$$
Notation for convolution operator

Properties of convolution

Shift invariant:

 Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

Superposition:

$$- h * (f1 + f2) = (h * f1) + (h * f2)$$

Properties of convolution

Commutative:

$$f * g = g * f$$

Associative

$$(f * g) * h = f * (g * h)$$

Distributes over addition

$$f * (g + h) = (f * g) + (f * h)$$

Scalars factor out

$$kf * g = f * kg = k(f * g)$$

Identity:

unit impulse
$$e = [..., 0, 0, 1, 0, 0, ...]$$
. $f * e = f$

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows with a 1D filter
 - Convolve all columns with a 1D filter

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

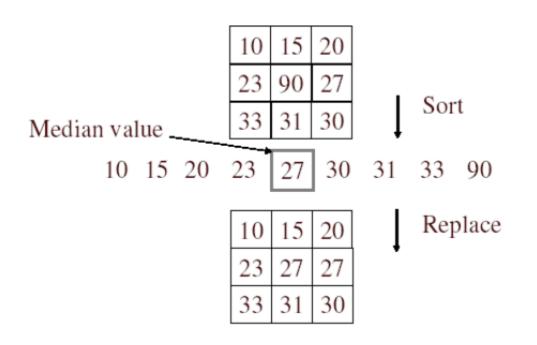
Effect of smoothing filters

5x5

Additive Gaussian noise

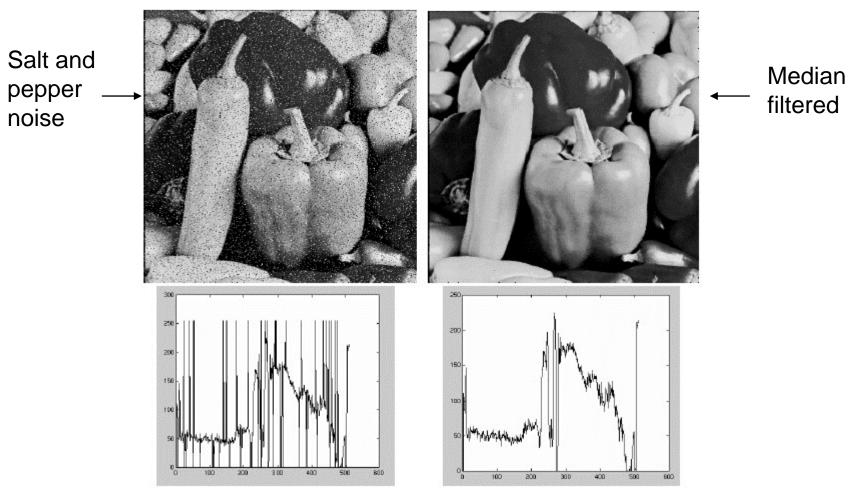
Salt and pepper noise

Median filter



- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Median filter



Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

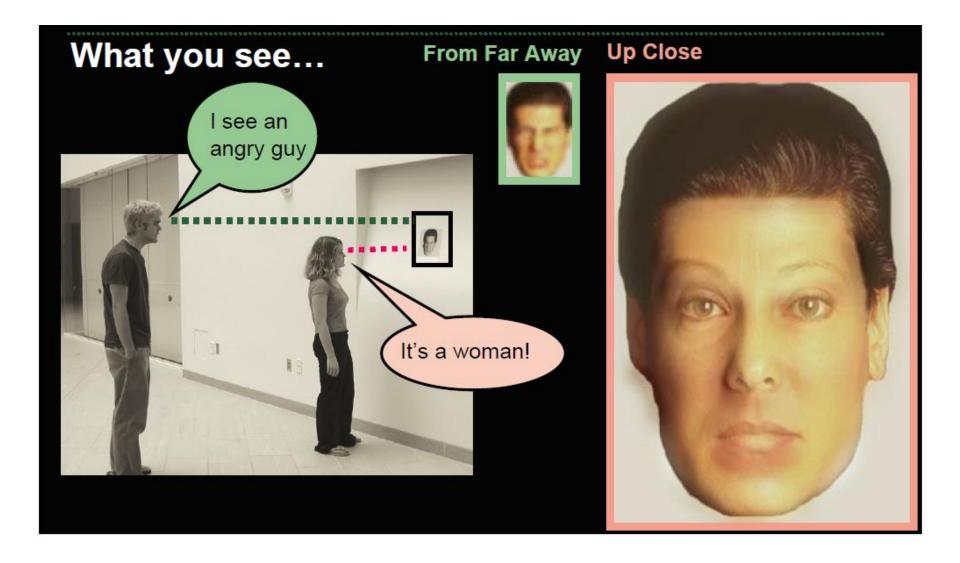
Source: M. Hebert

Median filter

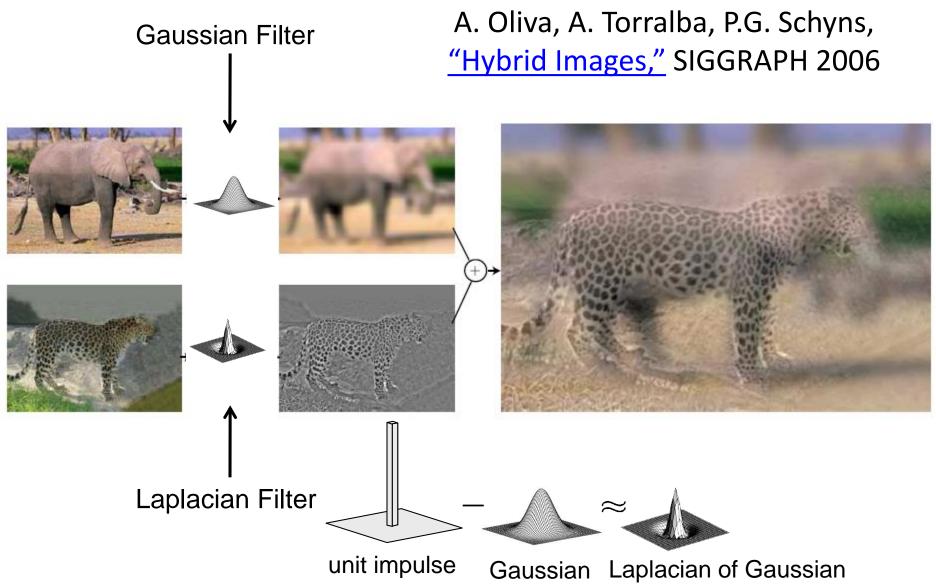
Median filter is edge preserving

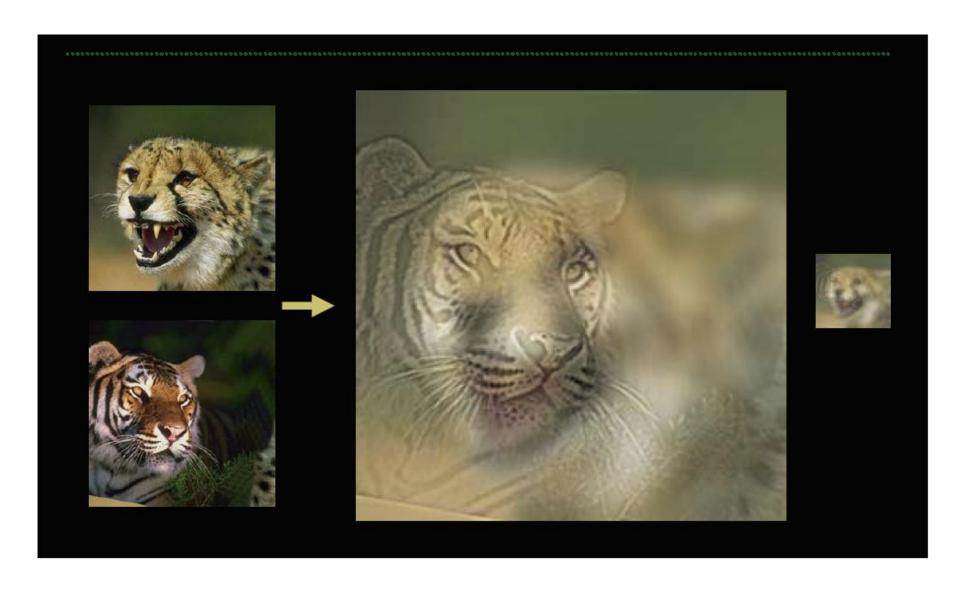
	INPUT
•••••	MEDIAN
	MEAN

Filtering application: Hybrid Images



Application: Hybrid Images





Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Changing expression

Sad - Surprised

Summary

- Image "noise"
- Linear filters and convolution useful for
 - Enhancing images (smoothing, removing noise)
 - Box filter
 - Gaussian filter
 - Impact of scale / width of smoothing filter
 - Detecting features (next time)
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving

Coming up

Wednesday:

 Filtering part 2: filtering for features (edges, gradients, seam carving application)

Tomorrow:

Assignment 0 is due on Canvas 11:59 PM