
CS376 Computer Vision
Lecture 20: Deep Learning Basics

Qixing Huang

 April 10th 2019

Slide material from: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture04.pdf

 http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf

Today’s Topic

• Neural Networks

– Activation functions

– Fully connected

– Convolutional neural networks

• Optimization

• Back-propagation

Neural Networks

From linear to multi-layer

From linear to multi-layer

Activation functions

Neural Networks: Architectures

Summary

• We arrange neurons into fully-connected
layers

• The abstraction of a layer has the nice
property that it allows us to use efficient
vectorized code (e.g. matrix multiplies)

• Neural networks are not really neural

Convolutional Neural Network

Convolutional Neural Networks

• A bit of history

Convolutional Neural Networks

• A bit of history

Recall fully connected layers

Recall fully connected layers

Convolution layer

Convolution layer

Convolution layer

Convolution layer

Convolution layer

ConvNet

• ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

A typical ConvNet

A closer look at spatial dimensions

Activations

Output size

Padding is necessary

Padding

Note that

An example

General form of a Conv layer

An extreme case

The brain/neuron view of CONV layer

The brain/neuron view of CONV layer

Reminder: Fully Connected Layer

Pooling layer

• makes the representations smaller and more
manageable

• operates over each activation map independently:

Max pooling

General form

Fully Connected Layer (FC Layer)

• Contains neurons that connect to the entire input volume, as
in ordinary Neural Networks

Summary

• ConvNets stack CONV,POOL,FC layers

• Trend towards smaller filters and deeper
architectures

• Trend towards getting rid of POOL/FC layers (just
CONV)

• Typical architectures look like

• [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.

– but recent advances such as ResNet/GoogLeNet challenge
this paradigm

Optimization

Let us go back to the linear case

Optimization

Gradient descent

Compuational graphs

Back-propagation

A toy example

Back-propagation

Back-propagation

• recursive application of the chain rule along a computational
graph to compute the gradients of all inputs /parameters /
intermediates

• implementations maintain a graph structure, where the nodes
implement the forward() / backward() API

• forward: compute result of an operation and save any
intermediates needed for gradient computation in memory

• backward: apply the chain rule to compute the gradient of the
loss function with respect to the inputs

