CS376 Computer Vision
Lecture 20: Deep Learning Basics

Qixing Huang
April 10th 2019

Slide material from: http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture04.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf

Today’s Topic
e Neural Networks
— Activation functions

— Fully connected
— Convolutional neural networks

* Optimization

* Back-propagation

Neural Networks

From linear to multi-layer

(Before) Linear score function: f = Wax
(Now) 2-layer Neural Network f = W5 max (0, Wiz)

3072

From linear to multi-layer

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W5 max(0, Wix)
or 3-layer Neural Network

f — W3 maX(O, W2 ma'X(Oa Wlﬂ?))

Activation functions

Sigmoid | Leaky ReLU

_ 1 max (0.1,)
J("T’.) — 14e =
tanh Maxout
taﬂh(.‘iﬂ) 1 10 maX(TUT$ + bl, wgm -I- bg)
RelLU ELU

, >

max (0,) {Z(EI 1 i - 8 =

Neural Networks: Architectures

output layer
input layer
hidden layer

“2-layer Neural Net”,‘N

“1-hidden-layer Neural Net”

input layer

hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Summary

 We arrange neurons into fully-connected
layers

* The abstraction of a layer has the nice
property that it allows us to use efficient
vectorized code (e.g. matrix multiplies)

* Neural networks are not really neural

Convolutional Neural Network

Convolutional Neural Networks

* A bit of history

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps

Input
D\ N Output
Tt N S A
Convolutions Fully Connected

Convolutional Neural Networks

* A bit of history

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

izhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission
“AlexNet”

Recall fully connected layers

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

1 —> —> 4 [@

3072 10 X 3072 10
weights

Recall fully connected layers

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
—> 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution layer

32x32x3 image -> preserve spatial structure

32 height

3 depth

Convolution layer

32x32x3 image

5x5x3 filter
32 4
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

Convolution layer

_— 32x32x3 image
5x5x3 filter w

il

™~ 1 number:

32—
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz+b

Convolution layer

activation map

_— 32x32x3 image

- 5x5x3 filter /
2
@>O ”

convolve (slide) over all

spatial locations
32 28

Convolution layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

y 4

28

A

We stack these up to get a “new image” of size 28x28x6!

ConvNet

ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

32 28 4
CONV, CONV, CONV,
RelU Rel U Rel U
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 Fitars 24

A typical ConvNet

p Visualization of VGG-16 by Lane Mcintosh. VGG-16
[ze”er and Fergus 2013] architecture from [Simonyan and Zisserman 2014).

' , Linearly
eeres ["ot [e [el
classifier

v) i ';:‘ i 'v '

VGG-16 Convi 1 VGG-16 Conv3 2

A closer look at spatial dimensions

activation map

- 32x32x3 image

 5x5x3 filter /
2
@>O N

convolve (slide) over all

spatial locations
32 28

Activations

CINEESDNIITN NESESRETNSEEREERG
one filter => ;
one activation map example 5x5 filters

(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

\ :
..-.- flxyl#glxyl = Y Y fla.n)-glx—n.y—n,]

"l D Jly =t

l‘«.\-.. ' 2 T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyrght Andrej Karpathy,

Output size

Output size:

(N - F) / stride + 1

eg.N=7,F=3:

stride 1=>(7-3)/[1+1=5

stride 2 => (7-3)2+1=3
stride 3 => (7 -3)/3+1=2.33:\

Padding is necessary

o | o | o | o o

Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

Remember back to...

Note that

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

7

e

w

32

CONV,

RelLU
e.g.6
5x5x3
filters

A

L

|

28

CONV,

RelLU
e.qg. 10
5x5x6
filters

A

i

24

CONV,

RelLU

An example

/|

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 U

N

Number of parameters in this layer?

N

General form

Summary. To summarize, the Conv Layer.

 Accepts a volume of size W x H; x D,
* Requires four hyperparameters:

o Number of filters K,

o their spatial extent F,

o the stride S,

o the amount of zero padding P

of a Conv layer

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F=3,S=1,P=1

51
S,
1

1,
2y
1

3

"
N N

? (whatever fits)

iz o W o BBt 1
I
Owwmwm
1"

0 - v
"

"
o

 Produces a volume of size Wy x Hy x D, where:

o Wy =(W; —F+2P)/S +1

o Hy = (H, — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

s Do=K

« With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F'- D,) - K weights

and K biases.

« In the output volume, the d-th depth slice (of size W> x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

An extreme case

(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

The brain/neuron view of CONV layer

32

32

Iy wy

An activation map is a 28x28 sheet of neuron
outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

“6x5 filter” -> “5x5 receptive field for each neuron”

The brain/neuron view of CONV layer

32

32

0000

28

28

E iy

aclivation

E.g. with 5 filters,

CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume

Reminder: Fully Connected Layer

Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full
iInput volume
input tivati
Inpu Wg; activation
" 1072 10 x 3072 1[0 10
weights /

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Pooling layer

* makes the representations smaller and more

manageable

e operates over each activation map independently:

224x224x64

pool

>

l

112x112x64

s —

224

|

— 112
downsampling

112

Max pooling

Single depth slice

max pool with 2x2 filters
and stride 2

L

11112 4
5|6 |78
31210
1123 | 4

General form

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size Wy x Hy x D, where:
o Wy = (W, -F)/S+1
o H, =(H1 —F)/S+l
° D2 = Dl
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Common settings:

I
W N

F 2
I 2

Fully Connected Layer (FC Layer)

* Contains neurons that connect to the entire input volume, as

in ordinary Neural Networks

RELU RELU

RELU RELU RELU RELU

Nvl CONV lcofvl

O

y
-
=
=
-
=
=
]
-
-

Y

car
truck

glfplane
ship

horse

Summary

ConvNets stack CONV,POOL,FC layers

Trend towards smaller filters and deeper
architectures

Trend towards getting rid of POOL/FC layers (just
CONV)

Typical architectures look like
[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2,

— but recent advances such as ResNet/GooglLeNet challenge
this paradigm

Optimization

Let us go back to the linear case

s — f(a:, W) — Wax scores function

L; = E#yi max(O, 8j — 8y, + 1) SVM loss

N
L= % Sy Li + Y, W data loss + regularization

want)LVW'L |

Optimization

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform ramet

Gradient descent

df(z) _ .
dx N h —0

f(z+h) - f(z)

h
Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient

Compuational graphs

Li =), max(0,s; — sy, + 1)

¥= Wy

~

Y,

7

~ G\J s (scores) (;‘B
_

D

R

<&

Back-propagation

A toy example

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

g=zx+Yy gz—l,g 1
of of
f=gqz g o 4
of of 0
Want: L o

oz’ By’ 0z

Back-propagation

“local gradient”

Z

oL
0z

gradients

Back-propagation

recursive application of the chain rule along a computational
graph to compute the gradients of all inputs /parameters /
intermediates

implementations maintain a graph structure, where the nodes
implement the forward() / backward() API

forward: compute result of an operation and save any
intermediates needed for gradient computation in memory

backward: apply the chain rule to compute the gradient of the
loss function with respect to the inputs

