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Today’s Topic 

• Neural Networks 

– Activation functions 

– Fully connected 

– Convolutional neural networks 

 

• Optimization 

 

• Back-propagation 

 



Neural Networks 



From linear to multi-layer 



From linear to multi-layer 



Activation functions 



Neural Networks: Architectures 



Summary 

• We arrange neurons into fully-connected 
layers  

 

• The abstraction of a layer has the nice 
property that it allows us to use efficient 
vectorized code (e.g. matrix multiplies) 

 

• Neural networks are not really neural 



Convolutional Neural Network 



Convolutional Neural Networks 

• A bit of history 



Convolutional Neural Networks 

• A bit of history 



Recall fully connected layers 



Recall fully connected layers 



Convolution layer 



Convolution layer 



Convolution layer 



Convolution layer 



Convolution layer 



ConvNet 

• ConvNet is a sequence of Convolution Layers, 
interspersed with activation functions 



A typical ConvNet 



A closer look at spatial dimensions 



Activations 



Output size 

Padding is necessary 



Padding 



Note that 



An example 



General form of a Conv layer 



An extreme case 



The brain/neuron view of CONV layer 



The brain/neuron view of CONV layer 



Reminder: Fully Connected Layer 



Pooling layer 

• makes the representations smaller and more 
manageable 

• operates over each activation map independently: 



Max pooling 



General form 



Fully Connected Layer (FC Layer) 

• Contains neurons that connect to the entire input volume, as 
in ordinary Neural Networks 



Summary 

• ConvNets stack CONV,POOL,FC layers  

• Trend towards smaller filters and deeper 
architectures  

• Trend towards getting rid of POOL/FC layers (just 
CONV)  

• Typical architectures look like  

• [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX 
where N is usually up to ~5, M is large, 0 <= K <= 2.  

– but recent advances such as ResNet/GoogLeNet challenge 
this paradigm 



Optimization 



Let us go back to the linear case  



Optimization 



Gradient descent 



Compuational graphs 



Back-propagation 



A toy example 



Back-propagation 



Back-propagation 

• recursive application of the chain rule along a computational 
graph to compute the gradients of all inputs /parameters / 
intermediates 

 

• implementations maintain a graph structure, where the nodes 
implement the forward() / backward() API  

 

• forward: compute result of an operation and save any 
intermediates needed for gradient computation in memory 

• backward: apply the chain rule to compute the gradient of the 
loss function with respect to the inputs 


