CS376 Computer Vision Lecture 3: Linear Filters

Qixing Huang January 30th 2019

Last Lecture

• Image Noise

- Image Filtering
 - Denoising

This Lecture

• Edge Detection

• Template Matching

Edge detection

• **Goal**: map image from 2d array of pixels to a set of curves or line segments or contours.

Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction.

Source:

https://en.wikipedia.org/wiki/Edge_detection#/media/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png

Edge detection

Edge detection

From Wikipedia, the free encyclopedia

Edge detection includes a variety of mathematical methods that aim at identifying points in a digital image at which the image brightness changes sharply or, more formally, has discontinuities. The points at which image brightness changes sharply are typically organized into a set of curved line segments termed *edges*. The same problem of finding discontinuities in one-dimensional signals is known as step detection and the problem of finding signal discontinuities over time is known as change detection. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction.^[1]

Contents [hide]			
1	Motiva	ations	
2	Edge properties		
3	A simple edge model		
4	Why it is a non-trivial task		
5	Approaches		
	5.1	Canny	
	5.2	Other first-order methods	
	5.3	Thresholding and linking	
	5.4	Edge thinning	
	5.5	Second-order approaches	
		5.5.1 Differential	
	5.6	Phase congruency-based	
	5.7	Physics-inspired	
	5.8	Subpixel	
6	See also		

Feature detection

Edge detection Canny · Deriche · Differential · Sobel · Prewitt · Roberts cross

Corner detection Harris operator - Shi and Tomasi -Level curve curvature -Hessian feature strength measures - SUSAN - FAST

Blob detection

Laplacian of Gaussian (LoG) • Difference of Gaussians (DoG) • Determinant of Hessian (DoH) • Maximally stable extremal regions • PCBR

Ridge detection

Hough transform Hough transform · Generalized Hough transform

Structure tensor Structure tensor · Generalized structure tensor

Affine invariant feature detection Affine shape adaptation · Harris affine · Hessian affine

Feature description

Besides the textbook, I also recommend Wikipedia pages (Up to date updates and fairly accurate)

What causes an edge?

changes in material properties and

discontinuities in surface orientation

More from https://en.wikipedia.org/wiki/Edge_detection

Edges/gradients and invariance

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Source: L. Lazebnik

Partial derivatives of an image

Which shows changes with respect to x?

(showing filters for correlation)

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The **gradient direction** (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Slide credit Steve Seitz

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Slide credit Steve Seitz

Solution: smooth first

Where is the edge?

Look for peaks in

 $\frac{\partial}{\partial x}(h\star f)$

Slide credit Steve Seitz

Derivative of Gaussian filters

Source: L. Lazebnik

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

Slide credit: Steve Seitz

2D edge detection filters

• ∇^2 is the Laplacian operator: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2}$

Slide credit: Steve Seitz

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Effect of σ on derivatives

 σ = 1 pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

Natural distribution of image gradients

• An effective prior (heavy tailed) in image restoration, e.g., Image deblurring

Blurry input

Ground truth

Without prior

With prior

[Shan et al. 08]

Seam Carving

[Shai & Avidan, SIGGRAPH 2007]

Content-aware resizing

Traditional resizing

[Shai & Avidan, SIGGRAPH 2007]

Real image example

Content-aware resizing

Intuition:

Preserve the most "interesting" content

 \rightarrow Prefer to remove pixels with low gradient energy

 To reduce or increase size in one dimension, remove irregularly shaped "seams"

 \rightarrow Optimal solution via dynamic programming.

Want to remove seams w — Measure "energ Choose seam based on m

 $Energy(f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Seam carving: algorithm

$$Energy(f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Let a vertical seam **s** consist of *h* positions that form an 8-connected path.

Let the cost of a seam be:

Optimal seam minimizes this cost:

Compute it efficiently with dynamic programming.

$$Cost(\mathbf{s}) = \sum_{i=1}^{h} Energy(f(s_i))$$
$$\mathbf{s}^* = \min_{\mathbf{s}} Cost(\mathbf{s})$$

How to identify the minimum cost seam?

• First, consider a greedy approach:

Energy matrix (gradient magnitude)

Seam carving: algorithm

 Compute the cumulative minimum energy for all possible connected seams at each entry (*i*,*j*):

 $\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

- Then, min value in last row of M indicates end of the minimal connected vertical seam.
- Backtrack up from there, selecting min of 3 above in **M**.

Example

 $\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Energy matrix (gradient magnitude) M matrix (for vertical seams)

Example

 $\mathbf{M}(i, j) = Energy(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Energy matrix (gradient magnitude)

M matrix (for vertical seams)

Real image example

Original Image

Blue = low energy Red = high energy

Slide credit: Kristen Grauman

Energy Map

Real image example

Seam Carving

Seam carving

From Wikipedia, the free encyclopedia

Seam carving (or liquid rescaling) is an algorithm for content-aware image resizing, developed by Shai Avidan, of Mitsubishi Electric Research Laboratories (MERL), and Ariel Shamir, of the Interdisciplinary Center and MERL. It functions by establishing a number of *seams* (paths of least importance) in an image and automatically removes seams to reduce image size or inserts seams to extend it. Seam carving also allows manually defining areas in which pixels may not be modified, and features the ability to remove whole objects from photographs.

The purpose of the algorithm is image retargeting, which is the problem of displaying images without distortion on media of various sizes (cell phones, projection screens) using document standards, like HTML, that already support dynamic changes in page layout and text but not images.^[1]

Image Retargeting was invented by Vidya Setlur, Saeko Takage, Ramesh Raskar, Michael Gleicher and Bruce Gooch in 2005.^[2] The work by Setlur et al. won the 10-year impact award in 2015.

Extensions of Seam Carving

seams

scale

seams

scale

[Rubinstein et al. 08]
Image Deformation

Gradient map

Saliency map

[Wang et al. 08]

Edge Detection

Gradients -> edges

Primary edge detection steps:

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

Determine which local maxima from filter output are actually edges vs. noise

• Threshold, Thin

Original image

Gradient magnitude image

Canny Edge Detector

- Filter image with derivative of Gaussian and find magnitude and orientation of gradient
- Non-maximum suppression
 - Thin wide "ridges" down to single pixel with
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

original image (Lena)

norm of the gradient

thresholding

The <u>Canny edge detector</u> Edge Threshold Edge

f(t) Edge

How to turn these thick regions of the gradient into curves?

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge – requires checking interpolated pixels p and r

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels

Credit: James Hays

Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them.

Final Canny Edges

Credit: James Hays

Recap: Canny Edge Detector

- A typical example of successful hand-crafted feature design
 - Derivatives as a starting point
 - Non-maximum suppressing to handle fuzzy edges
 - Linking and thresholding (hysteresis)
 - Each (simple) heuristic addresses one important issue
 - Has been applied in other settings
 - How to improve Canny Edge Detector?

Edge detection on 3D shapes

[Pauly et al. 03]

How to Evaluate is Very Important in Computer Vision Research

Labeled data Evaluation Protocol

Low-level edges vs. perceived contours

Background

Texture

Shadows

Low-level edges vs. perceived contours

image

human segmentation

gradient magnitude

 Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Source: L. Lazebnik

Protocol

You will be presented a photographic image. Divide the image into some number of segments, where the segments represent "things" or "parts of things" in the scene. The number of segments is up to you, as it depends on the image. Something between 2 and 30 is likely to be appropriate. It is important that all of the segments have approximately equal importance.

- Custom segmentation tool
- Subjects obtained from work-study program (UC Berkeley undergraduates)

Berkeley Segmentation Data Set David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik

Credit: David Martin

Learn from humans which combination of features is most indicative of a "good" contour?

[D. Martin et al. PAMI 2004]

Human-marked segment boundaries

Dataflow

<u>Challenges</u>: texture cue, cue combination <u>Goal</u>: learn the posterior probability of a boundary $P_b(x,y,\theta)$ from <u>local</u> information only

What features are responsible for perceived edges?

What features are responsible for perceived edges?

Feature profiles (oriented energy, brightness, color, and texture gradients) along the patch's horizontal diameter

Slide Credit: Kristen Grauman

[D. Martin et al. RAM/ 2004]

What features are responsible for perceived edges?

Dataflow

Credit: David Martin

[D. Martin et al. PAMI 2004]

Kristen Grauman, UT-Austin

Contour Detection

Source: Jitendra Malik: http://www.cs.berkeley.edu/~malik/malik-talks-ptrs.html

Template Matching

Another Application: Template Matching

- A building block of neural networks is called a filter
 - Map raw pixels to an intermediate (feature) representation
 - Neural networks utilize filters in a hierarchical manner

Image credit: Yann Lecun

Template matching

- Filters as templates
- Note that filters look like the effects they are intended to find --- "matched filters"

- Use normalized cross-correlation score to find a given pattern (template) in the image
- Normalization needed to control for relative brightnesses

A toy example

Detected template

Where's Lion Messi

Template

Where's Lion Messi

Template

Try multiple scales

Correlation Map

Where's Lion Messi

Template

Template

Scene

What if the template is not identical to some subimage in the scene?

Slide credit: Kristen Grauman

Template

Detected template

Match can be meaningful, if scale, orientation, and general appearance is right.

Slide credit: Kristen Grauman

How about human?

• Deformable part model (deforming template) [Felzenszwalb et al. 10]

- Multilayer-neural network [He et al. 16]
 - The deformation in each layer is close to identity

Recap: Linear Filters

<u>Smoothing</u>

- Values positive
- Sum to 1 \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

<u>Derivatives</u>

- Opposite signs used to get high response in regions of high contrast
- − Sum to 0 \rightarrow no response in constant regions
- High absolute value at points of high contrast

• Filters act as templates

- Highest response for regions that "look the most like the filter"
- Dot product as correlation

Summary

- Image gradients
- Seam carving -> gradients as "energy"
- Gradients -> edges and contours
- Template matching
 Image patch as a filter

Coming up

• A1 out tonight (11.59 pm), due in 2 weeks