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Optical Flow
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What is Optical Flow?

Optical Flow
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Velocity vectors

A common assumption is brightness constancy:
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Optical flow is the 2D projection of the physical movement 
of points relative to the observer



When does Brightness Assumption 
Break down?

• TV is based on illusory motion 
– the set is stationary yet things seem to move 

• A uniform rotating sphere 
– nothing seems to move, yet it is rotating 

• Changing directions or intensities of lighting can make things 
seem to move 
– for example, if the specular highlight on a rotating sphere moves

• Muscle movement can make some spots on a cheetah move 
opposite direction of motion
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Optical Flow Assumptions:
Brightness Constancy

* Slide from Michael Black, CS143 2003
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Optical Flow Assumptions:

* Slide from Michael Black, CS143 2003

Neighboring pixels tend to have similar motions

When does this break down?
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Optical Flow Assumptions:

* Slide from Michael Black, CS143 2003

• The image motion of a surface path changes 
gradually over time



1D Optical Flow
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Optical Flow: 1D Case
Brightness Constancy Assumption:
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2D Optical Flow
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From 1D to 2D tracking
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One equation but two velocity (u,v) unknowns…
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How does this show up visually?
Known as the “Aperture Problem”
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Aperture Problem in Real Life
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From 1D to 2D tracking

The Math is very similar:
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Window size here ~ 11x11
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More Detail:
Solving the aperture problem

• How to get more equations for a pixel? -- impose additional constraints

• most common is to assume that the flow field is smooth locally

• one method:  pretend the pixel’s neighbors have the same (u,v)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Suppose a 5x5 window
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Lukas-Kanade flow

• Prob:  we have more equations than unknowns

– The summations are over all pixels in the K x K window

– This technique was first proposed by Lukas & Kanade (1981)

• described in Trucco & Verri reading

• Solution:  solve least squares problem

– minimum least squares solution given by solution (in d) of:

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small

• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = larger eigenvalue)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



18

Eigenvectors of ATA

– gradients along edge all point the same direction

– gradients away from edge have small magnitude

– is an eigenvector with eigenvalue

– What’s the other eigenvector of ATA?

• let N be perpendicular to 

• N is the second eigenvector with eigenvalue 0

• The eigenvectors of ATA relate to edge direction and magnitude 

• Suppose (x,y) is on an edge.  What is ATA?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Edge

– large gradients, all the same

– large l1, small l2

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Low texture region

– gradients have small magnitude

– small l1, small l2

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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High textured region

– gradients are different, large magnitudes

– large l1, large l2

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Observation

• This is a two image problem BUT
– Can measure sensitivity by just looking at one of the 

images!

– This tells us which pixels are easy to track, which are hard
• very useful later on when we do feature tracking...

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

• When our assumptions are violated

– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

• window size is too large

• what is the ideal window size?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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– Can solve using Newton’s method

• Also known as Newton-Raphson method

– Lukas-Kanade method does one iteration of Newton’s method

• Better results are obtained via more iterations

Improving accuracy
• Recall our small motion assumption

• This is not exact

– To do better, we need to add higher order terms back in:

• This is a polynomial root finding problem

It-1(x,y)

It-1(x,y)

It-1(x,y)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field

- use image warping techniques

3. Repeat until convergence

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Revisiting the small motion assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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* From Marc Pollefeys COMP 256 2003
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Affine Flow

* Slide from Michael Black, CS143 2003
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Horn & Schunck algorithm 

Additional smoothness constraint : 
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besides Opt. Flow constraint equation term
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minimize es+aec

➔ * From Marc Pollefeys COMP 256 2003
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Horn & Schunck algorithm 

In simpler terms:  If we want dense flow, we need to regularize what happens
in ill conditioned (rank deficient) areas of the image.  We take the old cost function:
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And add a regularization term to the cost:
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Convex Program!

We will see a lot of such formulations in in robust regression!



Discussion: What are the other 
methods to improve optical flows?


